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What are compartmental models? 

• Consist of finite number of compartments 
– homogeneous, well-mixed, lumped subsystems 
– kinetically the same 

• Exchange with each other and environment 
• Inter-compartment transfers represent flow of 

material 
• Rate of change of quantity of material in each 

compartment described by first order ODE 
– principle of mass balance 
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• General form of system equations 
 
 
 

 where  qi denotes quantity in compartment i 
   fij denotes the flow rate coefficient from i to j 
   compartment 0 is external environment 
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Areas of application of compartmental 
models 

• Used extensively in: 
– Pharmacokinetics and Anaesthesia (drug kinetics) 
– Biomedicine/Biomedical Control (Tumour Targeting) 
– Chemical Reaction Systems (Enzyme Chains, Nuclear Reactors) 

• Also: 
– Electrical Engineering (Lumped systems of transmission lines, 

filters, ladder networks) 
– Ecosystems (Ecological Models) 
– Neural Computing (Neural Nets) 
– Process Industries (Black Box Models) 
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Linear (time-invariant) compartmental 
models 

• Flow rates, Fij = fij qi 
– directly proportional to amount of material in donor 

compartment, qi   (mathematically: fij = kij) 
– does not depend on any other amounts 

• System equations: 
 
 
 

 where inflow rate f0i has been written as an input/control 
function ui(t) – external source of material 
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• General form of system equations 

 
 

• Perhaps an oversimplification, but does provide (in 
general) good description of responses of many systems 
when small perturbation (ie: input) is made to system 
previously in steady state 
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Common forms of input for 
pharmacokinetic models 

• Mathematical Term 
ui(t) 

Di δ(t) – impulsive input 
of size Di at time t = 0 

k0i – constant input of 
size k0i per unit of time 

                       – repeated 
.     impulsive inputs of 
size Dij at times tj 

• Pharmacokinetic Term 
input or intervention 

bolus injection of dose Di   
.  

constant infusion of drug, 
rate k0i per unit of time 

repeated bolus injections 
of dose Dij at times tj 
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Rules for compartmental models 

• General rules 
– amounts can’t be negative (positive system), qi ≥ 0 
– flows can’t be negative, fij(q)qi ≥ 0 

• State space form: 
– can be written in form q´ = F(q)q + I 
– F(q) is compartmental matrix and satisfies 

 sum of terms down column i equals elimination from 
compartment i  

 diagonal terms are outflows from respective compartments – 
so not positive 

 off diagonal terms are inflows so not negative 
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Example: One compartment model 

• Examples: 
– radioactive substance (decay) 
– systemic blood & perfused tissue 

• System equations 
 

 with observation 
 
 (c1 is observation gain) 
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Example: One compartment model 

• System equations 

 
• Taking Laplace transforms                              

and rearranging 

 
• the transfer function relating input to output 
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Example: One compartment model 

• Transfer function: 

 
• Impulsive input, u1(t) = D1δ(t) 

 
• Constant input, u1(t) = k01 
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Example: One compartment model 

Observed impulse response of one compartment model 
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Example: One compartment model 

Observed step (constant infusion) response of one 
compartment model 
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Example: One compartment model 

Observed response of one compartment model with repeated 
bolus injections of size D1 repeated at regular intervals of T 
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Example: Two compartment model 

• System equations 

????? 
 with observation 

????? 
 (c1 is observation gain) 
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Example: Two compartment model 

• System equations 

 
 with observation 
 
 (ci are observation gains) 
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Example: Two compartment model 
• System equations 

 
 

• These can be rewritten in vector-matrix state-
space form: 

 
• for matrices A, B and C; and so the Transfer 

Function is given by C (sI – A)-1 B 
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Example: Two compartment model 
• System equations 

 
• Note: 

 
 

• So aij = kji (i ≠ j) – off diagonal terms 
• Diagonal terms: 
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Example: Two compartment model 
• Impulsive input 

– Suppose u1(t) = D1δ(t) (and u2(t) = 0) 

 
• Constant infusion 

– Suppose u1(t) = k01 (and u2(t) = 0) 
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Example: Two compartment model 

Observed response of two compartment model with 
impulsive input to compartment 1 (impulse response) 
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Example: Two compartment model 

Observed response of two compartment model with 
constant input to compartment 1 (step response) 
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Example: One compartment nonlinear 
model 

• System equation 

 
• Note: Elimination (Michaelis-Menten) saturates 
• Impulsive input: u1(t) = D1δ(t), treat as q1(0+) = D1 

• No explicit analytical solution for q1(t) 
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Michaelis-Menten saturation curve 
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Input response under nonlinear 
elimination 

Impulse response of one compartment nonlinear model 
with varying input (Km = Vm = b1 = c1 = 1) 
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Repeated impulsive inputs under 
nonlinear elimination 

Response to repeated impulsive inputs at regular intervals of 
1 time unit with varying input (Km = 12, Vm = 15, b1 = c1 = 1)  
(adapted from K. Godfrey. Compartmental Models and their Applications, 1983) 
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Model for Tumour Targeting 
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Other important considerations 

• Identifiability of unknown system parameters 
– Given postulated system model, values for some of 

parameters (eg rate constants) may not be known   
– Identifiability is a theoretical analysis of whether these 

parameters may be uniquely determined from perfect 
input/output data 
 Linear systems – relatively straightforward 
 Nonlinear systems – fewer methods, complex 

• Parameter estimation (the real situation) 
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Other important considerations 

• Parameter estimation (the real situation) 
– It may be necessary/instructive to actually calculate 

estimates for unknown parameter values for 
postulated model from real data (actual 
measurements/observations) 

– Generally performed using computer packages which 
employ linear/nonlinear regression techniques 

– Practical problems for Pharmacokinetic Models: 
 Few Data Points (eg blood samples) 
 Inaccuracy of Measurement – method of collection (eg urine 

samples) 
 Measurement Noise 
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