Learn and Live ${ }_{\text {sn }}$

Gender-Specific Associations of Short Sleep Duration With Prevalent and Incident Hypertension. The Whitehall II Study

Francesco P. Cappuccio, Saverio Stranges, Ngianga-Bakwin Kandala, Michelle A. Miller, Frances M. Taggart, Meena Kumari, Jane E. Ferrie, Martin J. Shipley, Eric J. Brunner and Michael G. Marmot Hypertension published online Sep 4, 2007; DOI: 10.1161/HYPERTENSIONAHA.107.095471
Hypertension is published by the American Heart Association. 7272 Greenville Avenue, Dallas, TX 72514
Copyright © 2007 American Heart Association. All rights reserved. Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org

[^0]
Gender-Specific Associations of Short Sleep Duration With Prevalent and Incident Hypertension The Whitehall II Study

Francesco P. Cappuccio, Saverio Stranges, Ngianga-Bakwin Kandala, Michelle A. Miller, Frances M. Taggart, Meena Kumari, Jane E. Ferrie, Martin J. Shipley, Eric J. Brunner, Michael G. Marmot

Abstract

Sleep deprivation (≤ 5 hour per night) was associated with a higher risk of hypertension in middle-aged American adults but not among older individuals. However, the outcome was based on self-reported diagnosis of incident hypertension, and no gender-specific analyses were included. We examined cross-sectional and prospective associations of sleep duration with prevalent and incident hypertension in a cohort of 10308 British civil servants aged 35 to 55 years at baseline (phase 1: 1985-1988). Data were gathered from phase 5 (1997-1999) and phase 7 (2003-2004). Sleep duration and other covariates were assessed at phase 5. At both examinations, hypertension was defined as blood pressure $\geq 140 / 90 \mathrm{~mm} \mathrm{Hg}$ or regular use of antihypertensive medications. In cross-sectional analyses at phase $5(\mathrm{n}=5766)$, short duration of sleep (≤ 5 hour per night) was associated with higher risk of hypertension compared with the group sleeping 7 hours, among women (odds ratio: $2.01 ; 95 \% \mathrm{CI}: 1.13$ to 3.58), independent of confounders, with an inverse linear trend across decreasing hours of sleep $(P=0.003)$. No association was detected in men. In prospective analyses (mean follow-up: 5 years), the cumulative incidence of hypertension was 20.0% ($\mathrm{n}=740$) among 3691 normotensive individuals at phase 5. In women, short duration of sleep was associated with a higher risk of hypertension in a reduced model (age and employment) (6 hours per night: odds ratio: 1.56 [$95 \% \mathrm{CI}$: 1.07 to 2.27]; ≤ 5 hour per night: odds ratio: 1.94 [95% CI: 1.08 to 3.50] versus 7 hours). The associations were attenuated after accounting for cardiovascular risk factors and psychiatric comorbidities (odds ratio: 1.42 [$95 \% \mathrm{CI}: 0.94$ to 2.16]; odds ratio: 1.31 [95% CI: 0.65 to 2.63], respectively). Sleep deprivation may produce detrimental cardiovascular effects among women. (Hypertension. 2007;50:694-701.)

Key Words: sleep duration \square blood pressure \square hypertension $■$ gender differences \square confounders \square comorbidities

Sleep-disordered breathing (SDB) has been linked to elevated blood pressure and risk of hypertension in several epidemiological observational studies. ${ }^{1-5}$ Growing evidence indicates that sleep depriyation is also associated with a number of health outcomes, including hypertension. ${ }^{6-14}$ For example, in a recent longitudinal analysis of the first National Health And Nutrition Examination Survey (NHANES-I), short sleep duration (≤ 5 hours per night) was associated with a 60% higher risk of incident hypertension in middle-aged (32 to 59 years) American adults without apparent sleep disorders during a mean follow-up of 8 to 10 years. ${ }^{13}$ No association was found in individuals ≥ 60 years of age. However, the outcome was based on self-reported diagnosis of incident hypertension, and no gender-specific analyses were included. Furthermore, a cross-sectional analysis from the Sleep Heart Health Study on a sample of ≈ 6000 US adults showed a significant higher prevalence of hyper-
tension among individuals with usual sleep duration above or below the median of 7 to <8 hours per night. ${ }^{14}$ The association was stronger, ie, a 66% higher risk of hypertension, among short sleepers (<6 hours per night). Although this study attempted to account for a number of potential confounders, including psychiatric and cardiovascular comorbidities, the cross-sectional design did not allow inference on the temporal relationship between sleep duration and hypertension.

Several studies in humans indicate potential pathophysiological mechanisms supporting the biological plausibility of the association between sleep deprivation and hypertension. For example, acute curtailments of sleep may induce an overactivity of the sympathetic nervous system leading to higher blood pressure in both normotensive and hypertensive individuals. ${ }^{15-17}$ Other contributing mechanisms may include overactivity of the renin-angiotensin-aldosterone system,

[^1]proinflammatory responses, endothelial dysfunction, and renal impairment. ${ }^{18,19}$ On the other hand, intervention studies to improve duration and quality of sleep have been effective in reducing both daytime and nighttime blood pressures. ${ }^{19,20}$ However, there is concern that sleep habits may represent a marker of health status and quality of life rather than a casual factor for hypertension and other health outcomes. ${ }^{21}$

In the present analysis, we sought to examine both the cross-sectional and prospective associations of sleep duration with prevalent and incident hypertension in the Whitehall II Study, a prospective cohort of 10308 white-collar British civil servants aged 35 to 55 at baseline (phase 1: 1985-1988). Because reduced durations of sleep might be associated with more detrimental effects on cardiovascular outcomes among women, ${ }^{6-9}$ unlike previous investigations, we conducted gender-specific analyses with the inclusion of a number of potential confounding variables.

Methods

Study Population

The Whitehall II Cohort was recruited in 1985-1988 (phase 1) from 20 London-based civil service departments. The rationale, design, and methods of the study have been described in detail elsewhere. ${ }^{22}$ Briefly, the initial response rate was 73%, and the final cohort consisted of 10308 participants; 3413 women and 6895 men. Follow-up screening examinations took place in 1991-1993 (phase 3), 1997-1999 (phase 5), and 2003-2004 (phase 7), whereas postal questionnaires were sent to participants in 1989 (phase 2), 1995 (phase 4), and 2001 (phase 6). The participation rates of the original cohort $(\mathrm{n}=10308)$ were $83 \%, 76 \%$, and 68% at phases 3,5 , and 7 , respectively. In this report, we used data from phases 5 and 7. The total sample at phase 5 consisted of 7204 participants. The present analyses were restricted to white individuals $(n=6592)$, given the low numbers of other ethnic groups $(n=612)$. For the cross-sectional analyses, only participants with a complete set of data at phase 5 were included ($n=5766$: 4199 men and 1567 women). Their characteristics were comparable to the overall sample (see Appendix). For the longitudinal analyses, the incidence of hypertension at phase 7 was assessed among participants who were normotensive at phase 5 ($n=3691$: 2686 men and 1005 women).

Sleep Duration

At phases 5 and 7, sleep duration was elicited by the question, "How many hours of sleep do you have on an average week night?" Response categories were ≤ 5 hours, 6 hours, 7 hours, 8 hours, and ≥ 9 hours.

Covariates

For the present analyses, age and other covariates were derived from the questionnaires at phase 5 . Employment grade was determined from the participant's last known civil service grade title ($19 \% \mathrm{had}$ retired by phase 5) and divided into 3 categories in order of decreasing salary: administrative, professional/executive, and cleri$\mathrm{cal} / \mathrm{support}$. Participants were allocated to 1 of 4 smoking categories: never, ex-smoker, pipe and/or cigar only, or current cigarette smoker (manufactured or hand-rolled cigarettes). Alcohol consumption in the previous week was recorded (units per week). Leisure-time physical activity was categorized by energy use in 2 categories: "vigorous" (subjects who reported ≥ 1.5 hour of vigorous activity per week) and no vigorous activity. General health status was assessed using the physical and mental health component summaries of the Short Form-36 (SF-36) health survey questionnaire ${ }^{23}$: low scores indicate low functioning. Psychiatric morbidity, including depression, was assessed with a modified General Health Questionnaire score. Participants taking sleep medication (hypnotics) or cardiovascular drugs were identified through a questionnaire item on current
medication. At both phase 5 and 7 screening examinations, anthropometric measures were recorded, including height, weight, and waist circumference; body mass index (BMI) was calculated as weight in kilograms divided by height in meters squared. Blood pressure was measured 3 times using a standard mercury manometer by trained and certified technicians in both examinations. The onsets of the first-phase (systolic) and fifth-phase (diastolic) Korotkoff sounds were recorded. The mean of the second and third measures were used in the analyses. At both examinations, hypertension was defined as blood pressure $\geq 140 / 90 \mathrm{~mm} \mathrm{Hg}$ or regular use of antihypertensive medications.

Ethical Approval

Ethical approval for the Whitehall II Study was obtained from the University College London Medical School committee on the ethics of human research.

Statistical Analysis

For continuous and categorical variables, respectively, Kruskal Wallis and χ^{2} tests were used to determine the statistical significance of any difference in the distribution of baseline variables at phase 5 across categories of sleep duration. The statistical significance of the interaction between each baseline characteristic and sleep duration, adjusted for other important baseline variables, was tested in multivariate logistic regression models that included this interaction and the corresponding main effect terms. The interaction between sleep duration and gender was significant $(P<0.05)$; therefore, all of the analyses were stratified by gender. No significant interactions were found between sleep duration and age or other relevant covariates. Univariate and multivariate regression analyses were conducted to test the association between categories of sleep duration and prevalent hypertension at phase 5 (cross-sectional analyses), as well as the association between sleep duration at phase 5 and incident hypertension at phase 7 (prospective analyses). Covariates included the following: baseline age, employment, alcohol consumption, smoking, physical activity, BMI, cardiovascular disease (CVD) drugs (other than antihypertensive medications), the SF-36 mental and physical health component scores, depression, and use of hypnotics. In these analyses, 7 hours of sleep was selected as the reference category. All of the techniques were implemented using Stata 9.0.

Descriptives

Characteristics for both male and female participants (Table 1) at phase 5 (baseline) are reported by categories of sleep duration. Among men, participants sleeping ≥ 9 hours were, on average, older than other participants; in addition, they were less likely to be physically active and more likely to be on medication for CVD drugs. On the other hand, male participants sleeping ≤ 5 hours had a lower employment status, higher mean levels of BMI and waist circumference, were more likely to be depressed and on medication for hypnotics, and reported lower scores for mental and physical health than other participants. No significant differences in drinking and smoking habits were reported across categories of sleep duration. For blood pressures, no consistent pattern of association was noted; however, the mean levels of systolic blood pressure (and pulse pressure) and the prevalence of hypertension were significantly higher among participants sleeping 8 hours than in other participants.

Among women, participants at the 2 extreme categories of sleep duration (ie, ≤ 5 hours and ≥ 9 hours) were characterized, in general, by a poorer health status and lifestyle profile. In particular, they had a lower employment status, were less likely to be physically active, more likely to be on medication

TABLE 1. Baseline Characteristics (Phase 5: 1997-1999) Across Categories of Sleep Duration: The Whitehall II Study ($n=5766$)

Data are expressed as the mean (SD) or as $\mathrm{n}(\%)$. DBP indicates diastolic blood pressure; SBP, systolic blood pressure.

* P value for comparison across sleep duration groups using the χ^{2} analysis for categorical variables and Kruskal-Wallis test for continuous variables.
\dagger One value is missing.
\ddagger Two values are missing.
for CVD drugs or hypnotics, more likely to be depressed, and reported lower scores for mental and physical health than other categories. No significant differences in drinking and smoking habits were reported across categories of sleep
duration. For blood pressures, there was a consistent pattern of association among female participants sleeping ≤ 5 hours, who reported higher mean levels of systolic blood pressure (and pulse pressure), as well as a significantly higher preva-

TABLE 2. OR ($95 \% \mathrm{CI}$) of Prevalent Hypertension Across Categories of Sleep Duration at Phase 5 (1997-1999): The Whitehall II Study ($\mathrm{n}=5766$)

Sample Models	Sleep Duration													P^{*}	
	$\leq 5 \mathrm{~h}$			6 h			7 h	8 h			$\geq 9 \mathrm{~h}$			Linear	Nonlinear
Men ($n=4199$)															
No.		265			1383		1886		620			45		\ldots	\ldots
Cases, n		84			358		533		205			14		\ldots	\ldots
Model $1 \ddagger$	1.18	0.89	1.55	0.89	0.76	1.04	1	$1.25 \dagger$	1.03	1.52	1.15	0.61	2.17	0.06	0.015
Model $2 \S$	1.23	0.92	1.63	0.93	0.79	1.09	1	1.11	0.91	1.36	0.99	0.52	1.90	0.70	0.09
Model 3q]	0.88	0.63	1.23	0.86	0.72	1.03	1	1.12	0.89	1.41	0.92	0.44	1.92	0.05	0.54
Women ($\mathrm{n}=1567$)															
No.		157			511		597		272			30			
Cases, n		58			124		152		66			7			
Model $1 \ddagger$	$1.72 \dagger$	1.18	2.49	0.94	0.71	1.23	1	0.94	0.67	1.31	0.89	0.37	2.12	0.13	0.06
Model 2§	$1.64 \dagger$	1.11	2.42	0.90	0.68	1.19	1	0.83	0.58	1.17	0.98	0.40	2.40	0.12	0.15
Model 3q]	$1.72 \dagger$	1.07	2.75	0.92	0.67	1.28	1	0.74	0.50	1.11	0.70	0.21	2.37	$0.037 \dagger$	0.31

* P value for test of linear and nonlinear trends.
$\dagger P<0.05$.
\ddagger Model 1: unadjusted.
§Model 2: adjusted for age and employment.
ๆModel 3: model $2+$ alcohol consumption, smoking, physical activity, BMI, SF-36 mental, SF-36 physical, depression cases, hypnotics use, and CVD drugs.
lence of hypertension than other participants (in both treated and untreated individuals).

Cross-Sectional Analysis

Table 2 displays the odds ratios (ORs) and 95% CIs of prevalent hypertension across categories of sleep duration at phase 5, using 7 hours of sleep as the reference category. Among men, no consistent pattern of association was noted. Among women, in fully adjusted analyses, short duration of sleep (≤ 5 hours per night) was associated with a significantly
higher risk of hypertension compared with the group sleeping 7 hours (OR: 2.01; $95 \% \mathrm{CI}: 1.13$ to 3.58), independent of several potential confounders, with a significant inverse linear trend across decreasing hours of sleep $(P=0.003)$.

Prospective Analysis

Table 3 displays the ORs (and 95\% CIs) of incident hypertension at phase 7 among participants who were normotensive at phase 5 . During a mean follow-up of 5 years, the cumulative incidence of hypertension was 20.0% (740 of

TABLE 3. OR (95\% CI) of Incident Hypertension at Phase 7 (2002-2003) Across Categories of Sleep Duration at Phase 5 (1997-1999): The Whitehall II Study ($\mathrm{n}=3691$)

Sample Models	Sleep Duration													P^{*}		
	$\leq 5 \mathrm{~h}$			8	6 h	1 1	7 h	N	8 h		$8{ }^{4}$	$\geq 9 \mathrm{~h}$		Linear	Nonlinear	
Men ($\mathrm{n}=2686$)																
No.		60			00		1224		372			0				
Cases, n		29			79		243		85			3				
Model $1 \ddagger$	0.89	0.58	1.37	1.00	0.81	1.24	1	1.20	0.90	1.58	0.45	0.13	1.49	0.60	0.53	
Model 2§	0.96	0.62	1.48	1.07	0.86	1.34	1	1.07	0.80	1.42	0.36	0.11	1.19	0.51	0.42	
Model 3 \\|	0.89	0.55	1.43	1.02	0.80	1.31	1	1.11	0.80	1.53	0.13†	0.02	0.98	0.55	0.18	
Women ($\mathrm{n}=1005$)																
No.		75			330		394		186							
Cases, n		20			77		64		37			3				
Model $1 \ddagger$	1.88†	1.05	3.34	$1.56 \dagger$	1.08	2.27	1	1.28	0.82	2.01	0.91	0.26	3.20	$0.029 \dagger$	0.38	
Model 2§	1.94†	1.08	3.50	1.56†	1.07	2.27	1	1.17	0.74	1.86	0.92	0.26	3.27	$0.015 \dagger$	0.42	
Model 39	1.31	0.65	2.63	1.42	0.93	2.16	1	0.99	0.59	1.69	1.07	0.29	3.94	0.12	0.61	

${ }^{*} P$ value for test of linear and nonlinear trends.
$\dagger P<0.05$.
\ddagger Model 1: unadjusted.
§Model 2: adjusted for age and employment.
ๆModel 3: model $2+$ alcohol consumption, smoking, physical activity, BMI, SF-36 mental, SF-36 physical, depression cases, hypnotics use, and CVD drugs.

3691 total: 539 of 2686 in men and 201 of 1005 in women). Among men, no consistent pattern of association was seen across categories of sleep duration. Among women, short duration of sleep was associated with significantly higher risks of hypertension compared with the group sleeping 7 hours in unadjusted analyses, as well as in a reduced model (age and employment; 6 hours per night: OR: 1.56 [95\% CI: 1.07 to 2.27], ≤ 5 hours per night: OR: 1.94 [95% CI: 1.08 to 3.50]). However, these associations were attenuated after accounting for cardiovascular risk factors and psychiatric comorbidities (OR: 1.42 [95\% CI: 0.94 to 2.16]; OR: 1.30 [95% CI: 0.65 to 2.62], respectively). The proportion of the variance of the risk of developing hypertension explained by the age- and employment-adjusted model was 2.95%. In the fully adjusted model it was 6.14%. The major contributor in the full multivariate model was body mass index (explaining 2.23% of the added variance), whereas the remaining covariates all accounted for $<1 \%$ of the remaining difference. Results were virtually unchanged after further adjustment for the baseline values of systolic blood pressure (data not shown).

Other Analyses

We also carried out linear regression analyses to test the association between sleep duration and blood pressures (systolic, diastolic, and pulse pressures) at phase 5 (crosssectional analyses), as well as the association between sleep duration at phase 5 and changes in blood pressures between the 2 phases (prospective analyses), among participants not taking antihypertensive medications. In cross-sectional analyses, there were consistent, significant inverse associations ($P<0.05$) between duration of sleep and either systolic blood pressure $(\beta=-1.24 \mathrm{~mm} \mathrm{Hg}$ per hour of sleep; $95 \% \mathrm{CI}$: -2.23 to -0.24 mm Hg per hour of sleep) or pulse pressure ($\beta=-0.91 \mathrm{~mm} \mathrm{Hg}$ per hour of sleep; $95 \% \mathrm{CI}:-1.63$ to -0.20 mm Hg per hour of sleep), only among women, in fully adjusted models. In prospective analyses, no significant associations were found for any of the blood pressure measures among either male or female participants (data not shown).

Discussion

Findings from the Whitehall II cohort showed gender-specific associations between sleep duration and hypertension. Spe-

APPENDIX. Baseline Characteristics (Phase 5: 1997-1999): The Whitehall II Study

Characteristics	$\mathrm{n}=6592^{*}$		$\mathrm{n}=5766 \dagger$		$\mathrm{n}=612 \ddagger$	
	Men	Women	Men	Women	Men	Women
No. of subjects	4724	1868	4199	1567	329	283
Age, y	55.6 (6.0)	56.3 (6.1)	55.4 (6.0)	56.1 (6.1)	57.7 (5.9)	56.2 (5.4)
DBP, mm Hg	78.6 (10.6)	74.6 (10.0)	78.6 (10.6)	74.6 (10.0)	79.2 (10.8)	78.5 (10.2)
SBP, mm Hg	123.5 (16.0)	121.1 (17.1)	123.6 (16.0)	- 121.1 (17.1	125.6 (17.3)	127.5 (19.1)
Pulse pressure, mm Hg	44.9 (11.2)	46.5 (12.4)	45.0 (11.2)	46.5 (12.3)	46.4 (12.6)	49.0 (14.1)
Sleep duration, n (\%)						
$\leq 5 \mathrm{~h}$	296 (6.4)	90 (10.	265 (6.3)	157.(10.0	43 (13.6)	34 (12.8)
6 h	1521 (32.8)	602 (32.9)	1383 (32.9)	511 (32.6)	121 (38.2)	94 (35.3)
7 h	090 (45.0)	687 (37.6)	1886 (44.9)	597 (38.)	95 (30.0)	101 (38.0)
8 h	683 (14.7)	310 (17.0)	620 (14.8)	272 (17.4)	45 (14.2)	31 (11.7)
$\geq 9 \mathrm{~h}$	53 (1.1)	40 (2.2)	45 (1.1)	30 (1.9)	13 (4.1)	6 (2.3)
Lowest employment grade, n (\%)	207 (4.4)	545 (29.5)	175 (4.2)	- 435 (27.9)	65 (19.8)	181 (64.4)
BMI, $\mathrm{kg} / \mathrm{m}^{2}$	26.1 (3.5)	26.2 (4.9)	26.0 (3.5)	26.2 (4.9)	25.7 (3.2)	28.1 (5.1)
Waist, cm	92.1 (10.1)	80.4 (11.9)	92.0 (10.1)	80.5 (11.9)	90.6 (9.0)	85.1 (11.4)
Weekly alcohol, units	16.7 (16.6)	7.8 (9.5)	16.7 (16.5)	8.1 (9.6)	10.3 (18.3)	2.7 (5.4)
CVD drugs, n (\%)	719 (15.3)	299 (16.1)	613 (14.6)	238 (15.2)	89 (27.2)	93 (32.9)
Physical activity, n (\%)	2277 (48.2)	601 (32.2)	2062 (49.1)	536 (34.2)	99 (30.1)	47 (16.6)
SF-36 mental, score	51.6 (9.0)	49.7 (10.4)	51.7 (8.9)	49.7 (10.4)	50.0 (10.4)	49.1 (10.8)
SF-36 physical, score	60.0 (7.1)	49.1 (9.6)	52.1 (6.9)	49.5 (9.3)	49.2 (8.7)	44.5 (10.4)
Use of hypnotics, n (\%)	26 (0.55)	17 (0.9)	21 (0.5)	14 (0.9)	2 (0.6)	0 (0.0)
Depression cases, n (\%)	545 (11.8)	255 (14.1)	472 (11.4)	213 (13.8)	66 (21.4)	57 (22.2)
Current smoking, n (\%)	436 (9.3)	266 (14.3)	360 (8.6)	207 (13.3)	40 (12.3)	13 (4.63)
Male hypertensive, n (\%)	1194 (25.3)	407 (21.8)	1194 (28.4)	407 (26.0)	110 (33.4)	117 (41.3)
No medication	630 (13.3)	153 (8.2)	713 (17.0)	202 (12.9)	35 (10.6)	32 (11.3)
Medication	564 (11.9)	254 (13.6)	481 (11.5)	205 (13.1)	75 (22.8)	85 (30.0)

[^2]cifically, short duration of sleep was associated with higher risks of prevalent and incident hypertension only among women. We could not detect consistent associations among men or for long duration of sleep. For the latter finding, it should be noted, however, that there were very few individuals ($\approx 1.3 \%$ of the overall sample) in our study who reported sleeping ≥ 9 hours per night, thus yielding a limited statistical power to examine the association between sleep duration and hypertension in this subgroup. Furthermore, our findings point to the importance of a comprehensive scrutiny of potential confounders and mediators when examining the associations between durations of sleep and health outcomes. In fact, the observed associations among women were attenuated after accounting for a number of cardiovascular risk factors, measures of general health, and psychiatric comorbidities.

A substantial amount of evidence exists about the link between SDB and hypertension. ${ }^{1-5}$ The epidemiological data have been corroborated by findings of mechanistic studies emphasizing the critical role of sympathetic overactivity in the etiology of SDB-related hypertension, ${ }^{24,25}$ although other mechanisms are likely to be involved. ${ }^{19}$ More recently, sleep deprivation has been indicated as a risk factor for several chronic health outcomes in individuals without overt sleep disorders. ${ }^{6-12}$ However, we are aware of only 2 populationbased studies so far, both coming from the United States, that have attempted to examine the association between selfreported durations of sleep and risk of hypertension. ${ }^{13,14}$ Specifically, in a longitudinal analysis of the NHANES-I ($\mathrm{n}=4810$), short sleep duration (≤ 5 hours per night) was associated with a 60% higher risk of incident hypertension, in fully adjusted models, among middle-aged (32 to 59 years) American adults without apparent sleep disorders. ${ }^{13}$ No association was found in individuals ≥ 60 years of age. However, in this study, the diagnosis of incident hypertension was based on self-report with a potential of misclassification (underdiagnosis), as suggested by a lower cumulative incidence (647 of 4810 [$\approx 13.5 \%$]) as compared with that observed in our study (740 of 3691 [20.0\%]), despite comparable age ranges between the 2 studies and a longer follow-up period in the NHANES-I (8 to 10 years versus 5 years, respectively). In addition, no gender-specific analyses were included in the NHANES-I. Moreover, in a crosssectional analysis of the large sample of the Sleep Heart Health Study (≈ 6000 US adults), a significantly higher prevalence of hypertension was reported among either short (<6 hours per night) or long sleepers (≥ 9 hours per night) as compared with the median duration of sleep of 7 to <8 hours per night. ${ }^{14}$ However, the association was stronger among short sleepers than in long sleepers (ie, 66% versus 30% higher risk of hypertension, respectively). Although this study accounted for a number of potential covariates, including psychiatric and cardiovascular comorbidities, the crosssectional design does not allow us to exclude the possibility of residual confounding by unknown variables, as well as to exclude the potential of reverse causality. In addition, the Sleep Heart Health Study sample cohort was, on average, older than those in both NHANES-I and Whitehall II, thus with a higher likelihood of geriatric comorbidities potentially affecting sleep patterns. ${ }^{26}$

Strengths

Unlike these earlier investigations, our study examined both cross-sectional and prospective gender-specific associations between sleep duration and hypertension with the inclusion of a number of potential confounding variables. Our findings suggest a potential role of sleep deprivation in the etiology of hypertension and other adverse health outcomes.

First, the observation that reduced duration of sleep may be associated with a higher risk of hypertension only among women is a novel finding. Indeed, although previous investigations have emphasized the potential impact of both short and long durations of sleep on chronic disease risk among women, ${ }^{6-9}$ the mechanisms underlying the gender-specific association between sleep deprivation and hypertension, observed in our study, are unknown. Given the mean age of our female participants falling around the menopausal period (≈ 55 years), we can speculate that the periods marking shifts in the reproductive stages, such as menopause, are particularly vulnerable times for women, because they are associated with major hormonal turmoil and psychosocial stresses that may, in turn, lead to adverse health outcomes. ${ }^{27}$ For example, in our sample of female participants, the prevalence of depression cases was higher among women reporting short duration of sleep (≤ 5 hours per night) than in other subgroups. In addition, as shown in our descriptive analyses, the distribution of correlates of short sleep duration that have the potential to affect hypertension risk was different between genders and may have partially contributed to the observed associations. Finally, we cannot rule out the possibility of differential self-reporting of sleep habits between men and women, as suggested in a previous analysis from the Sleep Heart Health Study examining the relationship of gender to subjective measures of sleepiness. ${ }^{28}$

Second, although findings from cross-sectional analyses ' consistently showed a strong, significant association between short sleep duration and risk of hypertension among women, in prospective analyses, the risk estimates were attenuated after accounting for cardiovascular risk factors, measures of general health, and psychiatric comorbidities. Thus, these findings emphasize the importance of a comprehensive examination of correlates that are likely to confound or may be on the causal pathway between sleep deprivation and adverse health outcomes. Nevertheless, recent prospective analyses from the Monitoring Trends Determinants in Cardiovascular Disease Augsburg survey indicate a modest but significant association between short sleep duration and incident myocardial infarction in middle-aged women, but not men, from the general population. ${ }^{29}$

Third, our descriptive analyses clearly demonstrate that both short and long duration of sleep may indeed identify population subgroups with a distinct cluster of sociodemographic characteristics, lifestyle behaviors, and disease conditions that are likely to be affected by the cultural setting in which the research is being conducted. ${ }^{30-33}$ In this regard, the study of health consequences related to curtailments of sleep seems to be epidemiologically relevant in the general population, given the downward trends in the average duration of sleep and the increasingly higher prevalence of "short sleepers" in many Western countries. ${ }^{34,35}$ Conversely, it may be
difficult for epidemiological studies to examine the health consequences of long durations of sleep in middle-aged, healthy populations considering the relatively low prevalence of "long sleepers" in the absence of overt psychiatric comorbidities. ${ }^{36}$

Limitations

There are limitations in this study. First, the population under investigation is an occupational cohort of white-collar workers and limited to whites, which may reduce the generalizability of our findings to other populations. However, this would not affect the internal validity of our results with respect to the prospective analyses. Second, information about sleep duration was self-reported by the participants. Nevertheless, self-report assessments of sleep have been shown to be valid measures compared with quantitative sleep assessments with actigraphy. ${ }^{37,38}$ Moreover, because the outcome was also assessed prospectively, any misclassification of sleep duration would be nondifferential with respect to incident hypertension, thus resulting in underestimation of the true effects. A further limitation of this study is the relatively short time of follow-up (5 years), which may have precluded us from detecting larger and significant effects of sleep deprivation on subsequent hypertension incidence. The strengths of this study include the simultaneous inclusion of a number of covariates known to be related to both sleep patterns and hypertension. A further strength is that the diagnosis of incident hypertension was also based on directly measured blood pressures at both examinations, thus minimizing the potential of misclassification that occurs when using self-report alone.

Conclusions

In summary, findings from the Whitehall II cohort suggest gender-specific associations between sleep duration and hypertension risk. Specifically, cross-sectional analyses showed a significant, consistent association between short sleep duration (≤ 5 hours per night) and risk of hypertension only among women, which was attenuated in prospective analyses after multivariate adjustment. mortality risk in women. Sleep. 2004;27:440-444.
9. Patel SR, Malhotra A. White DP, Gottlieb DJ, Hu FB. Association between reduced sleep and weight gain in women. Am J Epidemiol. 2006;164:947-954.
10. Tamakoshi A, Ohno Y. Self-reported sleep duration as a predictor of all-cause mortality: results from the J Am Coll Cardiol study, Japan. Sleep. 2004;27:51-54.
11. Gangwisch JE, Malaspina D, Boden-Albala B, Heymsfield SB. Inadequate sleep as a risk factor for obesity: analyses of the NHANES I. Sleep. 2005;28:1289-1296.
12. Kohatsu ND, Tsai R, Young T, VanGilder R, Burmeister LF, Stromquist AM, Merchant JA. Sleep duration and body mass index in a rural population. Arch Intern Med. 2006;166:1701-1705.
13. Gangwisch JE, Heymsfield SB, Boden-Albala B, Buijs RM, Kreier F, Pickering TG, Rundle AG, Zammit GK, Malaspina D. Short sleep duration as a risk factor for hypertension: analyses of the first National Health and Nutrition Examination Survey. Hypertension. 2006;47: 833-839.
14. Gottlieb DJ, Redline S, Nieto FJ, Baldwin CM, Newman AB, Resnick HE, Punjabi NM. Association of usual sleep duration with hypertension: the Sleep Heart Health Study. Sleep. 2006;29:1009-1014.
15. Tochikubo O, Ikeda A, Miyajima E, Ishii M. Effects of insufficient sleep on blood pressure monitored by a new multibiomedical recorder. Hypertension. 1996;27:1318-1324.
16. Lusardi P, Mugellini A, Preti P, Zoppi A, Derosa G, Fogari R. Effects of a restricted sleep regimen on ambulatory blood pressure monitoring in normotensive subjects. Am J Hypertens. 1996;9:503-505.
17. Lusardi P, Zoppi A, Preti P, Pesce RM, Piazza E, Fogari R. Effects of insufficient sleep on blood pressure in hypertensive patients: a $24-\mathrm{h}$ study. Am J Hypertens. 1999;12:63-68.
18. Miller MA, Cappuccio FP. Inflammation, sleep, obesity and cardiovascular disease. Curr Vasc Pharmacol. 2007;5:95-102.
19. Wolk R, Somers VK. Sleep and the metabolic syndrome. Exp Physiol. 2007;92:67-78.
20. Scheer FA, Van Montgrans GA, van Someren EJ, Mairuhu G, Buijs RM. Daily night-time melatonin reduces blood pressure in male patients with essential hypertension. Hypertension. 2004;43:192-197.
21. Zee PC, Turek FW. Sleep and health: everywhere and in both directions. Arch Intern Med. 2006;166:1686-1688.
22. Marmot MG, Davey Smith G, Stansfeld S, Patel C, North F, Head J, White I, Brunner E, Feeney A. Health inequalities among British civil servants: the Whitehall II study. Lancet. 1991;337:1387-1393.
23. Brazier JE, Harper R, Jones NM, O’Cathain A, Thomas KJ, Usherwood T, Westlake L. Validating the SF-36 health survey questionnaire: new outcome measure for primary care. BMJ. 1992;305:160-164.
24. Narkiewicz K, Somers VK. The sympathetic nervous system and obstructive sleep apnea: implications for hypertension. J Hypertens. 1997;15:1613-1616.
25. Fletcher EC. Sympathetic overactivity in the etiology of hypertension of obstructive sleep apnea. Sleep. 2003;26:15-19.
26. Quan SF, Zee P. Evaluating the effects of medical disorders on sleep in the older patient. Geriatrics. 2004;59:37-42.
27. Parry BL, Newton RP. Chronobiological basis of female-specific mood disorders. Neuropsychopharmacology. 2001;25:S102-S108.
28. Baldwin CM, Kapur VK, Holberg CJ, Rosen C, Nieto FJ. Sleep Heart Health Study Group. Associations between gender and measures of
daytime somnolence in the Sleep Heart Health Study. Sleep. 2004;27: 305-311.
29. Meisinger C, Heier M, Löwel H, Schneider A, Döring A. Sleep duration and sleep complaints and risk of myocardial infarction in middle-aged men and women from the general population. The MONICA/KORA Augsburg Cohort Study. Sleep. In press.
30. Moore P, Adler N, Williams D, Jackson J. Socioeconomic status and health: the role of sleep. Psychosom Med. 2002;64:337-344.
31. Groeger JA, Zijlstra FR, Dijk DJ. Sleep quantity, sleep difficulties and their perceived consequences in a representative sample of some 2000 British adults. J Sleep Res. 2004;13:359-371.
32. Adams J. Socioeconomic position and sleep quantity in UK adults. J Epidemiol Community Health. 2006;60:267-269.
33. Patel SR, Malhotra A, Gottlieb DJ, White DP, Hu FB. Correlates of long sleep duration. Sleep. 2006;29:881-889.
34. National Sleep Foundation. Sleep in America Poll 2005: Summary of Findings. Washington, DC: National Sleep Foundation; 2005.
35. Egan BM. Sleep and hypertension: burning the candle at both ends really is hazardous to your health. Hypertension. 2006;47:816-817.
36. Knutson KL, Turek FW. The U-shaped association between sleep and health: the 2 peaks do not mean the same thing. Sleep. 2006;29:878-879.
37. Hauri PJ, Wisbey J. Wrist actigraphy in insomnia. Sleep. 1992;15: 293-301.
38. Lockley SW, Skene DJ, Arendt J. Comparison between subjective and actigraphic measurement of sleep and sleep rhythms. J Sleep Res. 1999; 8:175-178.
39. Knutson KL, Spiegel K, Penev P, Van Cauter E. The metabolic consequences of sleep deprivation. Sleep Medicine Rev. 2007;11:163-178.
40. Currie A, Cappuccio FP. Sleep in children and adolescents: a worrying scenario. Can we understand the sleep deprivation - obesity epidemic? Nutr Metab Cardiovasc Dis. 2007;17:230-232.

[^0]: Subscriptions: Information about subscribing to Hypertension is online at
 http://hyper.ahajournals.org/subscriptions/
 Permissions: Permissions \& Rights Desk, Lippincott Williams \& Wilkins, a division of Wolters Kluwer Health, 351 West Camden Street, Baltimore, MD 21202-2436. Phone: 410-528-4050. Fax: 410-528-8550. E-mail:
 journalpermissions@lww.com
 Reprints: Information about reprints can be found online at http://www.lww.com/reprints

[^1]: Received May 30, 2007; first decision June 24, 2007; revision accepted August 3, 2007.
 From the Clinical Sciences Research Institute (F.P.C., S.S., N-B.K., M.A.M., F.M.T.), Warwick Medical School, Coventry, United Kingdom; and the International Centre for Health and Society (M.K., J.E.F., M.J.S., E.J.B., M.G.M.), University College London Medical School, London, United Kingdom. Correspondence to Francesco P. Cappuccio, Clinical Sciences Research Institute, Warwick Medical School, UHCW Campus, Clifford Bridge Rd, Coventry CV2 2DX, United Kingdom. E-mail sleepresearch@warwick.ac.uk
 © 2007 American Heart Association, Inc.

[^2]: Data are expressed as the mean (SD) or as $n(\%)$.
 ${ }^{*} \mathrm{n}=6592$ for all white participants.
 $\dagger \mathrm{n}=5766$ for white participants with complete data on blood pressure.
 $\ddagger \mathrm{n}=612$ for ethnic minorities excluded from the analysis.

