24. A novel di-platinum(II) octaphosphite complex showing metal-metal bonding and intense luminescence; a potential probe for basic proteins.

25. Multinuclear NMR studies on cyclic platinum complexes

N.A. Malik, G. Otiko and P.J. Sadler

27. The structural flexibility of ferric cytochrome c: regulation of the spin-state equilibrium by an anti-arthritic gold(I) compound at neutral pH
G. Otiko and P.J. Sadler

28. The structure of the antitumour complex cis-(diammino)-(1,1-cyclobutanedicarboxylato)Pt(II): X-Ray and NMR studies
S. Neidle, I.M. Ismail and P.J. Sadler

29. Chlorine and bromine isotope shifts in 195Pt NMR spectra
I.M. Ismail, S.J.S. Kerrison and P.J. Sadler

30. An EXAFS study of gold coordination in the antiarthritic drugs “Myocrisin” and “Solganol”.

31. Inorganic elements in biology and medicine.
N.J. Birch and P.J. Sadler

32. 24 and 162 MHz 31P Nuclear magnetic resonance studies of blood containing an
antiarthritic gold phosphine: relaxation via chemical shift anisotropy.
N.A. Malik, G. Otiko and P.J. Sadler

33. Coordination of amides to *Cis*-[Pt(II)(NH$_3$)$_2$(H$_2$O)$_2$]$^{2+}$
S.J. Kerrison and P.J. Sadler

34. 1H and 13C Nuclear magnetic resonance studies of gold(I) thiomalate (“Myocrisin”) in aqueous solution: dependence of the solution studies on pH and ionic strength.
A.A. Isab and P.J. Sadler

35. The crystal and molecular structure of tetra(n-buty1)ammonium bis(toluene 3,4-dithiolato)Au(III). Reversible association with SO$_2$ in solution.
M.A. Mazid, M.T. Razi and P.J. Sadler

36. Gold-substituted azurin.
G. Otiko and P.J. Sadler

37. Inorganic pharmacology
P.J. Sadler

38. A carbon-13 nuclear magnetic resonance study of thiol-exchange reactions of gold(I) thiomalate (“Myocrisin”) including applications to cysteine derivatives.
A.A. Isab and P.J. Sadler

39. The comparative evaluation of the physical and chemical properties of gold compounds.
P.J. Sadler

40. Effects of chemical shift anisotropy and 14-N coupling on the 1-H and 195-Pt nuclear magnetic resonance spectra of platinum complexes.
I.M. Ismail, S.J.S Kerrison and P.J. Sadler

41. A Mössbauer study of gold(I) and gold(III) dithiolate complexes related to anti-arthritic drugs.
G.H.M. Calis, J.M. Trooster, M.T. Razi and P.J. Sadler

42. The resolution of chlorine and bromine shifts in the 31-P spectra of PCl₃ and PBr₃
M.J. Buckingham, G.E. Hawkes, I.M. Ismail and P.J. Sadler

43. The trans influence in platinum chemistry. A platinum-195 nuclear magnetic resonance study of [¹⁵N]nitrito-, chloro-, and bromo- platinum-(II) and -(IV) complexes.
S.J.S Kerrison and P.J. Sadler

44. Hypoxic cell sensitization of radiation damage by a new radiosensitizer: cis-dichloro-bis(1-(2-hydroxyethyl)-2-methyl-5-nitromidazole-N3) platinum(II) (FLAP)
J.R. Bales, P.J. Sadler, C.J. Coulson, M. Laverick and A.H.W. Nias

45. Inorganic elements in biology and medicine.
N.J. Birch and P.J. Sadler

46. ¹⁹⁵Pt and ¹⁵N NMR Studies of anti-tumor complexes.
I.M. Ismail and P.J. Sadler

47. Ligand exchange reactions of gold drugs in model systems and in red cells.
M.T. Razi, G. Otiko and P.J. Sadler

48. 88 MHz ¹¹³Cd NMR studies of native rat liver metallothioneins.
49. X-Ray crystal and molecular structure of cis(NN’), trans(OO’)bis(-2-amino-ethanolato)-cis—dichloroplatinum(IV) dihydrate. The relationship of anti-tumour activity to ring closure.
R. Kuroda, S.Neidle, I.M. Ismail and P.J. Sadler

51. Bacterial cadmium-binding proteins
D.P.Higham, P.J. Sadler and M.D. Scawen

52. Gold-induced spin-state changes in haem proteins
S.J. Berners Price, M.C. Grootveld, G. Otiko, H.R. Robbins and P.J. Sadler

53. Proton, carbon-13 and phosphorus-31 nuclear magnetic resonance studies of (2,3,4,6-tetra-O-acetyl-1-thio-ß-D-glucopyranosato-S)(triethylphosphine)gold (Auranofin), a novel anti-arhritic agent
M.T. Razi, P.J. Sadler, D.T. Hill
J.C.S. Dalton 1983, 1331-4

54. High resolution 1H NMR studies of vertebrate blood and plasma.
J.K.Nicholson, M.J. Buckingham and P.J. Sadler

55. 197Au Mössbauer and X-ray crystallographic studies of the gold anti-arhritic drugs “Ridaura”, Myochrysin, Solganol and related compounds.

56. NMR Studies on ligand exchange and redox reactions of Auranofin in vitro and in red
cells.
N.A. Malik, G. Otiko, M.T. Razi and P.J. Sadler

57. Gold-197 Mössbauer studies of some gold(I) thiolates and their phosphine complexes including certain anti-arthritic drugs

58. Differences between the structure of the anti-arthritic gold drug “Myocrisin” in the solid state and in solution: a kinetic study of dissolution.
M.C. Grootveld and P.J. Sadler

59. Crystal and molecular structure of three isomers of dichlorodiamminehydroxoplatinum(IV): cis-trans isomerization on recrystallization from water.
R. Kuroda, S. Neidle, I.M. Ismail and P.J. Sadler

60. ¹H NMR study of the interaction of aurothiomalate (“Myocrisin”) with human red blood cells in vitro.
G. Otiko, M.T. Razi, P.J. Sadler, A.A. Isab and D.L. Rabenstein

61. ¹H NMR studies of serum, plasma and urine from fasting normal and diabetic subjects.

62. Sorbitol dehydrogenase in a zinc enzyme.
J. Jeffrey, J. Chesters, C. Mills, P.J. Sadler and H. Jornvall
EMBO Journal 1984, 3, 357-360.

63. Use of high-resolution proton nuclear magnetic resonance spectroscopy for rapid multi-component analysis of urine.
J.R. Bales, D.P. Higham, I. Howe, J.K. Nicholson and P.J. Sadler
64. Cadmium complexes of dicysteinoethylenediaminetetraacetic acid exhibit ^{113}Cd NMR shifts and $^{113}\text{Cd}-^{113}\text{Cd}$ couplings similar to those of metallothionein.
R.A. Bulman, J.K. Nicholson, D.P. Higham and P.J. Sadler

65. Stable gold(I) complexes with chelate rings: solution studies of bis(phosphino)ethane complexes and X-ray crystal structure of bis([1,2-bis(diphenylphosphino)ethane gold(I) hexafluoroantimonate-acetone(1/1)].
S.J. Berners Price, M.A. Mazid and P.J. Sadler

66. Progress in the characterization of gold drugs.
M.C. Grootveld, M.T. Razi and P.J. Sadler
Clinical Rheumatology **1984**, *3*, (Suppl.1), 5-16.

67. Monitoring metabolic disease by proton NMR of urine.
J.K. Nicholson, P.J. Sadler, J.R. Bales, S.M. Juul, A.F. Macleod and P.H. Sönksen

68. Cadmium-resistant *Pseudomonas putida* synthesizes novel cadmium proteins.
D.P. Higham, P.J. Sadler and M.D. Scawen

69. The design of metal complexes as anticancer drugs.
P.J. Sadler, M. Nasr and V.L. Naranayan

70. Proton NMR studies of plaice liver metallothionein: metal removal by EDTA.
J.K. Nicholson, P.J. Sadler and J. Overnell

71. NMR and EXAFS Studies of metallodrugs and metalloproteins.
S.J. Berners Price, I.M. Ismail, M.A. Mazid, M.T. Razi, P.J. Sadler and G.N. Greaves
72. **NMR- Clinically Significant?**
 J.R. Bales, D.Higham, J.K.Nicholson and P.J. Sadler

73. **Urinary excretion of acetaminophen and its metabolites as studied by proton NMR spectroscopy.**

74. **The environmental chemistry of metals with examples from the speciation of cadmium.**

75. **X-Ray and NMR studies of trans-dihydroxo-platinum(IV) antitumour complexes.**
 R. Kuroda, I. M. Ismail and P. J. Sadler

76. **Gold drugs.**
 S.J. Berners Price and P.J. Sadler

77. **Preparation, characterisation and anti-inflammatory activity of imido gold(I) triethylphosphine complexes.**

79. **¹¹³Cd NMR Studies of reconstituted seven–cadmium metallothionein:**
 Evidence for structural flexibility.
Proton NMR spectra of urine as indicators of renal damage: mercury–induced nephrotoxicity in rats.
J. K. Nicholson, J. A. Timbrell and P. J. Sadler

1. 195Pt NMR Studies of Pt(II) dimethyl sulphoxide complexes.
S. J. Kerrison and P. J. Sadler

2. A high resolution proton nuclear magnetic resonance approach to the study of hepatocyte and drug metabolism. Application to acetaminophen
J. K. Nicholson, J. A. Timbrell, J. R. Bales and P. J. Sadler

3. Stable, chelated, tetrahedral, silver(I) complexes with bidentate phosphine ligands. A novel application of INEPT to 31P–109Ag NMR
S.J. Berners Price, P.J. Sadler, C. Brevard and A. Pagelot

4. Two–dimensional proton nuclear magnetic “resonance maps” of Acetaminophen metabolites in human urine.
J. R. Bales, J. K. Nicholson and P. J. Sadler

D. P. Higham, P. J. Sadler and M. D.Scawen

6. Tertiary phosphine complexes of gold(I) and gold(III) with imido ligands: 1H, 31P and 15N NMR, anti–inflammatory activity and X–ray crystal structure of (phthalimido)(triethylphosphine)gold(I)

7. 1H, 13C NMR and electronic absorption spectroscopic studies of the interaction of cyanide with aurothiomalate
G.G. Graham, J.R. Bales, M.C. Grootveld and P.J. Sadler

88. NMR Studies of crab and plaice metallothioneins
D.P. Higham, P.J. Sadler and M.D. Scawen

D.P. Higham, P.J. Sadler and M.D. Scawen

90. Effect of cadmium on the morphology, membrane integrity and permeability of
Pseudomonas putida.
D.P. Higham, P.J. Sadler and M.D. Scawen

91. The application of high resolution proton NMR spectroscopy to the detection of drug metabolites in biological samples.
J.K. Nicholson, P.J. Sadler, K. Tulip and J.A. Timbrell

92. One- and two-dimensional 1H NMR spectroscopic studies of body fluids: practical methods of water suppression.
J.D. Bell, J.C.C. Brown and P.J. Sadler

93. 195Pt NMR Spectroscopy: applications to the study of anticancer drugs.

94. Proton NMR studies of urine.

95. Studies on antiarthritic and anticancer metallodrugs by X–Ray absorption spectroscopy.
M.A. Mazid, P.J. Sadler, M.T. Razi and I.M. Ismail
Proc. Symp. on the Role of Physics for Development, Dhaka Jan. 20-24, **1982**
Bangladesh Physical Society, Dhaka, 80-83.
96. Reactions of triethylphosphine gold(I) complexes with haem proteins: novel spin-state changes in cytochrome b_{562}, myoglobin and haemoglobin.
M.C. Grootveld, G. Otiko, P.J. Sadler and R. Cammack

97. [Cu(Ph_{2}PCH_{2}CH_{2}PEt_{2})_{2}]Cl: A chelated copper(I) complex with tetrahedral stereochemistry. Rate of inversion compared with isostructural silver(I) and gold(I) complexes.
S.J. Berners Price, C. Brevard, A. Pagelot and P.J. Sadler

98. Characterisation of P-Au-N bonds in the solid state by 15N NMR.
S.J. Berners Price, K. Morden, S.J. Opella and P.J. Sadler

99. Analysis of human aqueous humour by high resolution 1H NMR spectroscopy.
J.C.C. Brown, P.J. Sadler, D.J. Spalton, S.M. Juul, A.F. Macleod

100. In vivo antitumour activity and in vitro cytotoxic properties of bis[1,2-bis(diphenylphosphino)ethane]gold(I) chloride.

S.J. Berners Price and P.J. Sadler

102. 1H NMR Studies of urine during fasting: excretion of ketone bodies and acetylcarnitine.
J.K. Nicholson, J.R. Bales and P.J. Sadler

103. Gold resistant bacteria: excretion of a cystine-rich protein by *Pseudomonas cepacia* induced by an antiarthritic drug.
D.P. Higham, M.D. Scawen and P.J. Scawen
104. High resolution proton nuclear magnetic resonance studies of human cerebrospinal fluid.

105. Multinuclear NMR methods for the in situ characterisation of chemical species.
P.J. Sadler in *Dahlem Konferenzen Life Sciences Research Report 33*, Eds. M. Bernhard,

106. The importance and determination of chemical species in biological systems.

107. Crystal and molecular structure of ΔλΔ(+)-bis(ethyl-L-methionylamido)EDTA copper(II). 1.5 H₂O. Asymmetric induction in synthesis and amide carbonyl coordination to copper.
R.A. Bulman, N. Jobanputra, R. Kuroda, A. MacKinnon and P.J. Sadler

108. ³¹P NMR Studies of [Au₂(μ-dppe)]²⁺ antitumour complexes. Conversion into
[Au(dppe)₂]⁺ induced by thiols and blood plasma.
S.J. Berners Price, P.S. Jarrett and P.J. Sadler

109. Assignment of resonances for “acute-phase” glycoproteins in high resolution proton
NMR spectra of human blood plasma.

110. ¹H NMR Studies of human blood plasma: assignment of resonances for lipoproteins.
J.D. Bell, P.J. Sadler, A.F. Macleod, P.R. Turner and A. LaVille

111. Probing the reactivity of the zinc and cadmium ions bound to rabbit liver
metallothioneins with EDTA.

112. A possible role for copper in the antitumour activity of diphosphines.

113. Reactions of platinum antitumour drugs with biologically-relevant fluids: cell culture medium and blood plasma.
J.D. Bell, R.E. Norman and P.J. Sadler

114. Phosphines in medicine.
S.J. Berners Price and P.J. Sadler

115. The autoxidation and proton dissociation constants of tertiary diphosphines: relevance to biological activity.
S.J. Berners Price, R.E. Norman and P.J. Sadler

116. Copper(I) complexes with bidentate tertiary phosphine ligands: solution chemistry and antitumour activity.

117. Coordination chemistry in biological media: reactions of antitumour Pt(II) and Au(III) complexes with cell culture media.
J.D. Bell, R.E. Norman and P.J. Sadler

118. Interaction of the antitumour Au(I) complex [Au(Ph₂P(CH₂)₂PPh₂)]Cl with human blood plasma, red cells, and lipoproteins.
S.J. Berners Price and P.J. Sadler
119. Proton NMR studies of neonatal urine
J.C.C. Brown, P.J. Sadler, G.A. Mills and P.J. Sadler

120. The anticancer activity of metal phosphine complexes.

121. NMR Studies of metallodrugs

122. NMR Studies of blood plasma and plasma proteins: the recognition system for anions.
J.D. Bell, J.C.C. Brown, G. Kubal and P.J. Sadler

123. Metabolic profiling of body fluids by proton NMR self-poisoning episodes with paracetamol (acetaminophen).
J.R. Bales, J.D. Bell, P.J. Sadler, J.K. Nicholson, J.A. Timbrell, P. Bennett, R.D. Hughes and R. Williams

124. NMR-invisible lactate in blood plasma.
J.D. Bell, J.C.C. Brown, G. Kubal and P.J. Sadler

125. Factors affecting 1H NMR spectra of blood plasma: cancer, diet and freezing.
J.D. Bell, J.C.C. Brown, R.E. Norman, P.J. Sadler and D.R. Newell

126. Antibacterial and anticancer activity of tetrahedral, chelated, diphosphine silver(I) complexes.
127. NMR spectroscopy of body fluids.
 J.D. Bell, J.C.C. Brown and P.J. Sadler

128. 14N NMR studies of amine release from platinum anticancer drugs: models and human blood plasma.
 R.E. Norman and P.J. Sadler

129. 113Cd NMR studies on metal-thiolate cluster formation in rabbit Cd(II)-metallothionein: evidence for a pH dependence.
 M. Good, R. Hollstein, P.J. Sadler and M. Vasák
 Biochemistry 1988, 27, 7163-7166.

130. Phosphines and metal phosphine complexes: relationship of chemistry to anticancer and other biological activity.
 S.J. Berners Price and P.J. Sadler
 Structure and Bonding, 1988, 70, 27-102

131. Cadmium accumulation and resistance mechanisms in bacteria.

132. Non-transferrin-bound iron in plasma or serum from patients with idiopathic hemochromatosis. Characterization by high performance liquid chromatography and nuclear magnetic resonance spectroscopy.
 M.C. Grootveld, J.D. Bell, B. Halliwell, O.I. Aruoma, A. Bomford and P.J. Sadler

133. Ultraviolet and magnetic-circular-dichroic spectroscopic studies of Gd(III) complexed with diethylenetriaminepentaacetic acid. A contrast agent for NMR imaging.
 S.W.A. Bligh, A.F. Drake and P.J. Sadler

134. 1H NMR Studies of urine from premature and sick babies.
 J.C.C. Brown, G.A. Mills, P.J. Sadler and V. Walker

