An Interpreter for the Brooker’s Manchester Mark I
Autocode, of 1955 '

Abhir H. Bhalerao

Department of Computer Science,
University of Warwick,
Coventry,

England.

ABSTRACT

markl is an interpreter designed to accept source programs written in
Brooker’s Autocode, version 1, as outlined in the "The Standard Account
of the "Simple Machine ", (3.6.55). markl tries to reflect the original
environment of Autocode, i.e The Manchester Mark I, in that there are real
limitations placed on the number of instructions per program, the number
of variables and indices that are allowed to be introduced. markl, how-
ever, does offer some non-standard facilities that do not affect the running
of the source code, like a comment marker.

April 15, 1985

An Interpreter for the Brooker’s Manchester Mark I
Autocode, of 1955 '

Abhir H. Bhalerao

Department of Computer Science,
University of Warwick,
Coventry,

England.

1. NOTES FOR THE USER

1.1. Source Programs

Source programs can be standard formated files, which can be created using any
available text editor. The source file has to have no special name.

The full version 1 instruction set has been implemented but can have some addi-
tional facilities:

1) Comments can be included by placing the UNIX{ pipe symbol | any where on a
line. The interpreter will then ignore the rest of that line. For example:

| This program demonstrates the comment facility

nl =20 | this comment is ignored
nl=nl+1 |...and sois this

2) Non standard symbols : since UNIX does not have the Autocode perforator char-
acters for multiplication, not equals and greater than or equals, the following are used:

little x represents the multiplication operator &
and C > =, != the relationals =, #

3) All spaces and tabs are ignored.

4) All instructions must be terminated by a newline (or followed by a comment
marker). This is because of the implementation uses a yacc generated parser. For exam-
ple:

(v
is illegal because the instruction j1 is not followed by a new line. This is contrary to the
examples given in Brooker’s, "Simple Machine", notes.

5) markl will crash if comments are included on data number lines. All numbers to
be input must be on separate lines following the last obeyed instruction in the interlude.

The reason for this is that the z=1I, data input facility is implemented using the C
fscanf() function.

t UNIX is a trademark of Bell Laboratories.

A typical code sequence for inputing numbers might be:
| input numbers into the vector vl -> v10

1 nl=1

2 vnl =1 |input next number
nl=nl+1 | increment index
j2,10 >=nl
(31 |10 numbers must follow
1.0
2.0

10.0
)

Alternatively markl can have a -d option which will take input from a special file
called m.data. In our example the 10 numbers could have instead been held in m.date and
markl -d used to invoke the interpreter.

6) The H halt instruction will stop the interpreter and a message will be issued:

Press s to restart

If s is typed and <return>> is pressed, the interpreter will restart. This is very useful
for debugging. Note that the halt instruction is a directive and will always be executed.

1.2. Using the interpreter and debugging

The interpreter is invoked as follows:
$ markl <file>

where § is the UNIX prompt and <file> is the name of the Autocode source file. A legal
source file must be given. There is also a non-standard ¢race option:

$ markl -t <file>

This will print the number of the statement as it executes. Statements numbers being
taken from line 1 of the source file (including comment lines). It will also print the sym-
bol table immediately after the interlude symbol (has been met.

1.3. Output
All program output is sent to stdout, hence the UNIX operator > can be used to
force it to a specified file:
$ markl -t <file> > <output>

Note that all error messages are sent to stderr so as not to interfere with program output.

1.4. Errors and Diagnostics

Where possible the parser will issue (I hope) useful diagnostics. The yacc standard
message syntax error , is supplemented by the output of the offending line and line
number. markl will try to find as many interpretive errors as possible. Any errors will
stop execution just before the interlude is begun. Fatel run time errors will also cause
markl to crash - like a jump to an undefined label or accessing an illegal variable e.g.

nl =20
vnl =1 | a fatal out of range will happen here

1.5. Limits on the no. of instructions, variables, indices & labels

In an attempt to model the environment of the Mark I Autocode, i.e. the Manchester
Mark I itself, there are specific limits placed on the number of instructions per program,
the number of labels etc.

Max. no. of instructions: 500*
Max. no. of variables: 5000
Max. no. of indices: 18
Max. no. of labels: 500

* this includes comment lines as null instructions.

Of course none of the above need be set in a UNIX/C environment.

1.6. Function table IT

This has not been extended and is implemented as it stands using the C math.h
library.

1.7. Program output

This is always done to 11 significant digits and trailing zeros are not supressed. All
data output is sent to stdout and can therefore be redirected by using a UNIX pipe or the
> operator on the command line.

1.8. Program run timings

markl will output the tape , execution and total times in minutes and seconds after
a program is finished. These times are estimates based on the rough figures given in the
"Simple Machine" notes. Quote: "The rate of scanning is approximately two seconds per
instruction and the rate of execution about 8 per second." marki will always output these
times to stderr even if execution fails due to errors.

(Version 1, 3.6+55)

The Standard Account of the !'Simple Machine!

By means described elsewhere the electronic computer can be made to accept
programmes written in a simplified form, described below, In this form a programmg
of caléulation consists of an ordered sequence of instructions arranged in a single
column, These instructions are chosen from a permissible set and employ only the
symbols given in Table I. Ultimatoly the programme is presented to the machine in
the form of a length of perforated paper tape which is scanned by a photo-electric
tape reader, the input unit of the machine, The machine gives its results on a page
printer,

The instructions mostly tale the form of equations giving the new value of a
computed quantity in terms of one o1 two previously calculated quantities or para-
meters, Instructions ere also necessory however for selecting between alternative
courses of action, for printing results, and for the input of further dato. The
instructions involve the following kinds of quantities.

(a) Variables The quantities or intermediate quantities which it is necessary to
compute. These are denoted by vl, v2, v3, etc.. The number of variables which can
be introduced is for practical purposes unlimited: it is in fact abogt 55000, ghe
renge of magnitudes of a variable is virtually infinite; 2P, where 2°°> p» = 218,
the precision is limited to 11 decimal figures. S

(b) Constants, or variables of which the value is lmown is advence. The same
restrictions of magnitude and precision apply as for varisbles., The numerical values
are written in the form:

integral pert, decimal point, fractional part.

Absolute standardisation of form is not necessary, thus to six significant figures
Y moy be written 3,14159 03.14159 03,141590 +03,141590. 41l theso and similar
variations are accepted by the machine. Of the number 003.14159265358979 however
only the first 11 siguificant figures would be recorded inside the machine, 1.8.y
the final 8979 would be omitted. Negative numbers must be preceeded by sign.

(¢c) Indices In order to take adventage of the repetitive nature of calculation it

is desirable to have some means of specifying any of the elements of a sequence; 6.8y
the components of a vector., For this purpose the notation vnl, vnZ2, vn3, etc.y is
introduced where nl, n2, n3, etc., arc indices restricted to integral values but
otherwise computable like variables, Thc number of indices which can be introduced

is limited to 18, The possible range of vealues of an index quantity is 2°°» n3 - 218,
which of cowrse far exceeds its usefulness as an index proper, In writing down the
numorical value of an index the decimal point may be omitted,

Those instructions which take the form of equations ere given below (1) = (111),
Permissible instructions are obtained from these basic forms by replacing x, y, end
z by the group of symbols denoting a variable (v), combination (vn),or, except in
the case of (1i1), index (n). In addition x and y may also be roplaced by constants.
(ii. Z=x

(11) z=x0y 0 i3 replaced by one of the symbols + -®/
(iii) z=F m (x) he integer m refers to the function table 2
Instructions are normally obeyed in the order in which they ere written down until
g jump instruction is encountered. This may be conditional or unconditional and
tokes the form (iv) or (v) as follows.
(ivg Jm means 'jump to instruction labelled m'.

(v) 5m x0y means 'jump to instruction labelled m ifxpy
where P is replaced by one of the symbols % > = F

The label is a positive whole number which is written immediately before (i.e., to
the left of) the instruction concerned,

The remaining instructions are
: (vi) The symbol X inserted before any of the instructions (i,ii,1ii,& viii
causes the computed volue of z to be printed on a ncw line in the style described
earlier, namcly, integral part, decimal point, fractional part, the latter to 10
decimal plogeg. Insignificant zeros are suppressed, In the case of a number outside
the range 2 38, the machino prints on the sdme line both the integra}spart and t%g ’
fractional part of the number in the form a,2P, where ¥ > |a| ¥ 3, 2°> py=-2*,

(vii) The letter H is a dummy stop instructioni tlw machine halts: it
can be made to resume operation by pressing a key on the console,

Table I

letters figurcs
FS FS

geoe E;NHM£<:C1~9mwo'dozzr‘mc-cl-lmm’dwuomb
=R E;'*\D@\O‘\nf-h\ﬂ\vvo* uE< I 08 3 B X N

Table IT

1 VX

2 cos 2N x

3 exp x

4 logg x

51 arc tenx,
X

6 Ixi

-2 -

As a simple exercise in coding write down instructions for evaluating
the sum of squeres of V1, V2; aeess v100. A suitable sequence isi-

nl = 1
vliol = O
2v102 = wvnl®vnl
v101l = v101 + v102
nl = nl=+1

j2, 100 3 nl.

Such a group of instructions may form part of a larger programme
involving the variables in question,

A complete programme of instructions and numbers is normally recorded
jnside the machine before béing executeds: it is therefore necessary to
explain the input procudures

The programme tape is prépared on & keyboard perforator on which are
engraved the standurd symbols. The symbols are 'punched! in the
conventional sequence, namely from left to right and down the colum,
Each instruction is followed by the symbols 'CR! (cerriage return) and
'LF! (line feed)s The keyboard is normally on trigures' which means
that capital letters such as F, H have to be precesded by 'LS' (letter
ghift) and followed by 'FS! (figure shift), Figure shift corresponds
to blank tape and any number of blonks may separate the figure symbols
proper provided the order is preserved, About six inches of blank
should be left at the head of the tapes Associated with the keyboard is
a printer which gives a printed copy of whatever is punched; this should
agree with the original manuscripte.

As the programme tape is scanned the instructions are normally .
recorded in the store where ultimately they will be obeyed, The rate of
scanning is approximately two seconds per instruction and the rate of
execution about 8 per second, In the case of inatructions included
between brackets each instructiim is executed immediately after it has
been read and is not rccorded in the programme propers This facility
is used to start the progremme simply by including an unconditional jump
instruction between brackots, e.ges (j1) which means tgtop reading the
tape and start obeying the programme at the instruction labelled 1",

Having got tic programme started it may be necessary to call on
the input medium for further numerical data, This may be done in two
ways for which it is necessary to introduce two further instructions,

These are:=-

(viii) z = I, which means 'replace z (which has the same sign-
ificance as in (1) = (ii)) by the number formed by the next group of
symbols on the tape';

(ix) the letter T which causes the machine to start reading
further instructions from the tape, adding them to those already
recorded in the storec, .

Tnstruction (viii) may be used to read a tape beering numbers only.

The T instruction, combined with the tbracket! facility, allows
data to be input in the form (z = constant), This is & convenient
method of altering parameters in between different runs, Thug, ©.g.y if
the supplementary instructions take the form

(v23 = 0.012
Vzlb = 0.965
*n3 = 12

i)
then the effect will be to repeat the run with these new values of the
quantities .v23, v24, and n3.

. It is hoped to include further facilities, €.g., toble II will almost certainly

be extended, Supplementary notes may therefore be circulated from time to time.

=3

To illustrate the coding schcme described above, the following calculation 1s
progremmed .

It is required to compute

2/7
o = -:-L—-—-(-pz'/-p!‘-lq_/7 ? where p_=30, p =40
1 - (P/p,) 2 3
r = l3+2 [1 - o2 (Pyyms)
e
| ®y/n) ¥ 72/
- Y2 (p ¥
r _1.3+2{1_o< (2/p3)
(%2/p,) 7
for values of of the for 0=~ 201 =
Py m 4 T where n 0(1)156.
The programme is given below
vl = 40 (Py = 40)
v2 = 30 gpz = 30)
v3 = 40 ’ Py = 40)
vh = 10/156.4
v5 = v2/v3 (P2 / p3)
v6 = FL(v5)
vl = 7
v8 = vT®vb 2/7
v9 = F3(v8) (P2/p3)
vl = vi/vli
vll = F4(vl0)
vl2 = v7ievll 2/7
vi3 = F3(v12) P2/ p@)
vl = 1-v13
vl = 1 =v9
xvl6 = vl/vls forms and prints o<
vl7?7 = F1(vlo)
vl = v17®v9
vlo = v18/vl13
v20 = v1b@vl19
vil = 1 = v20
v22 = 2@v2l
kv23 = 1,3 + v22 forms und prints ry
v, = 1 ~v19
v25 = 28v24
#v26 = 1.3 + v25 forms and prints Ty
vl = vl -v4 adjusts py -
J1, v1> 29 tests for last cycl
d - halt ;
(32) starts programme,

The following notes are of interest

(1) No attempt has been made to economise on the use of variables, Thus
e.g., instead of v9 = F3(v8)one could write v8 = F3 (v8)since the argument
is no longer needed. However nothing is gained by co doing since Space

- i3 virtually infinite for problems of this kind.

(2) A further example of laziness is the means adopted for evaluating 2/7.
Instead of bothering to evaluate the fractions we have simply included
an instruction for doing so, namely v7 = 2/,

(3) The value of any intermediate quantity can be printed simply by inserting
an # before the appropriate instruction. This may be useful in locating
mistakes: the % can afterwards be 'erased! by turning it intoa ®» . x

(4) The maximum number of instructions allowud cannot be given very precisely
but a safe estimate is 500, which, in view of their comprehensive nature,
should be adequate for the class of problems envisaged.

2. IMPLEMENTATION OF THE INTERPRETER

The interpreter has been implemented using the UNIX yacc facility. The lexical ana-
lyser has been specifically written without using the lez facility.

2.1. Overview of the implementation

The interpreter markl can be described as having three basic modes:

I Non-execute tape mode

Programs for the Manchester Mark I would have been punched onto a paper tape
and at the beginning of a run, instructions were scanned and recorded into memory by the
Mark I (see "Simple Machine" notes, page 2). This is the normal non-ezecute tape mode.
Tape indicating the source of the input. For the mark? the input stream is the source file
in stdin.

II Execute tape mode

When and instruction in brackets is met, an interlude , it is not recorded into store
but is ezecuted immediately. This is used to start a program by jumping to a labeled
location in memory, although aeny instruction will be executed immediately within an
wnterlude. e.g. variables can be set before execution starts.

I Execution memory mode

This is the normal execute mode with the memory indicating that instructions are
read from memory and executed sequentially and normal branching can take place. When
the last instruction is obeyed the program control is returned to the calling interlude and
instructions are once again read from tape. Usually the program will be stopped at this
point by a close bracket) indicating the end of the interlude, but more ezecute tape
mode instructions may follow.

The three modes will be referred to as:

I - non-ezecute tape mode
O - ezecute tape mode
I - execute memory mode

2.2. Memory representation

The memory is represented by a 2D character array of lines. Each line can hold a
program statement and can be accessed by the line number:

char memoryMEMSIZE|[MAXLINE]

2.3. Vectors and indices

All variables and indices are double vectors:

double vIMAXVAR|, n[MAXINDEX]
and

v1 is translated to v[1]
vn2 is translated to v|(int)n[2]|

Although the parser only allows n[] to hold integers, it is made double to simplify the
yacc parser specification. The parser actions for arithmetic expressions are simplified as
mixed type arithmetic and indirection does not have to be dealt with.

2.4. Sequencing and transfer of control

There is program counter mem_ptr that is incremented from one as statements are
read and stored in memory and as statements are executed in memory. Otherwise
mem_ptr is static, (mode II).

When control is transferred from II to III the top of the memory is stored in case
further instructions are still to be input i.e. if a T instruction is met during execution.
When a T 25 met, control is transferred from III to [and mem_ptr is set to top of
memory.

A jump instruction (conditional or unconditional) will cause mem_ptr to be
changed. A jump from II to IIl, e.g. to start a program, also involves the change of input
to the lexical analyser (input from memory instead of tape).

For example if the jump is made to statement number instr then the next statement
interpreted will be the line

memory [instr]

2.5. The Symbol table and Labels

The branch instructions are executed by using a symbol table, just like an assembler
will use.

When in mode I, the interpreter builds up a symbol table of the form:
label : location

where location is the current value of program counter mem_ptr i.e the statement
where the label is encountered. Since labels can only be positive integers the symbol table
is implemented by a simple 2D integer array:

int symbol[MAXLABELS][2]

During mode II & III any encountered labels are ignored. However, a jump instruc-
tion like:

j label

or j label, condition

will cause the label to be scanned in the symbol table and a jump made to the correspond-
ing location, i.e.:

mem_ptr = find(label)

where find() returns the location of label.

There are of course several error checks made: before a label is added to the table
which already exists an ambiguous labels error is issued, if a branch is attempted to an
undefined label an undefined label message is issued. In both cases appropriate actions are
taken to ensure the halt of execution.

2.6. Interludes

These are enclosed in brackets with in a source sequence and cause transfer from
mode I to mode II. When an open bracket (, is encountered ezecute mode is entered and
all the following instructions are executed but not transferred into memory. If however a
jump is made into memory then mode III is entered. This involves changinging input
stream for the lexical analyser from tape to memory. A close bracket) , is the end of
interlude marker and causes transfer from mode II to mode I. The end of interlude is usu-
ally the last instruction in a program, but more instructions may follow and will continue
to be added into memory from the top of memory.

2.7. Tape instructions

These, when executed, cause a transfer from mode III to mode I, and further instruc-
tions are added to memory from the top of memory. Notice that execution will only
resume if a jump is made again into memory from another interlude.

The T instruction allows for program modification and conditional compilation.
Subsequences of code can be conditionally loaded into memory and executed.

2.8. Halt and Print instructions

The H instruction will stop the interpreter and is implemented by a simple while
loop. This loop will wait until a key is pressed on the key board.

Printing is done by the C function fprintf() with a %11.Nf format, where the N is
varied depending on the number of digits in the integer part of the number. This ensures
that the number is printed to 11 significant digits. Trailing zeros, however, are not
supressed.

3. EXAMPLES

The following pages contain examples of Brooker’s Mark I Autocode. These examples
are intended to demonstrate and test the various facilities offered by markl. They also
show how instructions like T and I, and the interlude facility can be used. The first few
examples are almost trivial in nature, but they are presented in increasing order of com-
plexity with a fairly long program for matrix inversion.

3.1. A simple count program

The points to note in this program is the way the program is started, by a jump to
the label 1 , also note the two further instructions with in the interlude. The program is
in a file called count.

| a simple test program
| to count up to 10

nl =20
1 *nl =nl +1
j1,10 > nl
H
(j1
*nl =nl | two more instructions to execute
*n1=nl+1 |...immediately

)

$ markl count
Press s to restart
s

1.0000000000
2.0000000000
3.0000000000
4.0000000000
5.0000000000
6.0000000000
7.0000000000
8.0000000000
9.0000000000
10.000000000
Press s to restart
s

10.000000000
11.000000000
tape [0:12] execute [0:03] total [0:15]

3.2. A prime numbers program

This program find the primes up to a given number N by the sieve method. This
involves storing the numbers up to N in a vector and then crossing off all the multiples
of 2, 3,4, 5 ... up to square root of N. The code sequence demonstrates the Autocode vec-
toring facility, its data input from tape using the I instruction, and also the standard
function square root using the function F1().

PRIME NUMBERS UP TO N

Abhir H. Bhalerao
March, 1985

prime numbers
by the sieve method

1 n2 =1 | all primes up to input value
nd =F1(n2) | sieve out multiples up to the root of n2
nl =2 |index variable
2 vnl = nl | loop to store numbers up to n2 in vector
nl=nl+1
| j2,n2 > nl
nd =2 sieve multiple initially 2
nl = n3 begin at index
3 nl = nl 4+ n3 |increment index by multiple
vnl = -1 |sieve out multiple from vector
j3,n2 > nl
nd =n3 +1 next multiple
nl = n3 start index
j4,n3 > n4 all multiples up to square root value
i3
I
4 nl =2 | loop to print out...
5 j6, 0 > vnl |...if not crossed off

*ynl = vnl
6 nl=nl+1
j9, n2 > nl

$ mark1 primes
Press s to restart
S

2.0000000000
3.0000000000
5.0000000000
7.0000000000
11.000000000
13.000000000
17.000000000
19.000000000
23.000000000
Press s to restart
s

tape [0:42] execute [0:33] total [1:15]

3.3. Program errors and diagnostics

This is a good point to present some incorrect pieces of code to demonstrate the
error handling of marki.

3.3.1. Errorprone!
This program is a real disaster!

| test out error handling

I
0 n0=n0+1 |illegal label & index

vO0=v0+1

14 |illegal token
H

(i0

$ mark1 errorprone

Label out of range at line 4
Index out of range at line 4
Index out of range at line 4
Index out of range at line 5
Index out of range at line 5
error token detected :1 at line 5
syntax error

6] 14
Press s to restart
s

Too many errors! Execute abandoned

tape [0:06] execute [0:00] total [0:06]

3.3.2. Illegal vector access
This program will demonstrate a run time out of range.
|

| test out run time range checking

1 nl =1
nl=nl-1
vnl =0 |index out of range??
H
(i1

$ mark1 indexcrash

Press s to restart

s

Index out of range at line 7

tape [0:08] execute [0:01] total [0:09]

3.3.3. Undefined labels
An undefined label is only discovered at run time.

-10 -

| undefined label check

H | halt to prove it is not ’compile’ time
(i1

$ mark]l labelcrash
Press s to restart

s
Undefined label:1 at line 5
tape [0:02] execute [0:00] total [0:00]

3.4. A summation program

This program reinforces some of the techniques used in the primes program and also
shows some further mathematical functions to perform the raise to a power operation.

The data is set up to calculate the sum of squares from 1 to 5.

-11-

SUM OF nth POWER OF A SET OF NUMBERS

Abhir H. Bhalerao
March, 1985

program to print sum of nth power of input numbers

1 nl =1 | power of sum

a2 =1 lindex (v1 and v2 used later)
2 n2=n2+1

vn2 =1

j2,vn2 =20 |input data until end marker

n3d =n2-1 | store last index

n2 =1

vi=0 | sum variable

3 n2=n2+1
v2 =F4(vn2) |logx
v2=nlxv2 |nlogx
v2=TF3(v2) |exp(nlogx)=x powern
vli=v1l+v2 |add tosum

j3, n2 '=n3 | for every input number
*yl == vl | print sum
H

I data format is: nth power, data, zero

| data follows

—
—.
[y

O ULk W N~ N

$ markl sum
Press s to restart

S

55.000000000

Press s to restart

S

tape [0:32] execute [0:07] total [0:39]

3.5. Brooker’s example from ’'Simple Machine’ notes

The example given by Brooker to illustrate his coding scheme is presented below.
Since the long list of results are meaningless I have instead listed the source for an
equivalent C program. Both programs: the Autocode source being run by markl and the
C source being compiled by cc (with the -lm loader option to include the maths library
routines), give identical results.

It is interesting to note that the C source, having been written some 30 years after
the Brooker version, does not seem any more elegant. However the time for the run is
greatly increased; about 1.5 seconds of CPU time on the VAX compared with an
estimated 7 mins and 51 seconds on the Mark I. This is an improvement of more than
300 fold and it doesn’t take into account the time for output onto punched paper tape!

-12 -

| Brookers Autocode program for the Mark I

2 vl=40 | (p1 = 40)
v2 = 30 |(p2 = 30)
v3 = 40 | (p3 = 40)
v4 = 10/156.4
vh = v2/v3 | (p2/p3)
v6 = F4(v5)
vi=2/7 | 2/7
v8 = v7xvb | (p2/p3)
vy = F3(v8)
1 v10 = v2/vl
v1l = F4(v10)
v12 = vixvil | 2/7
v13 = F3(v12) |(p2/pl)
vid =1-v13
vls = 1-v9

*y16 = v14/v15 | forms and prints alpha
v17 = F1(v16)

v18 = v17xv9

v19 = v18/v13

v20 = v16xv19

v21 =1-+v20

v22 = 2xv21

*v23 = 1.3 4+ v22 | forms and prints re
v24 =1-v19

v25 = 2xv24

*v26 = 1.3 + v25 | forms and prints rm
vl=vl-v4 | adjusts p1

j1, vl > 29 | tests for last cycle
H | halt

(i2

) | starts programme.

#include <stdio.h>
#include <math.h>

/* Abhir H. Bhalerao */

/* March 1985 */

/* C version of Brooker’s Mark I Autocode example */
/* (compile with -lm loader) */

main()

double p1,p2,p3,p23,p21,a,ap;

pl = 40.0;
p2 = 30.0;
p3 = 40.0;
p23 = p2/p3;

p23 = exp((2.0/7.0)*log(p23));

do {
p21 = p2/pl;

- 13-

p21 = exp((2.0/7.0)*log(p21));
printf("%20.11f0,a = (1.0-p21)/(1.0-p23));
ap = sqrt(a)*p23;

printf("%20.11f0, 1.3+2%(1.0-ap/p21));
printf("%20.11f0, 1.34+2*(1.0-(a*ap)/p21));
pl = pl - (10.0/156.4);

} while (p1 > 29.0);
}

3.6. An example using the T instruction

This is a small piece of code to demonstrate the T instruction. It shows how further
instructions can be added to those already present in memory. Note that there are two
interludes , the second is needed to restart execution.

| code to demonstrate the tape facility

1

-~
o
=
I
—_
o

2

i
Py

n2 = 20 |these two instruction are loaded
n3 = 30 |...in when T is executed

*

j2 | a second jump to restart

$ markl tape
Press s to restart

s
10.000000000

Press s to restart

s

20.000000000

30.000000000

tape [0:10] execute [0:01] total [0:11]

3.7. Matrix inversion program

This a large piece of code and uses some user software to implement a subroutine
facility, which was a drawback of the original Autocode.

This program uses the Gauss-Jordan technique for matrix inversion. The basics
points of this method is that it is fast and lends itself to implementation into a program
because it involves simple row operations and the algorithm is straight forward. The algo-
rithm in synopsis is:

for every ptvot in the matrix
divide the pivotal row by the pivot
zero the other elements in the pivotal column
by: taking the element times the pivotal row
from the elemental row itself

All the row operations have to be repeated on a corresponding ¢dentity matrix. When
the algorithm is completed for every pivot the original matrix becomes and identity

- 14 -

matrix, with all pivots being unity and all other elements zero, and the original identity
matrix becomes the tnverse matrix.

The algorithm breaks down if a particular pivot is zero. There are techniques to con-
tinue by swapping rows and columns, but the program given does not use them and sim-
ply terminates at this point. This second step can also be ignored if a pivotal columns ele-
ment is already zero.

The algorithm shows clearly that subroutines are required and a method to represent
matrices using a vector.

The subroutine mechanism is implemented using a stack , a stack pointer and a spe-
cial piece of return code. The stack begins at the last available variable and works down
in memory. The stack pointer is held in a an indez.

A subroutine call is simply a jump to a section of code e.g to input the matrix to be
inverted. But before this call is made a return label is put on to the stack and the stack
pointer adjusted. At the end of the subroutine there is a jump to the special return code.
This code unstacks the return label and then conditionally make the appropriate jump
back into the calling routine. For example:

- 15 -

| code to show implementation of ’subroutines’
|stack starts at top of memory
istack pointer is in n18

1 nl8 = 4999 Iset up stack pointer
n18 = n18-1 |decrement stack pointer ready for next label
vnl8 = 2 | stack the return label
i3 | jump to ’subroutine’
2 . some more code perhaps
H
j99 | jump to end of program

| our subroutine labelled 3

3 |some code
| some more code

j4 | this jumps to our ’return’ code
|

| return from subroutine code

4 v0 = vnl8 | unstack return label - make sure v0
| ...is not being used else where
n18 = n18 + 1 |increment stack pointer
j2, vO = 2 | jump back to 2 if 2 unstacked
j5, vO = 5 | jump back to 5 if 5 unstacked

. | more jumps for every return label
j99 | error - default to end of program

9 H | the end of the program
(it
)

Having established a call and refurn mechanism what about parameters? Parameters
could also be stacked, but in the inversion program there are sufficient indices and varz-
ables available to simply keep every thing global, although it is quite hair raising to keep
track of all the variables used!

In the program a special subroutine has been set aside to implement the matrix
array required. This routine take the base address of the matrix and given the i and j
coordinates of the element required, calculates the actual address of the element and
returns this.

- 16 -

MATRIX INVERSION USING THE GAUSS-JORDAN METHOD

Program written for the Manchester Mark I
using Brooker’s Mark I Autocode, of 1955

Abhir H. Bhalerao
Department of Computer Science
University of Warwick

March, 1985
MAIN PROGRAM
100 nl18 = 4999 | start of stack
nl8 =nl8-1
vnl8 = 1 |n18 holds the return label
j6 | jump to input procedure
1 nl8 = nl18-1 |decrement stack pointer
vnl8 =2
i7 | form identity matrix
2 nl8 =nl8-1
vnl8 =3
8 | invert input matrix
3 nl8 =nl8-1
vnl8 =4
i9 | output results
4 j99 |end of program
INPUT PROCEDURE
parameters: none
local : indexnd =1i,n5 =]
return : sets A=nl, N=n2,s =n3
6 nl=>5 A = M, start address of matrices
n2 =1 input N, size of matrix
nd =nl s=M
nd =1 j=1
15 nd=1 i=1
14 1nl8 =nl8-1
vnl8 = 16
n3 = nl s=M
n6 = nd set parameters [i,]]
n7 = nd
j10 |n = arrayl[i,j]
16 *vnl7 =1 |input element
nd =nd +1 | columns of matrix
j14, n2 >=n4
nd=nd+1 | rows of matrix
j15, n2 >=nb

j38 | return

-17 -

FORM IDENTITY MATRIX
parameters: index M = nl
local index1i=n4,] =nd
return 2 none
7 nd =1
18 nd=1
17 nl8 =nl8-1

vnl8 = 19

n6 = n4

n7 = nd

j10
19 vnl7 =0 |zero element

j20, n4 '= nd

vnl7 =1 |unity element i = j
20 nd=nd+1

j17, n2 >=n4

nd =nd + 1

j18, n2 >=nb

]38
INVERT INPUT MATRIX
parameters: none
local index i = n4, variable pivot = v4
return : none
8 nd=1 li=j=1
22 nl8=nl8-1

vnl8 = 24

n3 = nl |s=M

n6 = n4d

n7 = n4

j10 | find pivot index
24 v4 = vnl7 |store pivot

j99,v4 =0 | can’t deal with zero pivots!

nl8 =nl8-1

vnl8 = 25

nl2 = n4

j11 | divide row j by pivot
25 nl8=nl8-1

vnl8 = 21

nl3 = n4

nl4 = n4d |set parameters

j12 | zero other column elements
21 nd=nd+1

j22, n2 >=n4

n3 = n2 x n2

n3 =n3 +nl |s=1 start of I[dentity matrix

138

- 18-

DIVIDE ROW J BY PIVOT

parameters: index j = nl12
local index i = n8, variable pivot = v4
return none
11 n8=1 li=1
29 nl8=nl8-1
vnl8 = 30
n3 = nl | row operation on M
n6 = n8
n7 = nl2 |parameter j
j10
30 vnl7 = vnl7/v4|rowl[j] = rowlj]/pivot
nl8 =nl8-1
vnl8 = 39
n3 = n2 x n2
n3 =n3 + nl |row operation on I
n6 = n8
n7 = nl2 Iparameter j
j10
39 vnl7 = vnl7/v4|rowl[j] = row[j]/pivot
n8 =n8 +1
j29, n2 >=n8

j38

ZERO COLUMN

parameters: index i = nl3, j = nl4
local : index k = n8
return none
12 n8=1 lk =1
32 j34,n8 = nl4 |ignore pivotal row j
nl8 =nl18-1
vnl8 = 33
nd = nl ls =M
n6 = nl3 |i
n7 = n8 |k 1= j
j10

33 j34,vnl7 =0 |ignore if already zero

v2 = vnl7 | set x for next procedure

nl8 =nl8-1

vnl8 = 34

j13 | parameters already set
34 n8=n8+41

j32, n2 >=n8

j38

TAKE AWAY X * ROW J FROM ROW K

parameters: variable x = v2 index] = n14, k = n8
local : indexi= n9 variable v =vl

return none

13 n9=1 |local i

35 nl8=nl8-1

- 19 -

vnl8 = 36
n3 = nl ls=M
n6 = n9
n7 = nl4 |j from previous procedure
j10
36 vl=vnl7xv2 |v = arrayl[i,j] *x
nl8 =nl8-1
vnl8 = 37
n3 =nl ls=M
n6 = n9
n7 = n8 | parameter j set to k
j10

37 vnl7 = vnl7 - v1| perform subtraction of row elements
nl8 = nl18-1 |repeat for matrix I
vnl8 = 40
n3 = n2 x n2
n3=n3+nl |s=I

n6 = ng
n7 = nl4 | j from previous procedure
j10

40 vl=vnl7 xv2 |v = array[i,j] * x
nl8 =nl8-1
vnl8 = 41

n3 = n2 x n2
nd3=n3 +nlls=I

n6 = n9
n7 = n8 | parameter j set to k
j10
41 vnl7 = vnl7 - v1| perform subtraction of row elements
nd =n9 +1
j35, n2 >=n9
j38
OUTPUT RESULTS
parameters: none
local : indexi=n4, j=nd
return : none
9 nb =1
27 nd=1
26 nl8 =nl8-1
vnl8 = 28

n3 = n2 x n2
n3=n3+nl J|s=I

n6 = n4
n7 =nd
j10
28 *ynl7 = vnl7 |print array(i,j]
nd =n4 +1
j26, n2 >=nd
nd =mnd + 1
j27, n2 >=1nb
i38

ARRAY([i,]

- 920 -

I
| parameters: index s = n3,i = n6, j = n7
| local : none
{ return : index n = nl7
10 n6=nb6-1 li-1

n7 =n7-1 lj-1

nl7=n2xn7 |n=NF*¥ (;-1)

nl7 = n3 + 017 |n = s + N*(j-1)

nl17 = nl17 4+ 06 |n = s + N*(j-1) + (i-1)

j38
RETURN PROCEDURE

parameters: index stack_pointer = nl18
local : variable return_addr = v3
return : none

38 v3 = vnl8|hold return label
nl8 = nl18 + 1 |increment stack pointer
j1, v3 = 1 | jump back to return address

2, v3=2
i3, v3 =3
j4,v3 =4
j16, v3 = 16
j19, v3 =19
j21,v3 =21
j24,v3 =24
j25, v3 = 25
j28, v3 = 28
j30, v3 = 30
j33,v3 =33
j34,v3 = 34
j36, v3 = 36
i37, v3 =37
j39, v3 = 39
j40, v3 = 40
j41, v3 =41
j99 | default to end of program

END OF PROGRAM

99 H | last instruction to be obeyed
(j100 | start program DATA follows

The above program requires the data to be in the form: size of matrix N to be
inverted, followed by N squared elements. This data can be tacked on to the source code
in the interlude but it is better to use the -d option when invoking markl and have the
data in the file m.data.

The invert program will also echo the numbers of the matrix to be inverted before
printing out the results. For example take the 3 x 3 matrix:

-921-

1 0 0
4 5 6
7 0 9

To invert this the data file m.data has to be:

CO~NO Nk OO =W

note the first number is 3 to indicate the size of the matrix to be inverted. When the pro-
gram is run:

$ markl -d invert
Press s to restart
s

1.0000000000
0.0000000000
0.0000000000
4.0000000000
5.0000000000
6.0000000000
7.0000000000
0.0000000000
9.0000000000
1.0000000000
0.0000000000
0.0000000000
0.1333333333
0.2000000000
-0.1333333333
-0.7777777778
0.0000000000
0.1111111111
Press s to restart
s

tape [6:02] execute [5:59] total [12:01]

The inverse of the input matrix is then:

1 0 0
1/15 1/5 -1/15
7/110 -1/11

