
Improving Resilience of Scientific Software through a
Domain-Specific Approach

I.Z. Regulya,∗, G.R. Mudaligeb, M.B. Gilesc, S. Maheswarand

aFaculty of Information Technology and Bionics, Pázmány Péter Catholic University,
Budapest, Hungary

bDepartment of Computer Science, University of Warwick, UK
cMaths Institute, University of Oxford, UK

dAWE Plc, Aldermaston, UK

Abstract

In this paper we present research on improving the resilience of the execution

of scientific software, an increasingly important concern in High Performance

Computing (HPC). We build on an existing high-level abstraction framework,

the Oxford Parallel library for Structured meshes (OPS), developed for the so-

lution of multi-block structured mesh-based applications, and implement an al-

gorithm in the library to carry out checkpointing automatically, without the in-

tervention of the user. The target applications are a hydrodynamics benchmark

application from the Mantevo Suite, CloverLeaf 3D, the sparse linear solver

proxy application TeaLeaf, and the OpenSBLI compressible Navier-Stokes di-

rect numerical simulation (DNS) solver.

We present (1) the basic algorithm that OPS relies on to determine the

optimal checkpoint in terms of size and location, (2) improvements that sup-

ply additional information to improve the decision, (3) techniques that reduce

the cost of writing the checkpoints to non-volatile storage, (4) a performance

analysis of the developed techniques on a single workstation and on several

󰂏 c© British Crown Owned Copyright 2018/AWE. Published with permission of the Con-
troller of Her Britannic Majesty’s Stationery Office. “This document is of United Kingdom
origin and contains proprietary information which is the property of the Secretary of State for
Defence. It is furnished in confidence and may not be copied, used or disclosed in whole or in
part without prior written consent of Defence Intellectual Property Rights DGDCDIPR-PL -
Ministry of Defence, Abbey Wood, Bristol, BS34 8JH, England.”

∗Corresponding author
Email address: reguly.istvan@itk.ppke.hu (I.Z. Reguly)

Preprint submitted to Journal of Parallel and Distributed Computing April 30, 2019

supercomputers, including ORNL’s Titan.

Our results demonstrate the utility of the high-level abstractions approach in

automating the checkpointing process and show that performance is comparable

to, or better than the reference in all cases.

Keywords: Domain Specific Language, High Performance Computing,

Checkpointing, Resilience, Parallel I/O

1. Introduction

Ever since the end of Dennard scaling [1], the principal source of performance

improvement has been from a continuous increase in parallelism. This, combined

with the slow-down of the process shrinkage and the push toward exascale, has

resulted in the ever increasing scale of High Performance Computing (HPC)5

systems. However, scale is a major threat to reliability [2, 3, 4]; even if the

Mean Time Between Failures (MTBF) for a single machine is on the order of

years, for a system with tens of thousands of nodes (such as TaihuLight [5] or

the planned Aurora system [6]), MTBF could drop below a day, well within the

runtime of a large-scale scientific simulation.10

One of the key causes for interruptions is hardware failure - most commonly

components fail, bringing down entire nodes. Cosmic radiation can also cause

errors in memory and execution units, though memory is commonly protected

with ECC technology [7]. The second key factor causing errors is software: as

we are using more and more complex software, developed in a loosely-coupled15

way, it is increasingly likely that bugs will cause interruptions.

Two of the biggest US peta-scale systems, Blue Waters and Titan have

shown that interruptions and outages are a daily occurrence: Blue Waters was

reported [8] to have a failure every 4.2 hours - some of which wouldn’t interrupt

running jobs - a node failure every 6.7 hours, and a whole system failure every20

160 hours. A separate report on ORNL’s Titan [9] cites a failure every 28 hours.

Perhaps the most common way to address resiliency in scientific software is

checkpointing; periodically saving the state of the simulation, and in the event

2

of a failure restoring the previous state. The application of these checkpointing

methods to existing software can be tedious and/or expensive in terms of coding25

effort and the efficiency of the checkpoint creation process itself - depending on

how high- or low-level the chosen method is.

There are two key classes of checkpointing approaches; system-level, and

application-level. For system-level methods, most commonly the operating sys-

tem is extended to periodically serialise the entire state of the running process30

(data as well as stack), which makes it entirely transparent to the application,

but has the drawback of having to save a lot of data, and having to restart with

the same number of processes. For application level approaches, currently it

is the responsibility of application programmer to determine what needs to be

saved to enable restoring at the checkpoint: indeed, this can be much smaller35

than the total amount of memory used, however in complex software it can

be difficult to determine the minimal state space, and disruptive to implement

such application-level checkpointing methods. It is also a challenge to restore

the function calls stack.

We carry out this research in the context of domain specific languages which40

have shown excellent results in generating highly optimized implementations

from high-level abstractions, thereby reducing the development effort from do-

main scientists [10, 11, 12]. In this work we report on research using the

OPS [13, 14, 15, 16] framework, an embedded domain specific language (EDSL),

for implementing checkpointing.45

We demonstrate how these techniques allow to create an application-level

checkpointing mechanism that is almost completely transparent to the user but

also deliver near-optimal performance in terms of the impact of checkpointing on

the runtime of the simulation. Specifically, we make the following contributions:

1. We present the basic concepts and algorithms behind the automated check-50

pointing and recovery in OPS.

2. We introduce techniques that allow further improvements and more con-

trol over the checkpointing process.

3

3. We integrate methods to store checkpoints and minimise the impact of

the process on the “useful” computations by making it non-blocking.55

4. We analyse the performance of various algorithms and methods of storing

the checkpoints on a single workstation, a small-scale Intel cluster, a Cray

XC30 (ARCHER) system and on Titan, a Cray XK-7 system.

5. We discuss how some of these techniques could be transferred to existing

software that does not use OPS.60

The rest of this paper is organised as follows: Section 2 presents the related

work, Section 3 briefly discusses the OPS framework, Section 4 presents the

algorithmic ideas behind the checkpointing methods in OPS, Section 5 describes

the implementation techniques, Section 6 discusses file I/O options, Section 7

presents the performance results and their analysis, Section 8 discusses how to65

use some of these ideas without OPS, and finally Section 9 draws conclusions.

2. Related Work

There is a wide range of options for improving the resiliency of software

running on large machines [2, 4, 17], but the most commonly used method is

the periodic checkpointing of the application state to files; in the case of a failure70

the application is restarted from the last checkpoint. Significant research has

been carried out in predicting failures in large-scale systems [18, 19], to reduce

the overheads. To determine the optimal checkpointing interval, Young [20]

developed the first model (
󰁳
2 ∗MTBF ∗ Tcheckpoint). For current large-scale

systems, this would mean checkpointing on the order of every hour, and as we75

show later in this paper, this takes considerable time, significantly increasing

time-to-solution. It is therefore crucial to minimise the time taken to create a

checkpoint.

Low-level, or system-level approaches to checkpointing use operating system

extensions, compiler analysis [21, 22, 23], data compression and aggregation [24]80

to automate the creation of process checkpoints. However these approaches still

face the challenge that they do not understand the semantics of data without

4

input from the application programmer. While BLCR [25] and similar methods

are attractive because they require no (or very little) changes in the application

codes, because they operate on a kernel/OS level, they need to save the entire85

state of the application, and the same number of processes are needed to restart

the application. Other works aim to improve the scheduling of jobs, and set

their checkpointing intervals to maximise efficiency [26]. There are large-scale

efforts to provide an OS, and system-level approaches, such as XtreemOS and

its Grid Checkpointing Service [27].90

There is also a considerable amount of work on application-level checkpoint-

ing approaches - these are perhaps the most developed and the most commonly

used in production environments [28, 30] . GVR [29] uses versioned distributed

arrays [31, 32], and is integrated into several large applications such as Chombo

- it still requires significant changes to the user code (thousands of lines for95

Chombo), and the programmer has to determine what data to save. Addi-

tionally, extra effort has to be spent to save and restore the call stack of the

application.

There is a large amount of work looking to improve the speed of saving

data using multi-level checkpointing: data is saved at multiple levels of storage100

technology in the system. These include in-memory [33], on node-local non-

volatile memory (such as SSDs), to protect against the failure of a single process,

then on NVRAMs of other nodes to protect against the failure of a whole node,

and finally on the parallel file system, to protect against whole-system outage.

Technologies such as FTI [34] and SCR [35] have demonstrated the utility of105

the multi-level approach, and Charm++ has also integrated this [36].

We expand on the algorithm briefly presented in its key points in our previous

work [13], which at the time was not detailed, implemented, or evaluated. Our

work contributes to the state of the art by introducing an application-level

checkpointing approach that requires significantly fewer changes to existing code110

than other approaches. Indeed, existing applications using OPS only need a

single additional API call to enable the creation of checkpoints as well as the

automated recovery to a given checkpoint, including the restoration of the call

5

stack. Furthermore, based on feedback from OPS, a user can improve on this

in various ways through additional API calls that reduce the checkpoint size115

and/or makes the restore process faster. We complement this by integrating

techniques into the OPS library akin to SCR and FTI that mitigate the overhead

of checkpointing.

3. The OPS Embedded DSL

The Oxford Parallel library for Structured grid computations (OPS) is an120

Embedded Domain Specific language embedded in C/C++ and Fortran together

with supporting libraries and code generators, targeting the development of

computations on multi-block structured meshes. The abstraction consists of

four principal components:

1. Blocks: a collection of structured grid blocks. These have a dimensionality125

but no size.

2. Datasets: data defined on blocks, with explicit size.

3. Halos: description of the interface between datasets defined on different

blocks.

4. Computations: description of an elemental operation applied to grid points,130

accessing datasets on a given block.

Given blocks, datasets and halos, an unstructured collection of structured

meshes can be fully described. The principal assumption of the OPS abstraction

is that the order in which elemental operations are applied to individual grid

points during a computation may not change the results, within machine preci-135

sion (OPS does not enforce bitwise reproducibility). This is the key assumption

that enables OPS to parallelise execution using a variety of programming tech-

niques.

From a programming perspective, OPS looks like a traditional software li-

brary, with a number of Application Programming Interface (API) calls that140

facilitate the definition of blocks, datasets and halos, as well as the definition

6

of computations - the details of the API are described in [13, 16]. From the

user point of view, using OPS is like programming a traditional single-threaded

sequential application, which makes development and testing intuitive - data

and computations are defined at a high level, making the resulting code easy to145

read and maintain.

7

f o r (i n t j = 12 ; j < 50 ; j++) {

f o r (i n t i = 12 ; i < 50 ; i++) {

a [j] [i] = b [j] [i] + b [j +1] [i]+b [j] [i +1] ;150

}

}

Listing 1: A classical 2D stencil computation

void c a l c (double ∗a , const double ∗b) {155

a [OPS ACC0(0 , 0)] = b [OPS ACC1(0 , 0)] + b [OPS ACC1(0 , 1)]

+ b [OPS ACC1(1 , 0)] ;

}

. . .

i n t range [4] = {12 ,50 ,12 ,50} ;160

ops pa r l oop (ca lc , block , 2 , range ,

ops a rg dat (a , S2D 0 , ”double ” ,OPS WRITE) ,

ops a rg dat (b , S2D 1 , ”double ” ,OPS READ)) ;

Listing 2: A parallel loop defined using the OPS API [13]

Take for example a classic nested loop performing a stencil operation as165

shown in Listing 1. The description of this operation using the OPS API is

shown in Listing 2; it defines an iteration over the grid points specified by

range, executing the user kernel calc on each, passing pointers to datasets a

and b, a is written using a one-point stencil and b is read, using a three point

stencil - these stencils are described by the data structures S2D 0 and S2D 1170

respectively, which are defined by the user using a ops decl stencil. The

OPS ACC macros are used to compute the index offsets required to access the

different stencil points, these are set up by OPS automatically.

An application implemented once using the above API can be immediately

compiled using a common C++ compiler (such as GNU g++ or Intel icpc),175

and tested for accuracy and correctness - this is facilitated by a header file

that provides a single-threaded implementation of the parallel loops and the

halo exchanges. Code generation is then used to create specialised parallel

implementations of the computational loops for different parallel programming

8

Figure 1: OPS code generation and build process

models and hardware, such as OpenMP, CUDA, OpenACC and others. The180

structure of the OPS library is shown in Figure 1.

The high-level application code is built to rely entirely on the OPS API to

carry out computations and to access data; after an initial setup phase where

data is passed to OPS using either existing pointers or HDF5 [37] files, OPS

takes ownership of all data, and it may only be accessed via API calls. This185

enables OPS to make transformations to data structures that facilitate efficient

parallel execution.

This abstraction and API can be viewed as an instantiation of the AEcute

(Access-Execute descriptor) programming model [38] that separates the abstract

definition of a computation from how it is executed and how it accesses data;190

this in turn gives OPS the opportunity to apply powerful optimisations and

re-organise execution.

4. Checkpointing in OPS

Building on the abstraction described above, the main contribution of our

paper is to detail an automated checkpointing method in OPS, that does not195

require alterations to existing user code, except for a single API call after set-up.

OPS takes ownership of all data, and that data “leaving” the realm of OPS

only happens through API calls (such as reductions, the results of which might

be used to alter control flow). This makes it possible for OPS to keep track

of what, when and how data is modified, and therefore to reason about the200

9

state space. Building on a transactional point of view [39], the fundamental

observation behind our checkpointing strategy is that if a dataset is overwritten

immediately after the checkpoint, then that dataset does not need to be included

in the checkpoint. The question therefore becomes: when to create a checkpoint,

and out of all datasets defined, which ones to save.205

The second key requirement comes from being able to restore the state of the

application; not only the values of data arrays, but also call stack and any user-

defined state that represents where during the execution the application was at

the time of the checkpoint (e.g. time iteration index). While in most application-

level checkpointing approaches this requires custom code, this can be entirely210

automated in OPS by re-playing the execution of the application up to the

checkpoint, without actually performing any computations or communications.

This can be done by saving the results of, for example, reductions that return

data to the user, which then may be used to determine the high-level control

flow of the application - during the recovery process, these values are returned,215

ensuring the same control flow.

The execution of an application from an OPS point of view essentially comes

down to a sequence of parallel loop calls, each of which read certain datasets and

write others. However, any given loop usually only accesses a small subset of

all datasets, therefore reasoning about the state space at any particular parallel220

loop, given the data it accesses, is not sufficient; this leads to the introduction

of “checkpointing regions”: the beginning of the region is the location of the

checkpoint in the classical sense, but the actual process spans several subsequent

parallel loops.

In practise, the only modification to the user code is the addition of either225

a runtime argument or a call to an OPS API during initialisation that specifies

the checkpointing frequency. During execution, OPS will save the value of

global reductions, and when a timer triggers checkpointing, it will automatically

find the next entry into a “checkpointing region” and execute the algorithm

below, saving data to a HDF5 file. The pseudocode for this process is given in230

Algorithm 1, and shown as a diagram in Figure 2: ops par loop API calls call

10

process loop before executing, and API calls that query data (such as getting

the result of a reduction) call process query before returning their results.

A high-level description of the algorithm, referencing lines in Algorithm 1 is

as follows:235

1. Line 1: If a dataset was never modified (as might be the case with e.g.

mesh coordinates), then it is not saved at all.

2. Line 32: The results of global reductions in loops are saved for every

occurrence of the loop because data returned after a loop is out of the

hands of OPS, and may be used for control decisions.240

3. Lines 10-14: When checkpoint creation is triggered, then enter a “check-

pointing region” upon reaching the first parallel loop, and before executing

that loop:

(a) Lines 15-17: Include datasets accessed by the loop that are not write-

only.245

(b) Lines 18-20: Do not include datasets that are write-only in the loop

from the checkpoint.

4. When already in a “checkpointing region” (previous point), start executing

subsequent loops to determine whether datasets that were not yet saved

nor dropped (i.e. are flagged) would have to be saved:250

(a) Lines 15-20: If a flagged dataset is encountered, save it if it’s not

write-only, otherwise do not include it and remove the flag.

(b) Lines 21-26: If a flagged dataset is not encountered within a reason-

able timeframe allocated for the “checkpointing region”, then save

it.255

In the event of a failure, the application needs to be restarted, and if a

checkpoint file is found then “restore mode” is enabled, during which calls to

ops par loop do not carry out any computations, and data query type API calls

return the saved values. Once the location of the last checkpoint is reached, the

state space is restored from the HDF5 file, “restore mode” ends, and execution260

returns to normal. The pseudocode for restoring is shown in Algorithm 2.

11

Algorithm 1 The checkpointing algorithm
1: Initially: ever written[0..datasets] = 0, seen[0..datasets] = 0, in region = 0, OPS red =

empty, loop index = 0.

2: function process loop(index, arguments)

3: loop index++

4: for all args written do

5: ever written[dataset] = 1

6: end for

7: if restore mode then process loop restore(index, arguments)

8: return

9: end if

10: if checkpoint timeout then

11: if in region == 0 then

12: Open checkpoint file, save loop index and contents of OPS red

13: in region = 1

14: end if

15: for all args read, seen[dataset] == 0, ever written[dataset] == 1 do

16: Save dataset to checkpoint, seen[dataset] = 1

17: end for

18: for all args written, seen[dataset] == 0 do

19: seen[dataset] = 1

20: end for

21: if checkpoint region timeout or seen[0..datasets] == 1 then

22: for all datasets seen[dataset] == 0 and ever written[dataset] == 1 do

23: Save dataset to checkpoint

24: end for

25: Close checkpoint, seen[0..datasets] = 0, in region = 0

26: end if

27: end if

28: end function

29: function process query(data returned)

30: if restore mode then process query restore(index, arguments)

31: else

32: Save data returned to OPS red

33: end if

34: end function

12

Loop or
query

Backup returned
values into OPS_red

Query

Loopargs written: set
ever_written

Ckpt
timeout?

No

Loop

Yes Loopargs read: if not seen
& ever_written – save and

set seen

Loopargs written: if not
seen – not save and set

seen

Ckpt
region

timeout?

No Yes Datasets: if not seen &
ever_written - save

Clear seen and close
checkpoint

First
time?

No

Yes
Save OPS_red

Figure 2: Diagram for checkpoint creation. Entry at the top, for any API call. Loop:

ops par loops, Query: any OPS API that returns values to userspace, typically reduc-

tions. seen: flags indicating whether a dataset was encountered in the checkpointing

region. ever written: flags that indicate whether the dataset was written during the

execution of the application. OPS red : memory allocated for storing reduction data.

One of the key challenges is deciding where exactly to enter the “checkpoint-

ing region” so that the state space that has to be saved is minimal; entering it

at the first loop that has a write-only dataset may only be locally optimal.

As discussed, it is easy to find a locally optimal checkpoint location, however265

in order to globally minimise the amount of data that needs to be saved, it is

necessary to find a regularly occurring point during execution where entering

checkpointing mode results in the least amount of data saved.

5. Implementation

The implementation of checkpointing in OPS closely follows the algorithmic270

description, with several additions that can help improve performance and the

size of the checkpoint given further information from the user.

The key OPS API call to enable checkpointing is ops checkpointing init(

file path, interval, options). The argument file path can point either

13

Algorithm 2 The restore from checkpoint algorithm
1: Initially: restore mode = 1, loop index (renamed restore index) and OPS red read from

checkpoint file

2: function process loop restore(index, arguments)

3: if loop index == restore index then

4: restore all datasets in checkpoint

5: restore mode = 0

6: end if

7: skip computation of this loop

8: end function

9: function process query restore(data returned)

10: Return data from OPS red

11: end function

to a parallel file system or to node-local storage. The time period between check-275

points can be defined with interval, and the timer is subsequently managed

by OPS. Options are described later in this section. OPS does not suggest a

checkpointing time interval, as that is a highly machine specific parameter.

By placing this single API call in the code, and setting the runtime flag,

checkpointing will be fully automated by OPS.280

To coordinate processes in order to make sure entering the “checkpointing

region” is a collective operation, we can piggyback on global reductions issued

by the user, and if any process timed out, we begin checkpointing.

5.1. Initialisation phase

Most complex scientific simulations start with an initialisation phase, where285

several datasets are populated that are never modified later, for example aux-

iliary arrays like coordinates. This is indeed the case for CloverLeaf, TeaLeaf

and OpenSBLI. We therefore introduce a simple extension to the above check-

pointing model: the initialisation phase. This phase is completely ignored by

the checkpointing algorithm; in backup mode datasets written in this phase290

are considered “never modified” and dropped from any future checkpoint (the

ever written flag array is reset at the end of the initialisation phase). In restore

mode, this initialisation is re-run, in order to re-populate those datasets, and

14

only afterwards does execution skip to the last checkpoint. OPS adds an API

call, ops checkpointing initphase done, that the user can place in the code295

to mark the end of the initialisation phase.

5.2. Checkpointing location

During execution, before the checkpointing process can begin, OPS needs to

find a recurring point during execution where checkpointing will be initiated,

and the amount of state to be saved is minimised. By default, finding this300

location is entirely up to the OPS runtime, but with additional APIs, the user

can specify this location as well.

If the user does not specify the location for checkpoints, OPS will use a

simple strategy that calculates the amount of data that would be saved if the

checkpointing region were to be entered at any given loop. This is done by305

building a table with statistics for each loop, along with the frequency of the

loop occurring and the variance in the amount of data to be saved between

occurrences. Statistics are gathered up to the very first time the timeout triggers

a checkpoint, at which point the loop that occurs sufficiently frequently, and

would save the least amount of data, is selected, and checkpointing will start310

the next time that parallel loop is encountered. The details of this algorithm are

given in ops checkpointing strategy.c in [16]. This decision can be reported

by setting the -OPS DIAGS=3 runtime flag and integrated into the user code, by

using one of the API calls that specify the checkpoint location.

It is possible for the user to explicitly define the location of the checkpoint:315

this is particularly easy to do given the reports from the automated checkpoint-

ing location finding mechanism in OPS. This method still pushes the respon-

sibility to determine which datasets to save onto OPS. The user then has an

option to include some user-space data into the checkpoint (such as current

timestep) - this can be used in restore mode to fast-forward to the checkpoint320

(“FastFW” optimisation), and avoids having to save the results of all reduc-

tions. Then, it is also possible to explicitly specify the list of datasets to be

included in the checkpoint (“Datlist” optimisation). All of these options help

15

to give the run-time more information and ultimately to reduce the size of the

checkpoint. Finally, it is also possible to manually trigger the creating of the325

checkpoint, instead of relying on the built-in timers.

6. Implementation of file I/O

The checkpointing functionality of OPS currently relies on the HDF5 library

to read and write checkpoint files. HDF5 supports MPI I/O to write a single

checkpoint file onto the parallel file system, but it is also possible for each process330

to create its own file: we implement both options. As we will see later, the MPI

I/O version has some performance issues, but allows to re-start with a different

number of processes, as re-partitioning the data from a single source is simple.

Creating files for each process has the drawback of having to re-start (in the

event of a failure) with the same number of processes, but it has performance335

advantages.

While MPI I/O requires writing to the parallel file system directly, the per-

process checkpointing method enables a multi-level checkpointing approach [35].

At the first level, OPS supports writing checkpoints to node-local non-volatile

memory, such as SSDs - this protects against the failure of a single process. At340

the second level, OPS supports the replication of checkpoints on different nodes

(by MPI processes sending their checkpoint data to a neighbouring process):

this is possible both with in-memory checkpointing and writing the checkpoints

to files - this protects against the failure of a complete node. The third level of

checkpointing is the MPI I/O approach itself, this protects against a full system345

outage.

By default, when a checkpoint is triggered, OPS opens a new HDF5 file

(either collectively or per-process), and saves all required state (current loop,

reduction data, user-space payload), and writes the datasets to the file when the

decision is made to save them. However, this is a blocking operation, which may350

be expensive for larger problem sizes or when using a parallel file system. To

avoid this problem, OPS implements two further strategies: in-memory check-

16

pointing and thread-offload checkpointing.

In-memory checkpointing replicates data in the memory space of the process

itself, which is the cheapest way of saving data, but of course it is saved into355

volatile memory. When a process/node fails and the scheduler terminates the

job, the processes receive SIGINT, which is caught by OPS, and only then is

data written to files. In order to avoid any loss of data, it is important that in-

memory checkpointing is combined with the replication of checkpoint records, a

second-level checkpointing method, automatically supported by OPS. While the360

amount of memory available in a compute node is often a concern on clusters,

because of the ability of OPS to determine which datasets can be discarded from

the checkpoint, the actual amount of memory required to hold the checkpoint

in memory is only a fraction of what is required by all the datasets combined -

typically 10-20% in our benchmarks. In-memory checkpointing can be enabled,365

by specifying the OPS CHECKPOINT INMEMORY argument to the executable.

Thread-offload checkpointing makes the writing of datasets to disk an asyn-

chronous operation. OPS creates a separate thread that is only responsible for

writing the files; the main thread doing the computations just has to make a

copy of the data to be saved in memory and hand it off to the background370

thread, then it can continue on with the execution of the simulation. Thread-

offload checkpointing can be enabled by specifying the OPS CHECKPOINT THREAD

argument to the executable. Currently, this option is not compatible with the

MPI I/O approach of writing to a single file, due to issues with the thread safety

of MPI distributions.375

OPS currently requires the re-launch of the application in the case of failure,

however, given a resilient MPI distribution that can substitute reserve processes

for failed ones, it would be possible for OPS to roll-back intact processes and

fast-forward the substitute processes without having to re-launch.

17

7. Performance Analysis380

In this section, we analyse the performance of the checkpointing implemen-

tations in OPS on three applications; CloverLeaf 3D [40], OpenSBLI [41] and

TeaLeaf [42]. In our analysis, we are mainly interested in the overhead of creat-

ing checkpoints, and restoring from them, and also their relative cost compared

to the cost of time iterations. Therefore our test runs are fairly short - just long385

enough to create one checkpoint, several seconds into the execution, once the

regular time stepping has begun. The results are averaged across several runs.

Error bars show the standard deviation in measurements, which are symmetric,

but for readability, we only show the error bar on the positive side.

We first evaluate them on a single node with the different improvements390

described above, then moving on to direct comparison with a reference im-

plementation of CloverLeaf 3D which uses TyphonIO [43] (referred to as “Ref

Checkpoint” in figures). TyphonIO uses collective HDF5 operations to write a

single file, which was originally used for visualisation, and saves datasets in single

precision. OpenSBLI has no equivalent “reference” implementation, therefore395

it is evaluated on its own.

The CloverLeaf mini-app involves the solution of the compressible Euler

equations, which form a system of four partial differential equations. The equa-

tions are statements of the conservation of energy, density and momentum and

are solved using a finite volume method on a structured staggered grid. The cell400

centres hold internal energy and density while nodes hold velocities. The solu-

tion involves an explicit Lagrangian step using a predictor/corrector method to

update the hydrodynamics, followed by an advective remap that uses a second

order Van Leer up-winding scheme. The advective remap step returns the grid

to its original position. The original application [40] is written in Fortran and405

operates on a 3D structured mesh. It is of fixed size in both x and y dimensions.

The application consists of 141 parallel loops, and 45 datasets, out of which

30 are full cardinality (15 are 1D datasets for data such as x coordinates). The

overall structure of the main hydro loop is shown in Figure 3.

18

Hydro Loop:
Timestep

Ideal Gas
Viscosity
Calc dt

PdV
Accelerate
PdV
Flux calc
Advection

Advec cell #1
Advec mom X-Y-Z
Advec cell #2
Advec mom X-Y-Z
Advec cell #3
Advec mom X-Y-Z

Reset Field
Field Summary

Figure 3: Overall structure of the CloverLeaf code

OpenSBLI [41] is a large-scale academic research code, the successor of410

SBLI [44], which accounts for a significant portion of compute time on several

UK national supercomputers. The code is being developed at the University of

Southampton, and is used for the solution of compressible Navier-Stokes equa-

tions with an application to shock-boundary layer interactions. In this paper,

we evaluate a 3D Taylor-Green vortex testcase, which consists of 87 nested loops415

over the computational grid, and 65 datasets (all full cardinality).

TeaLeaf [42] is a mini-app designed to be representative of matrix-free sparse

linear solvers. It solves the heat conduction problem on a sparse, structured

mesh and use a five point stencil and cell-centred temperatures to calculate

the conduction coefficient. It supports a number of sparse solvers, including420

Conjugate Gradient, Chebyshev, or Chebyshev polynomially preconditioned CG

(PPCG). The application has 31 datasets, out of which 21 are full cardinality,

and there are 49 parallel loops distributed across 12 source files.

Considering the behaviour of the checkpointing algorithm for the three ap-

plications is very similar, in the interest of brevity, we only show OpenSBLI425

results in the single node tests, on Archer and on Titan, and TeaLeaf results in

the single node tests and on Archer.

19

7.1. Single node

As CloverLeaf 3D is a representative mini-application, the number of loops is

small enough that it is possible to determine the absolutely minimal amount of430

data that has to be saved at a globally optimal checkpoint location - this is the

traditional application-level checkpointing methodology. The optimal location

is right before calling Reset Field, and the list of datasets that need to be

saved is density1,energy1,xvel1,yvel1,zvel1, if datasets representing the

mesh are not saved. For a 1923 problem, using double precision, this is 5∗8∗1963435

bytes (accounting for block halo with a depth of 2 on all sides), or 301MB. The

full state space, including all the datasets (45) is 1624MB, not counting the MPI

halo regions when using MPI, which can be substantial. Thus in the best case

we need to save only 18% of all the data used by the simulation.

Table 1: CloverLeaf 3D single node performance (*single precision)

Time Checkpointing Restore OpenMP 40 MPI

(sec) time (sec) time (sec) size (MB) size (MB)

OPS Plain 33.35 - - - -

Ref Plain 37.29 - - - -

Ref Checkpoint 39.98 n/a n/a 193.77* 193.77*

No info 33.92 0.42 0.086 737.76 938.23

Initphase 33.82 0.33 0.049 488.99 647.57

+FastFW 33.77 0.22 0.048 488.99 647.57

Datlist 33.73 0.13 0.018 312.57 364.86

Datlist+FastFW 33.54 0.13 0.016 312.57 364.86

Triggered 33.72 0.13 0.016 312.57 364.86

Thread offload 33.71 0.027 0.016 312.57 364.86

In-memory 33.60 0.021 0.016 312.57 364.86

MPI I/O 38.78 5.07 0.588 312.57 312.57

Tests were run on an Intel Xeon E5-2650 v3 (Haswell) machine. The machine440

has 10 cores per socket, running at 2.3 GHz, with HyperThreading on, and there

is 64 GB of DDR4 RAM, running CentOS 7.2. The checkpoints are written to a

local HDD (I/O speed is 1.6 GB/s as measured with dd). Runs utilise all logical

20

cores (40 OpenMP threads or 40 MPI processes), with thread/process binding

enabled. All codes were compiled with the Intel Compilers, version 16.0, and445

use Intel MPI, and HDF5 1.8.4.

CloverLeaf was configured to run for 87 time iterations and a 1923 mesh.

The full runtime is around 33 seconds, thus we set the checkpointing interval to

20 seconds (arbitrary choice, that is well into the execution of the application).

Table 1 shows the results - standard deviations are not indicated as they450

were all less than 1% of the mean. The first two rows show the performance

of CloverLeaf 3D without checkpointing using either OPS or the reference im-

plementation [40]. The third row shows performance using TyphonIO in the

reference implementation; clearly checkpointing adds a considerable overhead,

2.6 seconds - the size of the resulting file is only 193MB, because it is storing455

data in single precision. We should note that the reference solution’s output

is aimed at visualisation, rather than checkpointing, hence the lower precision,

but it is storing more datasets (such as coordinates) that do not need to be

included in an OPS checkpoint.

CloverLeaf’s baseline OPS version performs slightly better than the baseline460

reference version - this is because some of the code generated loop structures

optimise better than the one in the original. The checkpointing variant also

performs slightly better: “No info” (OPS) versus “Ref TIO” (reference). The

algorithm which tries to locate the optimal checkpointing location does find

the global optimum (right before reset field), however without any further465

information it has to save all the data describing the mesh, as well as boundary

regions of datasets that are not written to. Once the initialisation phase option

is enabled (“Initphase”), the only full datasets that OPS saves are the five listed

above, plus the block halos of the rest - at such a small mesh size and 40 MPI

processes those add up to almost double the bare minimum.470

Given the feedback from OPS regarding the location of the checkpoint, one

can enable the “fast-forward (FastFW)” and “Datlist” optimisations by placing

an additional OPS API call to the given location. Fast-forward reduced the

amount of reduction data to be saved, improving checkpointing time. When we

21

explicitly list the datasets to be saved (“Datlist”), the halos of other datasets are475

not saved anymore, and we get very close to the optimum, the only additional

data being saved are the MPI halos of the five datasets. As expected, the more

information OPS is given, the less data it has to save and the time spent in

checkpointing also decreases. Similarly, the cost of restoring to a checkpoint

is very small, about an order of magnitude less than creating a checkpoint.480

However it is clear that at this point, checkpointing onto a workstation’s disk

is inexpensive - less than the cost of a single iteration of the simulation. In

line with this, the thread-offload and the in-memory techniques do not give

meaningful improvements over the blocking write to disc.

When MPI I/O is enabled, only one checkpoint file is written for all the485

processes. This however, involves expensive collective MPI communications,

that slow the process down. Performance figures shown in Table 1 show results

with the Initphase, FastFw and Datlist optimisations enabled - they are still an

order of magnitude slower than the per-process checkpointing approaches.

OpenSBLI is being tested with a 1923 problem, for 20 time iterations (note490

that runtimes are also around 20 seconds). Given a 2-wide halo around the

boundaries, the total state space is 1963 ∗ 64 ∗ 8 bytes, or 3.59 GB. Manual code

analysis shows that the minimum state is right before saving the old results

during the time-stepping, and includes 5 datasets: rho, rhoE, rhou0, rhou1,

rhou2. Thus, in the best case we need to save only 7.7% (276 MB) of all the data495

used by the simulation. The automatic checkpoint location finding algorithm in

OPS does find this location, though it determines that the halo regions of other

datasets need to be saved as well - the amount of data saved is 473 MB, or 13%

of the total state space.

Results are shown in Table 2 - which are consistent with the results seen500

on CloverLeaf. In OpenSBLI, there is no advantage of using the Initphase

optimisation. Specifying the list of datasets to be saved, more than halves

checkpoint size and time overhead, because halo regions of other datasets are

not saved. On a single workstation, the overhead of creating a checkpoint is 0.02-

0.16 time iterations, and restoring from a checkpoint is 0.01-0.13 time iterations.505

22

Table 2: OpenSBLI Single node performance

Time Checkpointing Restore OpenMP 40 MPI

(sec) time (sec) time (sec) size (MB) size (MB)

OPS Plain 20.97 - - - -

No info 21.53 0.16 0.13 473.68 780.38

Initphase 21.53 0.16 0.13 473.68 780.38

+FastFW 21.39 0.10 0.076 473.68 780.38

Datlist 21.31 0.022 0.045 287.23 336.74

Datlist+FastFW 21.31 0.022 0.013 287.23 336.74

Triggered 21.30 0.019 0.011 287.23 336.74

Thread offload 21.32 0.026 0.011 287.23 336.74

In-memory 21.31 0.022 0.011 287.23 336.74

MPI I/O 27.1 5.57 0.77 287.23 287.23

TeaLeaf is being tested with a 20002 problem, for 10 time iterations. The

total state space is 628 MB. Manual code analysis shows that the minimum state

is right before starting the linear solver during the time-stepping, and includes

only one dataset: energy1. Thus, in the best case we need to save only 5.1% (32

MB) of all the data used by the simulation. The automatic checkpoint location510

finding algorithm in OPS does find this location, though it determines that a

large number of datasets that describe the mesh, as well as the halo regions of

other datasets need to be saved as well - the amount of data saved is 185 MB,

or 29% of the total state space.

Results are shown in Table 3 - which are consistent with the results seen515

on CloverLeaf and OpenSBLI. In TeaLeaf, there is a significant advantage of

using the Initphase optimisation, which brings the checkpoint sizes down to

32 MB. Specifying the list of datasets to be saved only improves checkpoint

sizes significantly over MPI. On a single workstation, the overhead of creating

a checkpoint is 0.02-0.16 time iterations, and restoring from a checkpoint is520

0.01-0.12 time iterations.

23

Table 3: TeaLeaf Single node performance

Time Checkpointing Restore OpenMP 40 MPI

(sec) time (sec) time (sec) size (MB) size (MB)

OPS Plain 78.27 - - - -

No info 79.26 0.99 0.02 185 414

Initphase 78.55 0.27 0.01 32.6 40.8

+FastFW 78.5 0.23 0.01 32.4 33.7

Datlist 78.5 0.23 0.01 32.2 32.7

Datlist+FastFW 78.39 0.12 0.01 32.1 32.7

Triggered 78.4 0.13 0.01 32.1 32.7

Thread offload 78.4 0.13 0.01 32.1 32.7

In-memory 78.3 0.03 0.01 32.1 32.7

MPI I/O 80.4 2.13 0.32 32.1 32.1

7.2. Scaling on Arcus-b

Arcus-b is a small compute cluster at the University of Oxford, with In-

tel E5-2640 v3 (Haswell) CPUs (2.6 GHz, 8 cores per socket, HyperThreading

disabled). The nodes have 64 GBs of RAM, and run CentOS 6. The system525

has node-local hard disks as well as a large shared Panasas parallel file system,

therefore it is a good candidate for the comparison of multi-level checkpointing

strategies. Codes were compiled with the Intel Compilers (16.0), Intel MPI, and

use HDF5 1.8.20. Runs were done with 16 processes per node, process binding

enabled. We modified the reference implementation and use manually triggered530

checkpoints in OPS to run for a total of 87 time iterations and create a single

checkpoint at step 45.

First, we evaluate strong scaling with a 3843 mesh; the results are shown

in Figure 4(a). Strong scaling without any checkpointing follows the expected

exponentially decreasing runtime: the scaling efficiency going from 16 cores to535

256 cores is 82%, the reference implementation and OPS are within 10% of each

other.

Enabling global checkpointing with MPI I/O and parallel HDF5, shows that

there is a significant overhead even at the lowest core count: 5.46 iterations

24

(a) (b)

0
20
40
60
80

100
120
140
160
180
200

16 32 64 128 256

Ex
ec

ut
io

n
ti

m
e

(s
)

Number of cores

Weak scaling

OPS Plain OPS MPI I/O OPS Checkpoint

OPS Threading Ref Plain Ref Checkpoint

0

50

100

150

200

250

300

16 32 64 128 256

Ex
ec

ut
io

n
ti

m
e

(s
)

Number of cores

Strong scaling

OPS Plain OPS MPI I/O OPS Checkpoint

OPS Threading Ref Plain Ref Checkpoint

Figure 4: CloverLeaf 3D performance on Arcus-b, strong and weak scaling

or 15 seconds for the reference and 6.8 iterations or 19 seconds for the OPS540

implementation. This overhead persists when scaling to larger node counts, and

proportionally becomes much larger as one would expect when using a parallel

file system with a fixed amount of bandwidth: 130 iterations or 30 seconds for

the reference and 207 iterations or 43 seconds for the OPS implementation. The

overhead significantly increases in absolute terms as well, more than doubling545

when going from 16 cores to 256; this is due to the parallel file system handling

a large number of processes accessing the same file poorly. Clearly, the cost of

checkpointing to this parallel file system is considerable, ranging between the

cost of 5 time iterations to 136 time iterations.

When enabling the node-local checkpointing feature in OPS, where one file550

is created for each process onto the hard disk of the node, the overhead dra-

matically drops: with 16 cores 0.7 iterations or 2.2 seconds, with 256 cores 0.5

iterations or 0.12 seconds, a much more acceptable overhead. We should note

that with second-level checkpointing over MPI, the amount of data saved is ac-

tually twice as much, because processes mirror their checkpoints with the help555

of processes on other nodes.

Weak scaling is also evaluated on arcus-b with a 2563 mesh per node, the

results are shown in Figure 4(b). Once again performance with checkpointing

disabled follows the expected curve: weak scaling efficiency is 95% going from

16 cores to 256. Enabling global checkpointing with parallel HDF5 and MPI560

I/O results in steeply increasing runtimes; indeed, this is what one would expect

25

0.03125

0.0625

0.125
0.25

0.5

1

2

4
8

16

16 32 64 128 256

Ac
hi

ev
ed

 b
an

dw
id

th
 (G

B/
s)

Number of cores

OPS MPI I/O OPS Checkpoint

OPS Threading Ref checkpoint

Figure 5: CloverLeaf 3D achieved bandwidth on Arcus-b, weak scaling

from a limited bandwidth parallel file system. The overhead at 16 cores is 3.4

iterations or 2.9 seconds with the reference and 6.8 iterations or 6 seconds with

the OPS implementation, and scaling to 256 cores the overhead becomes 114

iterations or 104 seconds with the reference and 114 iterations or 108 seconds565

with the OPS implementation at 128 cores. Enabling the node-local checkpoint-

ing in OPS effectively enables the scaling of I/O bandwidth with the number

of nodes, at 16 cores the overhead is 1.1 iterations or just below 1 seconds,

and at 256 cores is 1.3 iterations or 0.92 seconds: showing that weak scaling

of checkpointing can be achieved with near perfect efficiency. Finally, we show570

achieved bandwidth in Figure 5 for weak scaling: clearly the performance of the

parallel file system is low and stagnating as we use more processes, whereas the

node-local checkpoints scale almost perfectly.

7.3. Scaling on ARCHER

ARCHER, a Cray XC30 system, uses a Lustre parallel file system, which575

we use to perform our tests. It has a nominal bandwidth of 30 GB/s. Nodes

have dual-socket E5-2697 v2 (Ivy Bridge) processors, 2.7 GHz, 12 cores each

(HyperThreading disabled), and 64 GB of RAM. We use the Cray compilers

(8.2.1), MPI (cray-mpich 6.1.1) and HDF5 libraries. Runs use 24 MPI processes

per node, with process binding enabled.580

Considering that many people are using the supercomputer at the same time,

there is considerable noise in the performance of the file system - therefore we ran

26

(a) (b)

0

50

100

150

200

250

300

1 4 8 -1

Ru
nt

im
e (

s)

Striping setting

Effect of striping on ARCHER - Reference

Ref
0

10

20

30

40

50

1 4 8 -1

Ru
nt

im
e (

s)

Striping setting

Effect of striping on ARCHER - OPS

OPS per-proc OPS MPI I/O

Figure 6: Checkpointing performance with different striping settings on 192 cores of

ARCHER, running CloverLeaf 3D

all tests ten times and averaged the results, indicating the standard deviation

as well - no such noise is observed when the checkpointing is not used. In order

to try and provide a fair comparison of the reference implementation and OPS,585

we interleave the execution of the five tests (run the ref version, then OPS, then

ref again, then OPS again, etc.), hoping that the load on the file system will

not vary significantly between two runs.

The machine’s Lustre parallel file system permits the user to set the striping -

changing how many Object Storage Targets (OSTs) any given file is spread over.590

This is closely related to the performance of writing files to the parallel storage,

as particularly for large files, better bandwidth can be achieved at higher stripe

counts. There are a total of 50 OSTs in the system, and the user can set the

striping setting for any given file or directory to 1, 4 (default), 8, or -1 (which

corresponds to the maximum number of OSTs). According to the best practices595

guide, we have evaluated performance for both MPI I/O checkpoint creation and

the per-process checkpointing method in OPS at different striping settings. For

192 processes and a 3843 mesh, results are shown in Figure 6; performance at

higher striping counts is better, but does not increase significantly when going

from the default of 4 to 8 or -1, except for the reference version, where there is600

a significant improvement at -1. All further results are obtained at a -1 setting

for both OPS and the reference version.

27

0

2

4

6

8

10

12

14

16

18

96 96 96 192 96 96 192 192
96

192 192
192

384 192
192

384 384
192

384 384
384

Re
st

or
e

tim
e (

s)

Problem scaling on ARCHER - restore

Per-process MPI I/O

0

20

40

60

80

100

120

140

160

96 96 96 192 96 96 192 192
96

192 192
192

384 192
192

384 384
192

384 384
384

Ex
ec

ut
io

n
tim

e (
s)

Problem scaling on ARCHER - checkpoint creation

OPS Plain Ref Plain
OPS Checkpoint Ref Checkpoint
OPS MPI I/O

(a) (b)

Figure 7: CloverLeaf 3D performance on 2 nodes of ARCHER, with different problem

sizes. Error bars show the standard deviation in measurements.

First, we evaluated performance on 2 nodes of the system, a total of 48

cores, on different problem sizes. Results are shown in Figure 7(a), which

again demonstrate that the baseline versions are close in performance, with605

OPS being slightly faster (5-10%) on this system. Enabling checkpointing adds

a considerable overhead for the reference implementation, which at this scale is

between 17-35 seconds, or 26 iterations at the largest problem and increases to

650 iterations at the smallest. Measurements show that there is a large cost of

opening/closing a single file concurrently with TyphonIO’s MPI I/O, but the610

bandwidth of the I/O, once the file is open, is reasonable.

Even though ARCHER, as most Cray systems, has no node-local non-volatile

storage that is accessible to the users, we evaluate the per-process checkpointing

in OPS. The blocking per-process checkpointing method also adds an overhead,

0.8 seconds (36 iterations) for the smallest 963 problem, up to 2.4 seconds (1.9615

iterations) for the largest 3843 problem - at this point faster than the reference

solution even with checkpointing turned off. Using MPI I/O for checkpointing

in OPS does introduce an overhead compared to the per-process checkpoint-

ing method, but much less compared to the TyphonIO version; around 4 time

iterations, for larger problem sizes.620

We also evaluate the overhead of restoring from a checkpoint, shown in Fig-

ure 7(b), which includes everything starting from the launch to resuming normal

28

(b)

8

16

32

64

128

256

512

24 48 96 144 192 288 384 576 768

Ex
ec

ut
io

n
ti

m
e

(s
)

Number of cores

Strong scaling 384^3 ARCHER

Ref Plain Ref Checkpoint OPS Plain
OPS Checkpoint OPS inmemory OPS threading
OPS MPI I/O (a)

0

1

2

3

4

5

6

48 96 192 768 1536

Re
st

or
e

ti
m

e
(s

)

Number of cores

Restore overhead - Strong scaling 384^3
ARCHER

Per-process MPI I/O

Figure 8: Strong scaling performance with the reference and OPS CloverLeaf 3D im-

plementations

execution. Restoring from a global checkpoint using MPI I/O has significant

overheads, just like when writing the checkpoint, and restoring from the per-

process checkpoints is once again significantly faster; scaling from 0.048 seconds625

up to 0.89 seconds, almost an order of magnitude less than the cost of creating

the checkpoint.

Figure 8(a) shows the strong scaling performance on the 3843 problem, with

the non-checkpointing version scaling with 95% efficiency. Once checkpointing

is enabled, it is clear that execution time increases dramatically, with decreasing630

performance beyond 96 processes for the reference version. Between 96 and 288

processes, the standard deviation in fairly low, and becomes significant beyond

that point - further scaling was not attempted at this time due to the cost of

test runs. The cost of checkpointing increases exponentially with the number of

nodes for the reference version beyond 96 cores.635

Figure 8(a) also shows performance with the various implementations in

OPS, using the manual triggering method, creating a checkpoint at iteration

45. Runtimes without checkpointing match the runtimes of the reference ver-

sion within 5%. The per-process method of checkpointing introduces very little

overhead most of the time - however 1 or 2 times out of 10 test-runs execution640

time jumps up; this is because one of the processes busy-waits to either open

or close its checkpoint file - this is an issue with the parallel file system not

29

0.0039063
0.0078125

0.015625
0.03125

0.0625
0.125

0.25
0.5

1
2
4
8

16

24 48 96 144 192 288 384 576 768

Ac
hi

ev
ed

 b
an

dw
id

th
 (G

B/
s)

Number of cores

Achieved Bandwith, Strong Scaling 384^3 ARCHER

Ref Checkpoint OPS Checkpoint OPS MPI I/O

Figure 9: Achieved bandwidth when strong scaling CloverLeaf 3D on ARCHER

handling these requests efficiently. As it can be observed on the figure, this did

not occur for the 288 and 576 core runs, where the overhead was negligible.

Since no failures actually occurred during these tests, in-memory checkpointing645

did not write any files to disk, its overhead was also negligible. What is notable

however is that when using the thread-offload method to write files to disk this

issue of opening or closing files did not occur even once, despite running several

tests a further 10 times.

The overhead of restoring to a checkpoint, shown in Figure 8(b), is once650

again significantly lower than that of creating the checkpoint; between 0.2 and

1 seconds, scaling flatly when using the per-process checkpointing method, and

between 3 and 5.5 seconds with MPI I/O with a decreasing trend as the number

of processes increases. The time at which the tests were run did introduce some

variance in how much time writing files took, but not how frequently the file655

opening/closing issue occurred. The reason for these issues is unknown at this

time.

Figure 9 shows the achieved bandwidth when writing checkpoints on ARCHER;

as expected from the timings, the reference version achieves a very low band-

width, the OPS MPI I/O version slightly higher, and the OPS per-process660

version the highest, but with considerable fluctuations.

We have also evaluated weak scaling performance on ARCHER with OPS,

the performance results are shown in Figure 10. To begin with, it should be

30

0
200
400
600
800

1000
1200
1400
1600
1800
2000

24 48 96 192 384 768 1536

Ru
nt

im
e

(s
)

Number of cores

Weak Scaling (384^3 per node)

OPS Plain OPS Checkpoint

Figure 10: Weak scaling performance with various OPS CloverLeaf 3D implementations

on ARCHER

noted that going from 48 to 96 cores and from 96 cores to 192 cores, there

is a drop in weak scaling efficiency, even without checkpointing - this is due665

to an increased cost of communication - which does not increase further going

up to 1536 cores however. The overhead when using the blocking version of

checkpointing is fairly small up to 96 cores, but increases significantly beyond

that point. This is where the thread-offload version improves performance - by

hiding the cost of writing to files; up to 384 cores it hides this cost efficiently, but670

beyond that point the creation of the checkpoint takes a longer time that the

time interval between checkpoints - in this setup this is half of the total runtime.

When enabling MPI I/O, the cost of checkpointing increases dramatically.

In summary, there seems to be an inherent bottleneck in the way TyphonIO

interacts with the ARCHER parallel file system and MPI I/O (based on HDF5675

installed in the system). This can be observed as a fairly constant overhead

when varying the problem size on the same amount of cores, and this overhead

seems to exponentially increase with the increasing amount of cores used. OPS

does not demonstrate such an increasing overhead, however when scaling it is

impacted by an issue with the filesystem managing file opening and closing oper-680

ations. With a reasonably large time period between checkpoints, this overhead

can be hidden using a thread-offload strategy for writing files.

We have also evaluated the scaling of checkpointing on OpenSBLI; strong

31

(b)(a)

0,5

1

2

4

8

16

32

64

128

256

24 48 96 192 384 768 1536 3072 6144

Ex
ec

ut
io

n
tim

e (
s)

Core count

Strong Scaling OpenSBLI (384^3) on Archer

OPS plain OPS checkpoint OPS threaded OPS MPI I/O

0

50

100

150

200

250

24 48 96 192 384 768 1536 3072 6144

Ex
ec

ut
io

n
tim

e (
s)

Core count

Weak Scaling OpenSBLI (256^3) on Archer

OPS plain OPS checkpoint OPS threaded OPS MPI I/O

Figure 11: OpenSBLI scaling performance on Archer

1

2

4

8

16

32

64

128

24 48 96 192 384 768 1536

Ex
ec

ut
io

n
tim

e (
s)

Core count

Strong Scaling TeaLeaf (2000^2) on Archer

OPS plain OPS checkpoint OPS threaded OPS MPI I/O

Figure 12: Strong scaling performance with various OPS TeaLeaf implementations on

ARCHER

scaling is shown in Figure 11(a), similarly to CloverLeaf, the per-process check-

pointing approaches scale with fairly low overhead (1-3 time iteration) up to a685

point, but beyond 768 cores they start slowing down as well - at 6144 cores,

the overhead is 200 and 115 time iterations for the plain and threaded versions.

Using MPI I/O to write checkpoints scales significantly worse, even at low node

counts it presents a significant overhead; 30 iterations at 48 cores, going up

to 740 iterations at 1536 cores. Figure 11(b) shows results for weak scaling at690

2563 problem; once again the per-process approaches scale well, with only a 0.8

iteration overhead with the threaded version even at 6144 cores, whereas the

MPI I/O costs go up dramatically.

Additionally, we evaluated strong scaling of checkpointing on TeaLeaf as

well - results are shown in Figure 12. Behaviour is qualitatively similar to that695

32

(a) (b)

8

32

128

512

96 96 96 192 96
96

192 192
96

192 192
192

384 192
192

384 384
192

384 384
384

Ru
nt

im
e

(s
)

16 processes, problem scaling (Titan)

Ref plain Ref checkpoint

OPS plain OPS checkpoint

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

96 96 96 192 96
96

192 192
96

192 192
192

384 192
192

384 384
192

384 384
384

Co
st

 in
 it

er
at

io
ns

Overhead, 16 processes, problem scaling (Titan)

Reference OPS

Figure 13: CloverLeaf 3D performance on 1 node of Titan

of CloverLeaf and OpenSBLI - the key difference being that since the size of

the checkpoint is significantly smaller (32 MB vs 280-310 MB). Thus at larger

scales opening and writing many small files is more costly than collective I/O.

Considering that TeaLeaf is a linear solver, we could not do a weak scaling study

in the traditional sense, because convergence is affected by problem size.700

7.4. Scaling on Titan

Tests very similar to the ones described previously were carried out on

ORNL’s Titan supercomputer as well, which also uses a Lustre storage [45].

The machine consists of nodes with 16-core Opteron 6274 CPUs, and 32 GB of

RAM. Codes were compiled with the Cray compilers (8.2.2), cray-mpich (6.3.0),705

and were run with 16 MPI processes per node.

The noise in measurements on this system has been insignificant (below 3%

of the mean), therefore we do not show the standard deviations. To begin

with, we run scaling tests on a single node, using 16 processes - Figure 13

shows the runtime results; unlike on ARCHER there is very little overhead710

from checkpointing; runtime scales almost perfectly, with OPS being 5-10%

faster overall. The overhead of writing a checkpoint is on the order of one or

less time iterations, with OPS being 30-50% faster on the larger meshes, but

considerably slower on the smallest mesh.

Moving on to large-scale tests, we study CloverLeaf’s strong scaling with a715

3843 problem, and weak scaling with 1923 per node. Figure 14(a) shows strong

33

(b)(a)

8

16

32

64

128

256

512

32 64 128 256 512 1024 2048

Ex
ec

ut
io

n
ti

m
e

(s
)

Core count

Strong scaling (384^3) on Titan

Ref plain Ref checkpoint OPS plain

OPS checkpoint OPS threading OPS MPI I/O

32

64

128

256

512

32 64 128 256 512 1024 2048 4096 8192 16384

Ex
ec

ut
io

n
ti

m
e

(s
)

Core count

Weak scaling (192^3) on Titan

Ref plain Ref checkpoint OPS plain

OPS checkpoint OPS threading OPS MPI I/O

Figure 14: CloverLeaf 3D strong and weak scaling performance on Titan

0.125

0.25

0.5

1

2

4

8

16

32

32 64 128 256 512 1024 2048 4096 8192 16384

Ac
hi
ev
ed
	B
an
dw

id
th

Core	count

Achieved	Bandwidth	Weak	scaling	(192^3)	on	Titan

Ref	checkpoint OPS	checkpoint OPS	MPI	I/O

Figure 15: Achieved bandwidth when weak scaling CloverLeaf 3D on Titan

scaling performance with up to 2048 cores. On Titan, the reference implementa-

tion with its MPI I/O performs worse than the similar implementation in OPS,

but the general trend is the same; at increasing core counts, the overhead of

so many processes accessing the same file is significant. At only 32 cores, the720

overhead of creating a checkpoint with MPI I/O is only 2.3 iterations or 10 sec-

onds, but at 2048 cores it goes to 829 iterations or 82 seconds for the reference

implementation and 1.8 iterations or 8 seconds to 133 iterations or 13 seconds

for the OPS implementation.

Enabling the per-process checkpointing once again proves beneficial, even725

though Titan does not have node-local storage either, with an overhead of 0.2

iterations or 1 seconds at 32 cores to 0.7 iterations or 0.07 seconds at 2048 cores.

The thread-offload implementation of checkpointing does not give significant

improvement compared to the blocking version.

Weak scaling results on CloverLeaf, with 1923 per node are shown in Figure730

34

0

10

20

30

40

50

60

70

80

90

100

32 64 128 256 512 1024 2048 4096 8192 16384

Ex
ec

ut
io

n
ti

m
e

(s
)

Core count

Weak scaling OpenSBLI (128^3) on Titan

OPS plain OPS checkpoint OPS threaded OPS MPI I/O

1

2

4

8

16

32

64

128

256

512

32 64 128 256 512 1024 2048 4096 8192 16384

Ex
ec

ut
io

n
ti

m
e

(s
)

Core count

Strong scaling OpenSBLI (384^3) on Titan

OPS plain OPS checkpoint OPS MPI I/O OPS threaded

(a) (b)

Figure 16: Strong and weak scaling performance with OpenSBLI on Titan

14(b). Once again, the overhead of MPI I/O checkpointing is exponentially in-

creasing with increasing problem size: 2.5 iterations or 1.5 seconds at 32 cores,

up to 591 iterations or 408 seconds at 16384 cores for the reference implemen-

tations - similar figures apply for the OPS implementation as well - to conserve

compute time on Titan, we did not run tests beyond 512 cores for OPS MPI735

I/O. Switching OPS over to using per-process checkpoints, the overhead be-

comes very small; 0.7 iterations or 0.4 seconds at 32 cores, up to 11 iterations

or 7.2 seconds.

We also evaluate scaling performance of OpenSBLI on Titan. For strong

scaling, we use a 3843 mesh - the results are shown in Figure 16(a). Behaviour740

is similar to CloverLeaf; MPI I/O scales the worst, flattening and slowing further

down above 128 cores. Per-process checkpointing has an overhead of 1.35 time

iterations or 0.6 seconds at 1024 cores, which is reduced to 0.54 iterations or

0.24 seconds with the threaded optimisation. By 16384 cores, the time it takes

to checkpoint dominates runtime.745

Weak scaling a 1283 mesh on Titan gives results shown in Figure 16(b) -

the per-process checkpointing approaches have acceptable overhead; at 16384

cores, the blocking version takes 7 seconds to create a checkpoint (7.15 time

iterations), which is reduced to 4.1 seconds with the threaded optimisation (4.2

time iterations). Similarly to CloverLeaf, MPI I/O slows down dramatically.750

35

4

8

16

32

64

128

256

512

1024

24 48 96 192 384 768 1536

Ru
nt
im

e	
(s
)

Number	of	cores

ARCHER	Hybrid	MPI+OpenMP	 Strong	 Scaling
ref	MPI+OpenMP	plain ref	MPI+OpenMP	checkpoint
OPS	MPI+OpenMP	 plain OPS	MPI+OpenMP	 checkpoint
ref	MPI	checkpoint OPS	MPI	checkpoint

Figure 17: Strong scaling performance of CloverLeaf 3D on Archer with MPI+OpenMP

7.5. Performance with MPI+OpenMP

In previous analysis we have inferred that one of the bottlenecks for check-

pointing onto a parallel file system (both for MPI I/O and per-process check-

points), especially on the ARCHER machine, is the opening and closing of files.

To confirm this, we have evaluated performance with a hybrid MPI+OpenMP755

setup, expecting that because of the reduction in the number of processes, this

overhead will decrease. We use the same software setup as described in Section

7.3 (CCE has support for OpenMP 4.5), but instead of 24 MPI processes per

node, we launch 2 MPI processes per node (one per socket), and 12 OpenMP

threads each.760

As Figure 17 shows, when strong scaling, the reference version, with check-

pointing enabled scales much better compared to the plain MPI version, al-

though it does exhibit the same behaviour, only at larger process counts. Simi-

larly, the overheads experienced with the per-process checkpointing of OPS are

greatly reduced, and the variance is significantly less as well.765

8. Without the OPS abstraction

The algorithms and results in this paper so far apply to applications already

using the OPS library, which of course limits their scope. While there are

good reasons for porting to OPS, revolving around portability, productivity,

36

and performance (as discussed in previous papers), in this section we describe770

how our work can be generalised to codes that do not use the OPS abstraction.

Some modifications are definitely required to enable or mirror some of the

techniques described above. While it is trivial for OPS to skip computations

and proceed to the checkpoint when recovering, this would probably require too

many modifications in other codes, and a fast-forward approach is more feasible;775

one has to determine the set of state variables, outside of data arrays, such as

iteration count, simulated time, etc. and simply save/restore them. The true

challenge therefore lies with determining what datasets need to be included in

a checkpoint and which ones may be discarded. Fortunately, there is a cyclical

pattern of execution in most scientific simulations, and most temporary datasets780

are not used across iterations, therefore in many cases the potential locations

for the best checkpoint are relatively few.

The key information needed to decide whether a dataset needs to be saved

is: (1) whether any part of it was read, and (2) whether if was fully written to

(i.e. all the data overwritten). Given this, it is possible to apply the algorithm785

described in Section 4. If these operations are indicated for each and every loop

where a given dataset is accessed, and for every dataset that might potentially

need to be saved, then the algorithm can be used directly. If some datasets are

excluded, then those will not be saved, unless through a separate method they

are marked to be always saved, but excluded from the decision algorithm.790

In many cases, it is not feasible to annotate every computational loop. It

is however also possible to annotate computational regions - indicating how

datasets are being accessed in that region, and making this region an atomic

unit of work from the perspective of the checkpointing algorithm - just as in

case of OPS a parallel loop is an atomic unit of work. Furthermore, it is also795

possible to relax the condition of annotating every computational region, and

marking the beginning and the end of an encompassing region, within which

every computational region is annotated; this will restrict the decision algorithm

to reason about the state of datasets within this larger region - assuming that

all datasets not accessed or not written in this larger region will need to be800

37

saved.

The implementation side is more isolated from the algorithms - HDF5 pro-

vides a simple interface to write hierarchical datasets, either on a per-process

bases as OPS currently does, or collectively using MPI I/O. Given all the in-

formation required about datasets to write them to disk, it is also trivial to805

make a copy of them in memory to support the thread-offload mechanism and

enable non-blocking checkpoint writes. Similarly, in-memory checkpointing can

be supported, through the same mechanism. Libraries such as SCR and FTI

already support some of these.

Integration of such an approach into widely used programming approaches810

- such as OpenMP poses several challenges, primarily because of the lack of

data ownership, as well as side effects of function calls. However, compilers can

determine the type of data access (such as read/write) and thus can help with

the annotation of code regions.

9. Conclusions and Future Work815

In this paper, we have discussed how, through a high level abstractions

approach, it is possible to fully automate near-optimal checkpointing, both in

terms of performance and checkpoint size. This is carried out by keeping track

of how datasets are accessed, and an algorithm that performs analysis of the

state space across a number of computational loops in order to determine which820

datasets can be discarded from the checkpoint. We have presented the OPS API

that enables checkpointing and allows the user to supply further information to

aid the automated decision and APIs that allow the user to explicitly indicate

the location of the checkpoint as well as what datasets have to be saved.

We have developed a number of implementations that carry out multi-level825

checkpointing: using MPI I/O onto the parallel file system, per-process check-

points - saving one checkpoint file for each process, onto node-local storage

(optionally replicating data on multiple nodes) or the parallel file system, and

in-memory checkpointing. Given the high level algorithm, parts of the imple-

38

mentation can in the future be outsourced to libraries such as SCR [35].830

We have evaluated our algorithms on three applications using OPS; Clover-

Leaf 3D, TeaLeaf, and OpenSBLI. CloverLeaf was also compared to a reference

implementation that uses TyphonIO. We have shown that on a single worksta-

tion, the overhead of creating a checkpoint is small - on the order of a single

iteration of the hydro loop or less. Performance on ARCUS-b, a small Intel835

cluster, showed the benefits and scalability of node-local checkpointing, and the

poor scalability of MPI I/O-based checkpointing approaches. Checkpointing

performance on ARCHER showed a significant overhead, especially in the case

of the reference implementation; the cost of checkpointing increased exponen-

tially when strong scaling (instead of decreasing exponentially). OPS scaled840

better, but the poor performance of the parallel file system still affected both

strong and weak scaling. We have shown that using the thread-offload method,

we can hide much of the overhead of writing files to disk. Finally, scaling on

Titan has shown that even with a fast parallel file system, per-process check-

pointing can be beneficial, because it avoids the overhead involved in writing to845

a single file with MPI I/O.

Acknowledgements

The OPS project is funded by the UK Engineering and Physical Sciences

Research Council projects EP/K038494/1, EP/K038486/1, EP/K038451/1 and

EP/K038567/1 on “Future-proof massively-parallel execution of multi-block ap-850

plications” and EP/J010553/1 “Software for Emerging Architectures” (ASEArch)

project. Cloverleaf development is supported by the UK Atomic Weapons

Establishment under grants CDK0660 (The Production of Predictive Mod-

els for Future Computing Requirements), E9R00160, and CDK0724, and also

the Royal Society through their Industry Fellowship Scheme (IF090020/AM).855

István Reguly was supported by the János Bólyai Research Scholarship of

the Hungarian Academy of Sciences. Project no. PD 124905 has been im-

plemented with the support provided from the National Research, Develop-

39

ment and Innovation Fund of Hungary, financed under the PD 17 funding

scheme. The authors would like to acknowledge the use of the University of860

Oxford Advanced Research Computing (ARC) facility in carrying out this work.

http://dx.doi.org/10.5281/zenodo.22558. An award of computer time was

provided by the Innovative and Novel Computational Impact on Theory and

Experiment (INCITE) program. This research used resources of the Oak Ridge

Leadership Computing Facility at the Oak Ridge National Laboratory, which865

is supported by the Office of Science of the U.S. Department of Energy under

Contract No. DE-AC05-00OR22725. This research used the resources of the

ARCHER UK National Supercomputing Service (http://www.archer.ac.uk).

References

[1] R. Dennard, F. Gaensslen, H.-N. Yu, V. Leo Rideovt, E. Bassous, A. R.870

Leblanc, Design of ion-implanted MOSFET’s with very small physical di-

mensions, Solid-State Circuits Society Newsletter, IEEE 12 (1) (2007) 38–

50. doi:10.1109/N-SSC.2007.4785543.

[2] J. Dongarra, Fault-tolerance techniques for high-performance comput-

ing, in: Y. R. T Herault (Ed.), Fault-Tolerance Techniques for High-875

Performance Computing, Springer, 2015, pp. 1–66.

[3] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, M. Snir, Toward

exascale resilience, Int. J. High Perform. Comput. Appl. 23 (4) (2009) 374–

388. doi:10.1177/1094342009347767.

URL http://dx.doi.org/10.1177/1094342009347767880

[4] F. Cappello, G. Al, W. Gropp, S. Kale, B. Kramer, M. Snir, Toward ex-

ascale resilience: 2014 update, Supercomput. Front. Innov.: Int. J. 1 (1)

(2014) 5–28. doi:10.14529/jsfi140101.

URL http://dx.doi.org/10.14529/jsfi140101

[5] Top500, The TaihuLight Supercomputer,885

40

http://dx.doi.org/10.5281/zenodo.22558
http://www.archer.ac.uk
http://dx.doi.org/10.1109/N-SSC.2007.4785543
http://dx.doi.org/10.1177/1094342009347767
http://dx.doi.org/10.1177/1094342009347767
http://dx.doi.org/10.1177/1094342009347767
http://dx.doi.org/10.14529/jsfi140101
http://dx.doi.org/10.14529/jsfi140101
http://dx.doi.org/10.14529/jsfi140101

https://www.top500.org/resources/top-systems/sunway-taihulight-

national-supercom puting-center-i/ (2018).

[6] The Next Platform, Argonne Hints at Future Architecture of Aurora Ex-

ascale System, https://www.nextplatform.com/2018/03/19/argonne-hints-

at-future-architecture-of- aurora-exascale-system/ (2018).890

[7] A. A. Hwang, I. A. Stefanovici, B. Schroeder, Cosmic rays don’t strike

twice: Understanding the nature of DRAM errors and the implications

for system design, SIGPLAN Not. 47 (4) (2012) 111–122. doi:10.1145/

2248487.2150989.

URL http://doi.acm.org/10.1145/2248487.2150989895

[8] C. D. Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop,

W. Kramer, Lessons Learned from the Analysis of System Failures at

Petascale: The Case of Blue Waters, in: 2014 44th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks, 2014, pp.

610–621. doi:10.1109/DSN.2014.62.900

[9] E. Meneses, X. Ni, T. Jones, D. Maxwell, Analyzing the interplay of failures

and workload on a leadership-class supercomputer, in: CUG 2015, 2015,

pp. 1–10.

[10] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrientos,

E. Elsen, F. Ham, A. Aiken, K. Duraisamy, E. Darve, J. Alonso, P. Han-905

rahan, Liszt: a domain specific language for building portable mesh-based

PDE solvers, in: Proceedings of 2011 International Conference for High

Performance Computing, Networking, Storage and Analysis, SC ’11, ACM,

New York, NY, USA, 2011, pp. 9:1–9:12.

[11] F. P. Russell, P. H. J. Kelly, Optimized code generation for finite element910

local assembly using symbolic manipulation, ACM Trans. Math. Softw.

39 (4) (2013) 26:1–26:29. doi:10.1145/2491491.2491496.

URL http://doi.acm.org/10.1145/2491491.2491496

41

http://doi.acm.org/10.1145/2248487.2150989
http://dx.doi.org/10.1145/2248487.2150989
http://doi.acm.org/10.1145/2248487.2150989
http://dx.doi.org/10.1109/DSN.2014.62
http://doi.acm.org/10.1145/2491491.2491496
http://dx.doi.org/10.1145/2491491.2491496
http://doi.acm.org/10.1145/2491491.2491496

[12] M. B. Giles, G. R. Mudalige, Z. Sharif, G. R. Markall, P. H. J. Kelly,

Performance analysis and optimization of the OP2 framework on many-915

core architectures, The Computer Journal 55 (2) (2012) 168–180.

[13] I. Z. Reguly, G. R. Mudalige, M. B. Giles, D. Curran, S. McIntosh-

Smith, The OPS domain specific abstraction for multi-block structured

grid computations, in: Proceedings of the Fourth International Workshop

on Domain-Specific Languages and High-Level Frameworks for High Per-920

formance Computing, WOLFHPC ’14, IEEE Press, Piscataway, NJ, USA,

2014, pp. 58–67. doi:10.1109/WOLFHPC.2014.7.

URL http://dx.doi.org/10.1109/WOLFHPC.2014.7

[14] I. Z. Reguly, G. R. Mudalige, M. B. Giles, Design and development of

domain specific active libraries with proxy applications, in: Cluster Com-925

puting (CLUSTER), 2015 IEEE International Conference on, 2015, pp.

738–745. doi:10.1109/CLUSTER.2015.128.

[15] G. Mudalige, I. Reguly, M. Giles, A. Mallinson, W. Gaudin, J. Herd-

man, Performance analysis of a high-level abstractions-based hydrocode

on future computing systems, in: S. A. Jarvis, S. A. Wright, S. D.930

Hammond (Eds.), High Performance Computing Systems. Performance

Modeling, Benchmarking, and Simulation, Vol. 8966 of Lecture Notes in

Computer Science, Springer International Publishing, 2015, pp. 85–104.

doi:10.1007/978-3-319-17248-4_5.

URL http://dx.doi.org/10.1007/978-3-319-17248-4_5935

[16] OPS Library, https://github.com/OP-DSL/OPS (2014).

[17] H. S. Paul, A. Gupta, A. Sharma, Finding a suitable check-

point and recovery protocol for a distributed application, Journal

of Parallel and Distributed Computing 66 (5) (2006) 732 – 749.

doi:http://dx.doi.org/10.1016/j.jpdc.2005.12.008.940

URL http://www.sciencedirect.com/science/article/pii/

S0743731505002662

42

http://dx.doi.org/10.1109/WOLFHPC.2014.7
http://dx.doi.org/10.1109/WOLFHPC.2014.7
http://dx.doi.org/10.1109/WOLFHPC.2014.7
http://dx.doi.org/10.1109/CLUSTER.2015.128
http://dx.doi.org/10.1007/978-3-319-17248-4_5
http://dx.doi.org/10.1007/978-3-319-17248-4_5
http://dx.doi.org/10.1007/978-3-319-17248-4_5
https://github.com/OP-DSL/OPS
http://www.sciencedirect.com/science/article/pii/S0743731505002662
http://dx.doi.org/http://dx.doi.org/10.1016/j.jpdc.2005.12.008
http://www.sciencedirect.com/science/article/pii/S0743731505002662

[18] G. Aupy, Y. Robert, F. Vivien, D. Zaidouni, Checkpointing algorithms

and fault prediction, Journal of Parallel and Distributed Computing 74 (2)

(2014) 2048 – 2064. doi:http://dx.doi.org/10.1016/j.jpdc.2013.10.945

010.

URL http://www.sciencedirect.com/science/article/pii/

S0743731513002219

[19] A. Gainaru, F. Cappello, M. Snir, W. Kramer, Failure prediction

for HPC systems and applications: Current situation and open is-950

sues, International Journal of High Performance Computing Applica-

tionsarXiv:http://hpc.sagepub.com/content/early/2013/07/02/

1094342013488258.full.pdf+html, doi:10.1177/1094342013488258.

URL http://hpc.sagepub.com/content/early/2013/07/02/

1094342013488258.abstract955

[20] J. W. Young, A first order approximation to the optimum checkpoint inter-

val, Commun. ACM 17 (9) (1974) 530–531. doi:10.1145/361147.361115.

URL http://doi.acm.org/10.1145/361147.361115

[21] C. C. J. Li, W. K. Fuchs, CATCH-compiler-assisted techniques for check-

pointing, in: [1990] Digest of Papers. Fault-Tolerant Computing: 20th In-960

ternational Symposium, 1990, pp. 74–81. doi:10.1109/FTCS.1990.89337.

[22] G. Kingsley, M. Beck, J. S. Plank, Compiler-assisted checkpoint optimiza-

tion using suif, in: First SUIF compiler workshop, Citeseer, 1995, pp. 1–16.

[23] J. S. Plank, M. Beck, G. Kingsley, Compiler-assisted memory exclusion for

fast checkpointing, IEEE TECHNICAL COMMITTEE ON OPERATING965

SYSTEMS AND APPLICATION ENVIRONMENTS 7 (1995) 62–67.

[24] T. Z. Islam, K. Mohror, S. Bagchi, A. Moody, B. R. De Supinski, R. Eigen-

mann, McrEngine: a scalable checkpointing system using data-aware ag-

gregation and compression, in: High Performance Computing, Networking,

Storage and Analysis (SC), 2012 International Conference for, IEEE, 2012,970

pp. 1–11.

43

http://www.sciencedirect.com/science/article/pii/S0743731513002219
http://dx.doi.org/http://dx.doi.org/10.1016/j.jpdc.2013.10.010
http://www.sciencedirect.com/science/article/pii/S0743731513002219
http://hpc.sagepub.com/content/early/2013/07/02/1094342013488258.abstract
http://arxiv.org/abs/http://hpc.sagepub.com/content/early/2013/07/02/1094342013488258.full.pdf+html
http://dx.doi.org/10.1177/1094342013488258
http://hpc.sagepub.com/content/early/2013/07/02/1094342013488258.abstract
http://doi.acm.org/10.1145/361147.361115
http://dx.doi.org/10.1145/361147.361115
http://doi.acm.org/10.1145/361147.361115
http://dx.doi.org/10.1109/FTCS.1990.89337

[25] P. H. Hargrove, J. C. Duell, Berkeley lab checkpoint/restart (BLCR) for

Linux clusters, Journal of Physics: Conference Series 46 (1) (2006) 494.

URL http://stacks.iop.org/1742-6596/46/i=1/a=067

[26] M. S. Bouguerra, D. Kondo, D. Trystram, On the scheduling of checkpoints975

in desktop grids, in: 2011 11th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing, 2011, pp. 305–313. doi:10.1109/

CCGrid.2011.63.

[27] J. Mehnert-Spahn, T. Ropars, M. Schoettner, C. Morin, The architecture

of the XtreemOS grid checkpointing service, in: H. Sips, D. Epema, H.-X.980

Lin (Eds.), Euro-Par 2009 Parallel Processing, Springer Berlin Heidelberg,

Berlin, Heidelberg, 2009, pp. 429–441.

[28] G. Bronevetsky, D. Marques, K. Pingali, P. Szwed, M. Schulz, Application-

level checkpointing for shared memory programs, SIGOPS Oper. Syst. Rev.

38 (5) (2004) 235–247. doi:10.1145/1037949.1024421.985

URL http://doi.acm.org/10.1145/1037949.1024421

[29] A. Chien, P. Balaji, N. Dun, A. Fang, H. Fujita, K. Iskra, Z. Ruben-

stein, Z. Zheng, J. Hammond, I. Laguna, D. Richards, A. Dubey, B. van

Straalen, M. Hoemmen, M. Heroux, K. Teranishi, A. Siegel, Exploring

versioned distributed arrays for resilience in scientific applications: global990

view resilience, The International Journal of High Performance Computing

Applications 31 (6) (2017) 564–590. arXiv:https://doi.org/10.1177/

1094342016664796, doi:10.1177/1094342016664796.

URL https://doi.org/10.1177/1094342016664796

[30] T. Herault, Y. Robert, Fault-tolerance techniques for high-performance995

computing, Springer, 2016.

[31] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, E. Aprà,

Advances, applications and performance of the global arrays shared mem-

ory programming toolkit, Int. J. High Perform. Comput. Appl. 20 (2) (2006)

44

http://stacks.iop.org/1742-6596/46/i=1/a=067
http://stacks.iop.org/1742-6596/46/i=1/a=067
http://dx.doi.org/10.1109/CCGrid.2011.63
http://doi.acm.org/10.1145/1037949.1024421
http://dx.doi.org/10.1145/1037949.1024421
http://doi.acm.org/10.1145/1037949.1024421
https://doi.org/10.1177/1094342016664796
http://arxiv.org/abs/https://doi.org/10.1177/1094342016664796
http://dx.doi.org/10.1177/1094342016664796
https://doi.org/10.1177/1094342016664796
http://dx.doi.org/10.1177/1094342006064503

203–231. doi:10.1177/1094342006064503.1000

URL http://dx.doi.org/10.1177/1094342006064503

[32] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,

T. Chandra, A. Fikes, R. E. Gruber, Bigtable: A distributed storage system

for structured data, ACM Trans. Comput. Syst. 26 (2) (2008) 4:1–4:26.

doi:10.1145/1365815.1365816.1005

URL http://doi.acm.org/10.1145/1365815.1365816

[33] G. Zheng, X. Ni, L. V. Kalé, A scalable double in-memory checkpoint and

restart scheme towards exascale, in: IEEE/IFIP International Conference

on Dependable Systems and Networks Workshops (DSN 2012), 2012, pp.

1–6. doi:10.1109/DSNW.2012.6264677.1010

[34] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello, N. Maruyama,

S. Matsuoka, FTI: High performance fault tolerance interface for hybrid

systems, in: Proceedings of 2011 International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis, SC ’11, ACM, New

York, NY, USA, 2011, pp. 32:1–32:32. doi:10.1145/2063384.2063427.1015

URL http://doi.acm.org/10.1145/2063384.2063427

[35] A. Moody, G. Bronevetsky, K. Mohror, B. R. d. Supinski, Design, modeling,

and evaluation of a scalable multi-level checkpointing system, in: Proceed-

ings of the 2010 ACM/IEEE International Conference for High Performance

Computing, Networking, Storage and Analysis, SC ’10, IEEE Computer So-1020

ciety, Washington, DC, USA, 2010, pp. 1–11. doi:10.1109/SC.2010.18.

URL http://dx.doi.org/10.1109/SC.2010.18

[36] G. Zheng, C. Huang, L. V. Kalé, Performance evaluation of automatic

checkpoint-based fault tolerance for AMPI and Charm++, SIGOPS Oper.

Syst. Rev. 40 (2) (2006) 90–99. doi:10.1145/1131322.1131340.1025

URL http://doi.acm.org/10.1145/1131322.1131340

[37] The HDF Group, Hierarchical Data Format, version 5,

http://www.hdfgroup.org/HDF5/ (1997-NNNN).

45

http://dx.doi.org/10.1177/1094342006064503
http://dx.doi.org/10.1177/1094342006064503
http://doi.acm.org/10.1145/1365815.1365816
http://dx.doi.org/10.1145/1365815.1365816
http://doi.acm.org/10.1145/1365815.1365816
http://dx.doi.org/10.1109/DSNW.2012.6264677
http://doi.acm.org/10.1145/2063384.2063427
http://dx.doi.org/10.1145/2063384.2063427
http://doi.acm.org/10.1145/2063384.2063427
http://dx.doi.org/10.1109/SC.2010.18
http://dx.doi.org/10.1109/SC.2010.18
http://dx.doi.org/10.1109/SC.2010.18
http://doi.acm.org/10.1145/1131322.1131340
http://dx.doi.org/10.1145/1131322.1131340
http://doi.acm.org/10.1145/1131322.1131340

[38] L. W. Howes, A. Lokhmotov, A. F. Donaldson, P. H. J. Kelly, Deriving

efficient data movement from decoupled access/execute specifications, in:1030

Proceedings of the 4th International Conference on High Performance Em-

bedded Architectures and Compilers, HiPEAC ’09, Springer-Verlag, 2009,

pp. 168–182.

[39] T. Haerder, A. Reuter, Principles of transaction-oriented database recovery,

ACM Computing Surveys (CSUR) 15 (4) (1983) 287–317.1035

[40] AWE cloverleaf, https://github.com/UK-MAC (2014).

[41] C. T. Jacobs, S. P. Jammy, N. D. Sandham, OpenSBLI: A framework for

the automated derivation and parallel execution of finite difference solvers

on a range of computer architectures, Journal of Computational Science 18

(2017) 12 – 23. doi:https://doi.org/10.1016/j.jocs.2016.11.001.1040

URL http://www.sciencedirect.com/science/article/pii/

S187775031630299X

[42] M. Martineau, S. McIntosh-Smith, W. Gaudin, Assessing the performance

portability of modern parallel programming models using TeaLeaf, Con-

currency and Computation: Practice and Experience 29 (15) (2017) e4117,1045

e4117 cpe.4117. arXiv:https://onlinelibrary.wiley.com/doi/pdf/

10.1002/cpe.4117, doi:10.1002/cpe.4117.

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4117

[43] AWE TyphonIO, https://github.com/UK-MAC/typhonio (2014).

[44] E. Touber, N. D. Sandham, Large-eddy simulation of low-frequency un-1050

steadiness in a turbulent shock-induced separation bubble, Theoretical

and Computational Fluid Dynamics 23 (2) (2009) 79–107. doi:10.1007/

s00162-009-0103-z.

URL https://doi.org/10.1007/s00162-009-0103-z

[45] S. Oral, D. A. Dillow, D. Fuller, J. Hill, D. Leverman, S. S. Vazhkudai,1055

F. Wang, Y. Kim, J. Rogers, J. Simmons, et al., OLCF’s 1 TB/s, next-

46

https://github.com/UK-MAC
http://www.sciencedirect.com/science/article/pii/S187775031630299X
http://dx.doi.org/https://doi.org/10.1016/j.jocs.2016.11.001
http://www.sciencedirect.com/science/article/pii/S187775031630299X
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4117
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4117
http://dx.doi.org/10.1002/cpe.4117
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4117
https://github.com/UK-MAC/typhonio
https://doi.org/10.1007/s00162-009-0103-z
http://dx.doi.org/10.1007/s00162-009-0103-z
https://doi.org/10.1007/s00162-009-0103-z

generation lustre file system, in: Proceedings of Cray User Group Confer-

ence (CUG 2013), 2013, pp. 1–12.

47

