Weighted automata and Identities

Laure Daviaud
University of Warwick

ANR Delta, October 2017
A natural and fundamental question:

\[A \mathcal{A} \mathcal{A} = ? \]

Which pairs of inputs can be distinguished by a given computational model?
A natural and fundamental question:

Which pairs of inputs can be distinguished by a given computational model?
Given a class C of weighted automata:

1. For all $u \neq v$, is there $A \in C$ which distinguishes u and v?

2. Is there $A \in C$ which distinguishes all pairs $u \neq v$?

3. Minimal size to distinguish two given input words?
Given a class C of weighted automata:

1. For all $u \neq v$, is there $A \in C$ which distinguishes u and v?
Given a class C of weighted automata:

1. For all $u \neq v$, is there $A \in C$ which distinguishes u and v?

2. Is there $A \in C$ which distinguishes all pairs $u \neq v$?
Given a class C of weighted automata:

1. For all $u \neq v$, is there $A \in C$ which distinguishes u and v?
2. Is there $A \in C$ which distinguishes all pairs $u \neq v$?
3. Minimal size to distinguish two given input words?
Boolean Automata

$[\mathcal{A}] : A^* \rightarrow \{\text{Acc, Rej}\}$

For all $u \neq v$, is there $A \in C$ which distinguishes u and v?

→ Yes

Is there $A \in C$ which distinguishes all pairs $u \neq v$?

→ No

Minimal size to distinguish two given input words?

→ Profinite theory...
For all $u \neq v$, is there $\mathcal{A} \in \mathcal{C}$ which distinguishes u and v?

→ Yes
Boolean Automata

\[[A] : A^* \rightarrow \{ \text{Acc, Rej} \} \]

1. For all \(u \neq v \), is there \(A \in C \) which distinguishes \(u \) and \(v \)?
 \(\rightarrow \) Yes

2. Is there \(A \in C \) which distinguishes all pairs \(u \neq v \)?
 \(\rightarrow \) No
Boolean Automata

\[[A] : A^* \rightarrow \{\text{Acc, Rej}\} \]

1. For all $u \neq v$, is there $A \in C$ which distinguishes u and v?
 → Yes

2. Is there $A \in C$ which distinguishes all pairs $u \neq v$?
 → No

3. Minimal size to distinguish two given input words?
 → Profinite theory...
Weighted automata \([\text{Schützenberger}]\)

\([\mathcal{A}] : A^* \rightarrow S\)
Weighted automata \([\mathcal{A}] : A^* \rightarrow S\)

Semiring \((S, \oplus, \otimes)\): transitions are weighted by elements of \(S\)
Weighted automata [Schützenberger]

\[[A] : A^* \rightarrow S \]

Semiring \((S, \oplus, \otimes)\): transitions are weighted by elements of \(S\)

Paths: \(\otimes\)
Non-determinism: \(\oplus\)
Weighted automata \[\textbf{[Schützenberger]}\]

\[\mathcal{A} : A^* \rightarrow S\]

Semiring \((S, \oplus, \otimes)\): transitions are weighted by elements of \(S\)

Paths: \(\otimes\)

Non-determinism: \(\oplus\)

\[\mathcal{A} : w \mapsto \bigoplus_{\rho \text{ accepting path labelled by } w} (\rho_1 \otimes \rho_2 \otimes \cdots \otimes \rho_{|w|})\]
Automata weighted over \((\mathbb{R}, +, \times)\)

\[\mathcal{A} : A^* \rightarrow \mathbb{R} \]

An example with \(A = \{0, 1\}\)

\[
\begin{array}{c}
0, 1 : 2 \\
\end{array}
\]

\[
\begin{array}{c}
0 : 0 \\
1 : 1 \\
\end{array}
\]

\[
\begin{array}{c}
0, 1 : 1 \\
\end{array}
\]

For all \(u \neq v\), is there \(A \in \mathcal{C}\) which distinguishes \(u\) and \(v\)?

\(\rightarrow\) Yes

Is there \(A \in \mathcal{C}\) which distinguishes all pairs \(u \neq v\)?

\(\rightarrow\) Yes

Minimal size to distinguish two given input words?

1 or 2 states
Automata weighted over \((\mathbb{R}, +, \times)\)

\[A^* \rightarrow \mathbb{R} \]

An example with \(A = \{0, 1\} \)

\[
\begin{align*}
0, 1 : 2 & \quad 0 : 0 \\
0, 1 : 1 & \quad 1 : 1
\end{align*}
\]

100101 \mapsto 2^0 + 0 + 0 + 2^3 + 0 + 2^5
Automata weighted over \((\mathbb{R}, +, \times)\)

\([\mathcal{A}] : A^* \rightarrow \mathbb{R}\)

An example with \(A = \{0, 1\}\)

100101 \mapsto 2^0 + 0 + 0 + 2^3 + 0 + 2^5

1 For all \(u \neq v\), is there \(\mathcal{A} \in \mathcal{C}\) which distinguishes \(u\) and \(v\)?
\rightarrow Yes
Automata weighted over \((\mathbb{R}, +, \times)\)

\[[\mathcal{A}] : A^* \to \mathbb{R} \]

An example with \(A = \{0, 1\}\)

\[
\begin{align*}
0, 1 : 2 & \quad 0, 1 : 1 \\
0 : 0 & \quad 1 : 1
\end{align*}
\]

\(100101 \mapsto 2^0 + 0 + 0 + 2^3 + 0 + 2^5\)

1. For all \(u \neq v\), is there \(\mathcal{A} \in \mathcal{C}\) which distinguishes \(u\) and \(v\)?
 → Yes

2. Is there \(\mathcal{A} \in \mathcal{C}\) which distinguishes all pairs \(u \neq v\)?
 → Yes
Automata weighted over \((\mathbb{R}, +, \times)\)

\[[\mathcal{A}] : A^* \to \mathbb{R} \]

An example with \(A = \{0, 1\}\)

\[
\begin{align*}
0, 1 : 2 & \\
0 & : 0 \\
1 & : 1
\end{align*}
\]

\[
100101 \mapsto 2^0 + 0 + 0 + 2^3 + 0 + 2^5
\]

1. For all \(u \neq v\), is there \(\mathcal{A} \in \mathcal{C}\) which distinguishes \(u\) and \(v\)?
 \(\rightarrow\) Yes

2. Is there \(\mathcal{A} \in \mathcal{C}\) which distinguishes all pairs \(u \neq v\)?
 \(\rightarrow\) Yes

3. Minimal size to distinguish two given input words?
 \(\rightarrow\) 1 or 2 states
Max-plus automata

Semiring \((\mathbb{N} \cup \{-\infty\}, \text{max}, +)\)

\([A] : A^* \rightarrow \mathbb{N} \cup \{-\infty\}\)

\([A] : w \mapsto \max_{\rho \text{ accepting path labelled by } w} (\rho_1 + \rho_2 + \cdots + \rho_{|w|})\)
Max-plus automata

Semiring \((\mathbb{N} \cup \{-\infty\}, \max, +)\)

\[
[A] : A^* \rightarrow \mathbb{N} \cup \{-\infty\}
\]

\[
[A] : w \mapsto \max_{\text{\rho accepting path labelled by } w} (\rho_1 + \rho_2 + \cdots + \rho_{|w|})
\]

1. For all \(u \neq v\), is there \(A \in \mathcal{C}\) which distinguishes \(u\) and \(v\)?
 → Yes
Max-plus automata

Semiring \((\mathbb{N} \cup \{-\infty\}, \max, +)\)

\([A] : A^* \rightarrow \mathbb{N} \cup \{-\infty\}\)

\([A] : w \mapsto \max_{\rho \text{ accepting path labelled by } w} (\rho_1 + \rho_2 + \cdots + \rho_{|w|})\)

1. For all \(u \neq v\), is there \(A \in C\) which distinguishes \(u\) and \(v\)?
 → Yes

2. Is there \(A \in C\) which distinguishes all pairs \(u \neq v\)?
 → No
Max-plus automata

Semiring \((\mathbb{N} \cup \{-\infty\}, \max, +)\)

\(\mathcal{A} : A^* \rightarrow \mathbb{N} \cup \{-\infty\}\)

\(\mathcal{A} : w \mapsto \max_{\rho \text{ accepting path labelled by } w} (\rho_1 + \rho_2 + \cdots + \rho_{|w|})\)

1. For all \(u \neq v\), is there \(\mathcal{A} \in \mathcal{C}\) which distinguishes \(u\) and \(v\)?
 \(\rightarrow\) Yes

2. Is there \(\mathcal{A} \in \mathcal{C}\) which distinguishes all pairs \(u \neq v\)?
 \(\rightarrow\) No

3. Minimal size to distinguish two given input words?
 \(\rightarrow\) ???????
Given a positive integer n, are there $u \neq v$ such that for all max-plus automata A with at most n states:

$$[A](u) = [A](v)$$

?
If $n = 1$.

$$A = \{a, b\}$$
If $n = 1$

$A = \{a, b\}$

$w \mapsto \alpha|w|_a + \beta|w|_b$
If $n = 1$

$A = \{a, b\}$

Max-plus automata with one state can distinguish words with different contents (in particular different lengths), and only these ones.
If \(n = 2 \) or \(n = 3 \)

There exist pairs of distinct words with the same values for all automata with at most 3 states...

But we do not know much more.
If $n = 2$ or $n = 3$

There exist pairs of distinct words with the same values for all automata with at most 3 states...

But we do not know much more.

2 states [Izhakian, Margolis] - words of length 20
If $n = 2$ or $n = 3$

There exist pairs of distinct words with the same values for all automata with at most 3 states...
But we do not know much more.

2 states [Izhakian, Margolis] - words of length 20

3 states [Shitov] - words of length 1795308
Theorem [Izhakian]

For all n, there exist a pair of distinct words $u \neq v$ such that for all triangular automata A with at most n states,

$$[A](u) = [A](v)$$
Theorem [Izhakian]

For all n, there exist a pair of distinct words $u \neq v$ such that for all triangular automata A with at most n states,

$$[[A](u) = [[A](v)$$
Let’s go back to automata with 2 states

\[A = \{a, b\} \]
Let’s go back to automata with 2 states

\[A = \{a, b\} \]

First attempt: Restrict the class of automata we have to consider
Let’s go back to automata with 2 states

\[A = \{a, b\} \]

First attempt: Restrict the class of automata we have to consider

\[\mathbb{R} \rightarrow \mathbb{Q} \rightarrow \mathbb{Z} \rightarrow \mathbb{N} \]
Let’s go back to automata with 2 states

\[A = \{a, b\} \]

First attempt: Restrict the class of automata we have to consider

- \(\mathbb{R} \rightarrow \mathbb{Q} \rightarrow \mathbb{Z} \rightarrow \mathbb{N}\)
- Complete automaton
Let’s go back to automata with 2 states

\[A = \{a, b\} \]

First attempt: Restrict the class of automata we have to consider

- \(\mathbb{R} \rightarrow \mathbb{Q} \rightarrow \mathbb{Z} \rightarrow \mathbb{N} \)
- Complete automaton
- Only one initial and one final states
Let’s go back to automata with 2 states

\[A = \{a, b\} \]

First attempt: Restrict the class of automata we have to consider

- \(\mathbb{R} \rightarrow \mathbb{Q} \rightarrow \mathbb{Z} \rightarrow \mathbb{N} \)
- Complete automaton
- Only one initial and one final states
- Reduce the number of parameters
Let’s go back to automata with 2 states

Second attempt: Give a list of criteria which can be checked

There are two pairs of distinct words of minimal length which cannot be distinguished by an max-plus automata with two states:

\[
\begin{align*}
\text{a}_2 \text{b}_3 \text{a}_3 \text{ba}_2 = & \text{a}_2 \text{b}_3 \text{ab}_3 \text{a}_4 \text{b}_3 \text{a}_2 \\
\text{ab}_3 \text{a}_4 \text{b}_3 \text{a}_2 = & \text{ab}_3 \text{a}_2 \text{b}_3 \text{a}_2 \\
\end{align*}
\]

Eliminate the shortest pairs by using the list of criteria

Checking the pairs directly using the restrictions
Let’s go back to automata with 2 states

Second attempt: Give a list of criteria which can be checked

- Content, length
Let's go back to automata with 2 states

Second attempt: Give a list of criteria which can be checked

- Content, length
- ...

Theorem [D., Johnson] - counter-example to a conjecture of Izhakian

There are two pairs of distinct words of minimal length which cannot be distinguished by an max-plus automata with two states:

\begin{align*}
\text{a}_2 \text{b}_3 \\
\text{a}_3 \text{bab}_2 \text{a}_3 = \\
\text{ab}_3 \text{a}_4 \text{baba}_2 \text{b}_3 \text{a}_4 \\
= \\
\text{ab}_3 \text{a}_2 \text{baba}_4 \text{b}_3 \text{a}_4
\end{align*}
Let’s go back to automata with 2 states

Second attempt: Give a list of criteria which can be checked

- Content, length
- ...

Theorem [D., Johnson] - counter-example to a conjecture of Izhakian

There are two pairs of distinct words of minimal length which cannot be distinguished by any max-plus automata with two states:

\[a^2 b^3 a^3 babab^3 a^2 = a^2 b^3 ababa^3 b^3 a^2 \] and \[ab^3 a^4 baba^2 b^3 a = ab^3 a^2 baba^4 b^3 a \]
Second attempt: Give a list of criteria which can be checked

- Content, length
- ...

Theorem [D., Johnson] - counter-example to a conjecture of Izhakian

There are two pairs of distinct words of minimal length which cannot be distinguished by any max-plus automata with two states:

\[a^2 b^3 a^3 babab^3 a^2 = a^2 b^3 ababa^3 b^3 a^2 \] and \[ab^3 a^4 baba^2 b^3 a = ab^3 a^2 baba^4 b^3 a \]

\[\rightarrow \] Eliminate the shortest pairs by using the list of criteria
\[\rightarrow \] Checking the pairs directly using the restrictions
A closer look at the list of criteria
A closer look at the list of criteria

- First and last blocks
A closer look at the list of criteria

- First and last blocks
- Bloc-permutation

![Transition diagram with states and transitions](attachment:transition_diagram.png)

- `a`: 0
- `b`: 0
- `b`: \(-m\)
- `a`: 1

"Counting modulo 2" criteria

Triangular automata with two states
A closer look at the list of criteria

- First and last blocks
- Bloc-permutation
- “Counting modulo 2” criteria

Number of a’s after an even number of b’s

![Diagram](image)
A closer look at the list of criteria

- First and last blocks
- Bloc-permutation
- “Counting modulo 2” criteria
- Triangular automata with two states
And now?
Ultimate (very far away) goal:
Characterize all the identities holding for the class of max-plus
automata with at most n states, for all n...
And now?

Ultimate (very far away) goal:
Characterize all the identities holding for the class of max-plus automata with at most \(n \) states, for all \(n \)...

- Is there a strict subset of max-plus automata containing all their computational power?
And now?

Ultimate (very far away) goal:
Characterize all the identities holding for the class of max-plus automata with at most n states, for all n...

- Is there a strict subset of max-plus automata containing all their computational power?
- Link with decidability/undecidability of the equivalence problem?