Approximate comparison of distance automata

Thomas Colcombet
Laure Daviaud

LIAFA, CNRS

Highlights of logic, games and automata, Paris 2013
Distance automata

Distance automaton: Non deterministic finite automaton for which each transition is also labelled by a non-negative integer called the weight of the transition.

\[(\mathbb{A}, Q, I, T, E) \text{ with } E \subseteq (Q \times \mathbb{A} \times \mathbb{N} \times Q)\]

![Diagram of a distance automaton](image)
Distance automata

Distance automaton: Non deterministic finite automaton for which each transition is also labelled by a non-negative integer called the weight of the transition.

\[(A, Q, I, T, E) \text{ with } E \subseteq (Q \times A \times \mathbb{N} \times Q)\]

Weight of a run:
sum of the weights of the transitions

Diagram:
- **q1**: Transition on 'a' labeled with 0 and transition on 'b' labeled with 1.
- **q2**: Transitions on 'a' and 'b' both labeled with 0.
- **q3**: Transition on 'a' labeled with 1.
- **q4**: Transition on 'a' and 'b' both labeled with 0.

Computed function:
\[A^* \rightarrow \mathbb{N} \cup \{+\infty\}\]
\[w \mapsto \text{minimum of the weights of the runs labeled by } w \text{ going from an initial state to a final state} (+\infty \text{ if no such run})\]
Distance automaton: Non deterministic finite automaton for which each transition is also labelled by a non-negative integer called the weight of the transition.

\[(\mathbb{A}, Q, I, T, E) \text{ with } E \subseteq (Q \times \mathbb{A} \times \mathbb{N} \times Q)\]

Weight of a run: sum of the weights of the transitions

Computed function:
\[A^* \rightarrow \mathbb{N} \cup \{+\infty\}\]
\[w \mapsto \text{minimum of the weights of the runs labelled by } w \text{ going from an initial state to a final state } (+\infty \text{ if no such run})\]
Distance automata

q_1

$q_2\xrightarrow{b:0} q_3\xrightarrow{b:0} q_4$

$q_1\xrightarrow{a:0} \xrightarrow{b:1}$

$q_2\xrightarrow{a,b:0}$

$q_3\xrightarrow{a:1}$

$q_4\xrightarrow{a,b:0}$
Distance automata

\[
a^{n_0} b a^{n_1} b \cdots b a^{n_k} \mapsto \min(n_0, n_1, \ldots, n_k, k)
\]
Decision problems on comparison

f, g computed by distance automata: $A^* \rightarrow \mathbb{N} \cup \{+\infty\}$

$f \leq g$ if for all words w, $f(w) \leq g(w)$
Decision problems on comparison

f, g computed by distance automata: $A^* \rightarrow \mathbb{N} \cup \{+\infty\}$

$f \leq g$ if for all words w, $f(w) \leq g(w)$

Undecidable [Krob, 92]

Given f, g computed by distance automata, is $f \leq g$?

Decidable [Colcombet, 09]

Is there a polynomial P s.t $f \leq P \circ g$?

(context of cost functions)

Generalisation of results by Hashiguchi, Leung and Simon
Theorem of affine domination

Proposition

Given \(f, g \) computed by distance automata, the two assertions are equivalent:

1. There is a polynomial \(P \) s.t. \(f \leq P \circ g \).
2. There is an integer \(a \) s.t. \(f \leq ag + a \).

Theorem

Given \(f, g \) computed by distance automata, one can decide if there is an integer \(a \) s.t. \(f \leq ag + a \).
Theorem of approximate comparison

Input: f, g computed by distance automata and $\varepsilon > 0$

\[g(1 + \varepsilon)g \leq f \Rightarrow \text{YES} \]

\[g(1 + \varepsilon)g \not\leq f \Rightarrow \text{NO} \]

\[g(1 + \varepsilon)g \leq f \Rightarrow \text{YES or NO} \]

\[g(1 + \varepsilon)g \not\leq f \Rightarrow \text{NO} \]

\[g(1 + \varepsilon)g \leq f \Rightarrow \text{YES or NO} \]

Theorem: Existence of an algorithm having this behaviour.
Conclusion and further questions

Undecidable [Krob, 92]

\[f \leq g \]?

\[\downarrow \]

Algorithm of approximate comparison

EXPSPACE

(problem PSPACE-hard)

Decidable [Colcombet, 09]

Is there a polynomial \(P \) s.t

\[f \leq P \circ g \]?

\[\uparrow \]

Decidable

Is there an integer \(a \) s.t

\[f \leq ag + a \]?

Next steps

Capture other kinds of asymptotic behaviours

Case of max-+ automata