
Program traces as things-to-think-with

Andrew Kay
kaya3@aston.ac.uk

School of Engineering and Applied Science
Aston University

13th July 2017



Traces

Code Instructions States
int t=0; int t=0;

for(int i=0; i<n; i++) t = 0
{ int i=0;

t += a[i]; t = 0, i = 0
} t += a[i];

t = 7, i = 0
i++

t = 7, i = 1
t += a[i];

t = 12, i = 1
i++

t = 12, i = 2
...

...



CESL — a new tool

I “Click, Evaluate, Show” Loop

I Act on program state, not on program code

I Record traces of student action, not computer action

I “Programs late” pedagogy — learn to do it yourself first, then
tell the computer how



Prototype demonstration

I Live demonstration

I Video demonstration at
http://andrewkay.name/construit2017

http://andrewkay.name/construit2017


Thinking with traces

I Reviewing a trace
I Ad hoc solution, or algorithm?
I Repetition =⇒ algorithm uses a loop
I Trace length =⇒ algorithm efficiency
I Visual program simulation [6]

I Comparing multiple traces
I Did they follow the same algorithm?
I How can one piece of code do both?

I Traces as test-cases in debugging
I Instead of a failure message, see where your code diverges

from a correct trace [7]
I Instruction trace tells you what code to write next
I Can’t use someone else’s trace if their solution is different



Learning with traces

I Execution traces have been used successfully in programming
education, esp. automated grading and feedback [2, 4, 7].

I Cognitive load theory [3]: using your own traces reduces the
cognitive load of trying to understand somebody else’s

I Process/object duality [1, 8] — traces are a level of
abstraction between algorithm and code

I Papert: “You can’t think about thinking without thinking
about thinking about something.” [5]



References

Mark Asiala et al. “A framework for research and curriculum development in undergraduate mathematics

education”. In: Research in Collegiate Mathematics Education II, CBMS Issues in Mathematics Education
6 (1996), pp. 1–32.

Matthew Hertz and Maria Jump. “Trace-Based Teaching in Early Programming Courses”. In:

Proceedings of the 44th ACM Technical Symposium on Computer Science Education (2013), pp. 561–566.

Jeroen J. G. van Merriënboer, Paul A. Kirschner, and Liesbeth Kester. “Taking the Load Off a Learner’s

Mind: Instructional Design for Complex Learning”. In: Educational Psychologist 38.1 (2003), pp. 5–13.

Benjamin Paaßen, Joris Jensen, and Barbara Hammer. “Execution Traces as a Powerful Data

Representation for Intelligent Tutoring Systems for Programming”. In: Proceedings of the 9th
International Conference on Educational Data Mining. 2016, pp. 183–190.

Seymour Papert. “You Can’t Think About Thinking Without Thinking About Thinking About

Something”. In: Contemporary Issues in Technology and Teacher Education 5 (2005), pp. 366 –367.

Juha Sorva. “Visual Program Simulation in Introductory Program Education”. PhD thesis. 2012.

Michael Striewe and Michael Goedicke. “Trace alignment for automated tutoring”. In: CAA 2013

International Conference, University of Southampton. 2013.

David Tall et al. “What Is the Object of the Encapsulation of a Process?”. In: The Journal of

Mathematical Behavior 18.2 (1999), pp. 223–241.


