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Traces

Code Instructions States
int t=0; int t=0;

for(int i=0; i<n; i++) t = 0
{ int i=0;

t += a[i]; t = 0, i = 0
} t += a[i];

t = 7, i = 0
i++

t = 7, i = 1
t += a[i];

t = 12, i = 1
i++

t = 12, i = 2
...

...



CESL — a new tool

I “Click, Evaluate, Show” Loop

I Act on program state, not on program code

I Record traces of student action, not computer action

I “Programs late” pedagogy — learn to do it yourself first, then
tell the computer how



Prototype demonstration

I Live demonstration

I Video demonstration at
http://andrewkay.name/construit2017

http://andrewkay.name/construit2017


Thinking with traces

I Reviewing a trace
I Ad hoc solution, or algorithm?
I Repetition =⇒ algorithm uses a loop
I Trace length =⇒ algorithm efficiency
I Visual program simulation [6]

I Comparing multiple traces
I Did they follow the same algorithm?
I How can one piece of code do both?

I Traces as test-cases in debugging
I Instead of a failure message, see where your code diverges

from a correct trace [7]
I Instruction trace tells you what code to write next
I Can’t use someone else’s trace if their solution is different



Learning with traces

I Execution traces have been used successfully in programming
education, esp. automated grading and feedback [2, 4, 7].

I Cognitive load theory [3]: using your own traces reduces the
cognitive load of trying to understand somebody else’s

I Process/object duality [1, 8] — traces are a level of
abstraction between algorithm and code

I Papert: “You can’t think about thinking without thinking
about thinking about something.” [5]
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