
Hangman

in

Play the game

List all the steps you took !

What steps did you find ?

Check if users guess
is in word

Check if the user has
run out of lives

What steps did you find ?

Choose a word

Make guess ”---”
same length as word

Set lives to 9

What steps did you find ?
Ask user to guess

letter

Check if users guess
has already been used

Check if users guess
is in word

Reduce lives by 1

Draw hangman
Check if user has

guessed all the letters

Check if the user has
run out of lives

YES

YES

NO

NO

NO YES
FINISH

NO Place guessed letter
in guess if found

YES

The Data for hangman

• What data are we going to need to process

• How are we going to represent it in Python ?

Lives

Word

Current guess

Strings
How to slice and dice them !

In

Creating and indexing a string

month = "April"

A p r i l month

month[0]

month[1]

…

month[4]

Each letter is stored in
memory as its ASCII value

A p r i l month We can access each letter
through its index (position)

Give it a go !

Can you ?
Print each letter from a word one at a

time using its position ?

word = "Superb"

word_length = len(word)

for index in range (0,word_length):

 print("Index",index,"Letter",word[index])

• We say we are iterating through the word.
• This method is useful when we need to know

the position of each letter

Hangman Part 1

r e a l i t y ? a => 2

Following the design phase for a hangman
game, we need a function to :-

• Look for a letter in a word and return the
position of the letter.

The first Function

def main():

 letter = "s"

 word = "television"

 location= find_letter_in(letter,word)

 print ("Found",letter,"at position",location)

def find_letter_in(letter,word):

 print("I am looking for ",letter,"in",word)

put your code in here

 return ??? What do we need to return ????

main()

The first Function - solution

def main():

 …..

def find_letter_in(letter,word):

 print("I am looking for ",letter,"in",word)

 word_length = len(word)

 for index in range (0,word_length):

 if letter == word[index]:

 print("Found at pos:",index)

 location = index

 return location

main()

Test your function !!!

Does it work ?

• Try different letters and words

– Try words and a letter which is
not in the word

– Try words where the letter
occurs more than once

What other possibilities does our function need
to be able to return ?

We need lists [item1,item2,…]

find_letter_in("p", "sunset")

– should return []

find_letter_in("n", "newspaper")

– should return[0]

find_letter_in("e",

"television")

– should return [1,3]

 but we will leave this for later

Hangman – what next ?

• Having guessed a letter correctly we need to
we need to put it in the guessed word at the
correct location.

 Found 'e' at position 3.

current_guess = "- - - - - "

current_guess = "- - - e – "

Can you changing a letter in a string ?
month= "No-e-ber"

month[4] = "m"

N o N - month b e r
0 1 2 3 4 5 6 7

e -

Strings are immutable

– we cannot change them !

But we can slice and splice them !

Can you changing a letter in a string ?
place = "No-e-ber"

place [4] = "m"

N o N - place b e r
0 1 2 3 4 5 6 7

e -

Can you changing a letter in a string ?
month= "No-e-ber"

month[4] = "m"

N o N - month b e r
0 1 2 3 4 5 6 7

e -
0 1 2 3 4 5 6 7

month[5:] = "ber"

month[0:4] = "No-e"

Changing a letter in a string

month

0 1 2 3 4 5 6 7

+ month[5:] month[0:4] + "m"

m

month=

Change the letter at position 4 to a “m”

N o N - b e r e - N o N e - b e r

Hangman Part 2

a , 2 , "_ _ _ _ _ _ _ "
 => "_ _ a _ _ _ _"

Following the design phase for a hangman
game, we need a function to :-

• Given a letter, a position and a word; replace
the character in the word at the given position
with the letter.

Second function
 def main():

 letter = "s"

 word = "television"

 current_guess = "----------"

 location= find_letter_in(letter,word)

 print ("Found",letter,"at position",location)

 current_guess = add_found_to_guess …

 /… (current_guess,location,letter)

 print("Current_guess is",current_guess)

def add_found_to_guess(current_guess,location,letter):

 ### Your code in here !!!

 return ???? What should you return >

!!! … / … indicated the code is all on the same line !!!!!!!!!

Second function solution
 def main():

 …..

def add_found_to_guess …

 /…(current_guess,location,letter):

 current_guess = current_guess[0:location]…

 /…+ letter+ current_guess[location+1:]

 return current_guess

!!! … / … indicated the code is all on the same line !!!!!!!!!

Test your function !!!

Does it work ?

• Try different letters at
different positions.

What if we had found the letter at more than
one position ?

We need lists !

Lists and how to uses them !
In

Lists

• Python, like most other languages has a data
type for storing collections of things

• Often called Arrays

• Imagine a list for a lunch_menu

Creating a list

lunch_menu = ["Burger", "Salad",

"Jacket Potato", "Pizza"]

• We can create a list of any types of data

• List are enclosed by []

• Separate items in a list are separated by commas

Printing the whole list !

lunch_menu = ["Burger", "Salad",
"Jacket Potato", "Pizza"]

print(lunch_menu)

Printing an item from the list!

lunch_menu = ["Burger","Salad","Pizza"]

 0 1 2

print(lunch_menu[2])

Iterating through a list with an index

lunch_menu = ["Burger”,"Salad","Pizza"]

for item in lunch_menu:

 print("Item:",item)

• In a similar way we iterate through the letters
in a string, we can iterate through the items in
a list.

NOTE
This way has not generated an index value, but has just pulled
out the items from the list one at a time.
We Could have done it the same ways that we did with letters in
a string, but here we were not interested in the position in the list

Appending an item to a list 1 of 2.

• To add an item to a list we use the append
method.

 letters = ["s","t"]

print(letters)

new_char = input("Enter a letter ")

letters.append(new_char)

print(letters)

Appending an item to a list 2 of 2.

letters.append(new_char)

• NOTE – We have changed the letters list, not
created a new one.

• LISTS are mutable !!! We don’t code :-

letters = letters.append(new_char)

Hangman Part 3

Looking at our code so far …

What happens if we search for an ‘e’ in
television ?

We need to rethink our code design !

Revisit our two functions.

Hangman Part 1

t e l e v i s i o n ? e

 => [1,3]

Following the design phase for a hangman game,
we need a function to :-

• Look for a letter in a word and return the position
(or positions) of the letter as a list.

• A null list [] will indicate the letter was not found.

Hangman Part 2

 a, [2,4], "_ _ _ _ _ _ _"

 => "_ _ a _ a _ _"

Following the design phase for a hangman game,
we need a function to :-

• Given a letter, a position (or positions) as a list
and a word; replace the character in the word at
the given position(s) with the letter.

Hangman Part 4

While not the right answer and score is not 0

Get user guess

Replace letter(s) in
guess

Test if
letter in

word

Reduce lives by 1

Get word. Set lives to 8

Print success of
failure

YES NO

Right answer
or
 lives = 0

Hangman 4

• Code the remaining parts to tie the functions
together.

