On Making Painting With a Turtle to See More

By Afriko

A computational painting made to celebrate and remember
the life of Seymour Papert.

7

The modeller works rather like an artist with
a painting — she can directly experience and modify
the model throughout its construction according to her
vision for the model.”

— Construit: Empirical Modelling for Education [1]

Preface

Seymour Papert was born on February 29, 1928, and died on
July 31, 2016. He was a visionary, humanist, mathemati-
cian, pioneer computer scientist, and one of the first people
to demonstrate and promote the use of computers and pro-
gramming to teach children (and thus adults as well) how
to do mathematics, learn to think for themselves, and how
to use their imagination in creative and constructive ways.

Painting

Painting, for me, is putting (lasting) colourings onto a solid
surface to make seeing experiences for those who look upon
the painting. Not particular experiences, nor experiences
intended by me, nor even the same experience each time
a person looks at the painting: experiences made by the
looker from what they see and feel each time they look at
the painting. And, it’s colourings, not colours, that are put
on the painting surface. Colourings are what people look
at, colours are what people see: colourings are in the world
we look at, colours are part of the conscious experience
of seeing [2]. What the colourings can be in a painting,
and discovering how to make them, is as much a part of
painting as discovering the colours and forms these colour-
ings lead lookers to see. Painting is thus an exploration

—1—

of colourings and the forms they can make, and I paint
what I discover, not something I'm looking for, nor have
in my mind. My “vision for the model [the painting]” is
always the painting as it currently is, not something al-
ready formed in my head. Exploration is trying things out
to discover where they can take this vision. Painting stops
when I discover a place I like.

Seeing is a natural consequence of some looking, usually:
the rest state of a looking-to-seeing process. Mostly
looking-to-seeing happens so fast we don’t notice it. We
don’t experience it. This can lead us to think only seeing
happens. But sometimes looking-to-seeing can be slowed
down, so that we arrive at our seeing slowly. Occasionally
it can even be stopped, so that no seeing happens at all:
we can’t say what we are looking at. I am interested in the
looking-to-seeing process, and how it can be slowed down.
Painting is a way to study this.

Investigating looking-to-seeing by painting has led me to
regard looking as a kind of distal “touching,” and seeing as
like the experience of forms and impressions we get from
touching, feeling, and caressing something with our hands
and fingers, and sometimes more of our bodies. Stealing
the term from work in Film Media, I call this haptic visuality
[3]. It leads to an emphasis on the texture and the visual
and emotional “feel” of colourings, and an avoidance of
lines as denoting boarders and outlines.

Computational Painting

I use ‘computational painting” in the same way that terms
like “acrylic painting,” “oil painting,” ‘spray painting,” and
"watercolour painting,” are used to name different ways of
making paintings. Like these names, computational paint-
ing picks out the kind of stuff I use and work with to make
paintings. Unlike these other, more conventional, kinds of
painting, there is a separation of the stuff I use and work
with and the colouring that is put on the painting surface. I
don’t apply computation to the canvas. I use inkjet printing
to put different coloured inks on to paper. To make this

. N

happen, I make a standard PDF file from the outcome of
the computations. This inkjet printing happens at the end,
when I think I have a finished painting. While doing the
painting, what the current computer code produces is dis-
played on a colour screen — the LCD screen of the Apple
PowerBook computer I mostly use while painting.

This way of painting comes with certain conveniences: it’s
cleaner and cheaper than more conventional painting prac-
tices, even including the cost of high quality inkjet print-
ing. More importantly, it gives me a way of working and
thinking that I like and feel comfortable with, compared to
using brushes and paints, for example. Making and chang-
ing computer code, and seeing what I get from the com-
putations of the executed code, gives a precise and finely
adjustable way to control colouring, how it is made, and
where and how it is put on the painting surface. This preci-
sion, together with the almost limitless possibilities of pro-
gramed computation, and a convenient means to display
its outcomes, makes it, for me, a practical way to make
paintings, but not an easy way.

There are difficulties and complications in this way of paint-
ing, as there are, of course, in all other ways of painting.
When you have near infinite easily modifiable possibili-
ties, effective exploration, to discover interesting things, is
not made easy. Limitations and constraints first need to
be built to usefully discipline the exploration. This takes
as much imagination and invention as does exploring the
possibilities within this framing, and it always risks block-
ing access to exciting other possibilities. More. The colour-
ing on the LCD computer screen is made of emitted red,
green, and blue light combinations: the RGB colours. This
is very different from the colourings made using the ten
(typically) different ink colours printed on paper by the
inkjet printer, which are, of course, reflected light colour-
ings [4]. Understanding and working with this transition,
from emitted RGB light colourings to the multi-tone ink
colourings printed on paper, is a complication more con-
ventional painting practices don’t have to contend with.

— 3

Logo Programming

Today, there are a variety of programming languages suited
to producing coloured graphical outputs. Processing is a
good example, built for and widely used by Makers and
Creators [5]. In 1985, when I first attempted to do this kind
of computational painting, there were few such options,
but there was Logo and its Turtle Graphics functions.

I first came across Logo when I moved to the Department of
Artificial Intelligence (as it was called then), at the Univer-
sity of Edinburgh, from a background in aeronautical en-
gineering, structural design, and lots of Fortran program-
ming. The Al and Education group in the Department were
using Logo, and developing Logo implementations for sev-
eral of the then available Personal Computers (PCs). None
of these PC systems had colour screens. had a RGB colour
monitor for my BBC Micro, but this was not one of the
supported PCs. So I built a simple (and quite limited) Logo
Turtle Graphics interpreter (in BBC Basic), to be able to
make coloured Turtle graphics. It was slow, and I had no
way of making printed copies of my simple computational
paintings. This is how things stayed until about 2005, when
I acquired a new Apple Mac computer running the (then)
new OS X operating system, and when, more importantly,
I found Alan C Smith’s nice implementation of Logo for
Mac OS X [6]. The other important development, since
those early Edinburgh days, has been the arrival of high
quality low cost inkjet printing. This has made it possible
to turn the computational output into real paintings in an
affordable and convenient way.

Logo is an early Al programming language in the LISP
tradition, but with a much nicer syntax. It’s better known
Turtle Graphics was added later to support making Turtle
drawings with what Papert called body-syntonic reasoning:
understanding, reasoning about, and predicting the Tur-
tle’s drawing actions by imaging how you would need to
move and act to draw what you want on the floor. This is
what is behind Turtle actions like Forward, Back, Right

4

(turn), and Left (turn), etc. These are local actions, free
of any coordinate frame, that allow you to drive the Tur-
tle around the screen — the painting surface — getting
it to put down colouring as it goes, like the way a hand
moves a paint brush over a canvas, leaving colouring as
it moves. This is quite different from most other graphical
programming languages which are more geometric in their
functionality, making it easy to specify the positions of start
and end points and the kind of line that connects them.
This is not what you do when you paint. The start and
end of a painting stroke are only defined after the stroke
has been made, and some colouring has been put down.
You might be careful about where you start a stroke, but
where it finishes is where it turns out it needs to finish as
you make the stroke. This is an easy and natural thing to
do in Logo, and is how I build what I call computational
paintbrushes. This is an important way to introduce need
framing constraints and limitations. Having made a paint-
brush, I explore what can be done with it. A nice thing
about computational paintbrushes is that they can be made
to put down multiple colourings in one stroke, unlike in
oil or watercolour painting, or indeed any other way of
applying real paint to a painting surface. Another nice
thing is that computational brush strokes can be as long
as you like, from very short to very very long.

Making the Seymour Papert Painting

Wanting to paint something to celebrate and remember
Seymour Papert doesn’t get any painting started. To do
that I needed something to try. For this painting two things
came to mind. One was the paradigmatically Logo figures
of the regular polygons — the triangle, square, pentagon,
etc — the things all (it seems) Logo learners first learn to
make. The other was something I did for a painting of
Salvador Dali I made a few years ago. This started with a
sampling of a Black and White photograph of Dali (which
is, of course, a grey scale image, not just black and white). I
already had a Black and White photograph of Papert which
I like for his quiet playful smile.

— 5

I worked on these two ideas separately, but at the same
time, sometimes working on one, sometimes the other. Ini-
tially I thought one of them (or none of them) might lead to
a painting, but I saw something in a combination of poly-
gons I had discovered that suggested a way to combine this
idea with the sampled photograph idea. This is not how I
usually work on a painting, working on more than one idea
at a time. This time, working on both ideas formed a kind
joint construal for what become the one final painting.

Drawing regular polygons doesn’t easily result in some-
thing interesting, so I built in relationships between the
lengths of their sides and the locations of their starting
points, and explored what happened as I changed these.
In other words, I built a construal to work with. This is typ-
ically what happens when I add constraints and limitations
in an attempt to make some exploration doable. When this
construal making works well, the emptiness that a near
infinite number of possibilities presents becomes a detailed
and promising terrain to explore and extend.

The polygon combination I discovered, and liked, is com-
posed of eleven Prime Polygons: polygons with their num-
ber of sides equal to the first eleven Prime Numbers, start-
ing with 2, which forms a line, and which I (perhaps uncon-
ventionally) take to be a two-sided polygon. The length of
the sides of each polygon, starting with the 2-polygon as
the base length, is reduced by the reciprocal of the Golden
Ratio (0.618...) — a magic number I like. And each polygon
is evenly shifted rightwards by a constant amount, scaled
to make the complete figure fit well in the frame of the
painting. This results in a combination of geometric forms
easily drawn with a Logo Turtle, but which displays sev-
eral nice properties and puzzles, which I think Seymour
would have liked. For example, the left-hand (verticle)
sides of the polygons are evenly spaced, because that’s how
they are painted, but their right-most corners (which they
have because they are odd number sided polygons, except
for the first one) are not simply arranged: why? It is not
just a result of the scaling of the sizes of the polygons.

—6—

Some years ago, Alan Smith, the builder of the ACSLogo
I use, kindly added a function to sample the RGB colour
values at the current Turtle position. (I asked for this to
have a way of modifying the colouring put down by the
Turtle according to the colouring already there.) ACSLogo
also has a function to load in, position, and scale, an image
tile, such as a jpeg photograph. In combination, these two
Turtle functions provide a way to load in and sample an
existing image, such as a photograph. This needs the Turtle
to be moved to enough different points to usefully sample
the different RGB values of the original image. A simple
way to generate a distribution of these sampling points is
to use the random number function — to make random
coordinate pairs — but I generally don’t like using random
numbers in my paintings. Instead I use a Logistic Map
function set to operate in its fully chaotic mode, and seeded
differently each time it is run with a number derived from
the system clock at execution time. With some adjustment
to the coordinates made this way, to move them away from
the edges some, this gives me a way to sample the RGB
colourings of a loaded photograph, which I then save to
a file, together with the corresponding sample point posi-
tions. By varying the total number of sample points, I can
easily change the “resolution” of the saved sample set.

I used these stored data to paint points on a clean can-
vas (without the original photograph) using colourings for
each point made using the original Black and White RBG
values combined with a new colouring mechanism. This
makes it possible to paint images that recreate the photo-
graph image at a lower and more sparse resolution with
different colourings. In this painting I also decided to use a
kind of point I have used and liked before: a circular point
with a hole in its centre, to let some colouring through
from behind. This kind of “pointillist” painting can give
a nice texture to the colouring: a haptic visuality which,
close up gives a sequined look to the colourings, but which,
further away, lets an image of Papert emerge, still with
his playful smile. After exploring the effects of different
numbers of sample points, and different sizes of painted

7

points, I settled upon using one million colouring points,
all of the same size.

At the scale it is draw, the 11th Prime Polygon, with 31
sides, looks almost circular, and with a diameter close to
the size of Papert’s left eye, in the pointillist image I had
made from the photograph. So I decided to combine both
these ideas, to have Papert looking through the 13th Prime
Polygon, which just needed a little scaling and adjustment
of the positioning of the set of polygons. I didn’t like the
plane colourings of the Turtle drawn polygons when I first
put these two schemes together, so I used computational
paint brush I had made before to paint the lines of the poly-
gon sides, to give them some texturing too. If you look
carefully, you can see this in the painting.

I thought the painting was finished, but some days after
stopping I looked at it again and saw that it needed a
Turtle. I tried several different ways of painting a turtle,
but settled upon using the same sampling and re-painting
technique I had used for image of Papert. I drew, on paper,
a turtle, copying an image I found on the web, sampled a
scaled up photographed of this, and then use the sampled
point set to paint an all-coloured Turtle, again using points
with holes in them. The place to put this Turtle naturally
seemed to be at the start of the triangle that everybody
makes when they first start to learn to program in Logo:
at the start of the green triangle that connects the red line
(of the 2-polygon) to the smiling face of Seymour Papert
looking through the 13-sided Prime Polygon.

With this addition of a Turtle I decide the painting was
finished. And, as often happens, in a way I'm hardly aware
of, a title for this painting came to me: Painting With a Turtle
to See More. 1 like playing with words as much as I like
playing with computational paints. [7].

And the Program?

Occasionally people ask to see the program that makes the
painting, some adding that this too is part of the created

—8—

work. I reply saying I have no program to show, that I
make paintings not computer programs.

This surprises people, and is, I think, different to how oth-
ers work. A computer program has a known purpose, and
it needs to be designed and engineering to fulfill this pur-
pose, in a (known to be) correct, effective, efficient, reliable,
robust, maintainable, and, or course, usable way. I have
designed and built many programs like this, or worked
with others to do this; programs whose correct and effi-
cient working other people depended upon. When I start
painting I don’t have any idea of how it will turn out, nor
what it should be. It is therefore not possible to design
and build a program to make the painting. What I do do
is build lumps of Logo code that do things, and which I
then work with. I make construals, some of which, usually
after much modification and changing, form the Logo code
used to generate the PDF from which a painting is made.
Sometimes this Logo code does look like a program, but on
other occasions, the painting is built by running different
lumps of code. This is the intended way of working with
Logo: make something, see what it does, do something
else that you now see could be tried, and keep doing this.
This is making, thinking, exploring, discovering with Logo
code, but it is not, I would say, program building, not in
the good engineering sense that I think program building
should be done.

I am careful about the code I build, but not particularly
neat and tidy about how it is organised. The code does
need to be correct in the sense that I am sure I understand
how and why it produces the colourings and forms it does.
I have discovered interesting, sometimes striking, things
from buggy code, but to use these discoveries I have to
build correct code that also produces them. The Logo code
I build and work with, while working on a painting, is per-
haps best thought of as being more like the paints, (mixing)
pallet, and brushes of the oil painter. These are not viewed
by anybody as being a part of the final painting, but they
are essential to its making, and, just as importantly, they

—9__

are and integral part of the thinking and working out the
painter had to do to arrive at the final painting.

Notes

1 Construit! The European Erasmus+ Project on Empirical
Modelling for Education. («+—)

2 We typically see trees as green, and say trees are green, but
a careful look shows the leaves of any tree to be many dif-
ferent greens and other (not-green) colours too, and even
no greens, when seen in the light of a yellow streetlamp,
for example. See Mazvitta Chirimuuta, 2015: Outside Color,
Perceptual Science and the Puzzle of Color in Philosophy, MIT
Press, for an interesting treatment of what is colour.
(Though one, like others, that stuffers for not using a dis-
tinction between colourings and colour, I would say.) (<)

3 I tirst came across the idea of Haptic Visuality in the work of
Laura U Marks. I stumbled upon Touching the Film Object?,
a short video by Catherine Grant which explores Laura
Mark’s notion of hapticity in a visual medium. In this video,
Catherine Grant refers to the art historian Alois Riegl’s “dis-
tinction between haptic and optical images,” as Marks de-
scribes it. Riegl was, amongst many other forms of art,
interested in Persian carpets with their endless interleaved
patterns. Riegl said (quoted by Grant) that these ...

”... patterns don’t allow the eye to rest in one place; they
invite the eye to move along them, caressing their surface.
Contemplating these patterns does something to dissolve
the boundaries between the beholder and the thing beheld.”

This “inviting of the eye” to keep moving over the looked
at pattern, and this “dissolving of the boundaries” between
the subject doing the looking and the object seen, captures
well what I think happens when slow looking-to-seeing
“reaches out to touch” the visual scene. The reaching out
and touching brings things so close to the looking that you
can’t see a "big picture,” the optical, in Riegl’s terms, but
you can see the details, the haptic, says Riegl, and these

— 10—

https://www.researchgate.net/project/Construit-European-Erasmus-Project-on-Empirical-Modelling-for-Education
http://transliteracies.english.ucsb.edu/post/research-project/research-clearinghouse-individual/research-reports/haptic-visuality-2
http://filmanalytical.blogspot.com.es/2011/08/touching-film-object-notes-on-haptic-in.html

details drive the looking, the visually haptic touching, of
the surface. What is depth in more distanced fast seeing
becomes texture in this slowed down up close seeing: tex-
ture that invites the eye to caress its surface.

Riegl wasn’t the only, nor first, to talk like this. Much ear-
lier Johann Gottfried Herder said, when talking about how
we look at sculptures, as opposed to (flat) paintings:

"The eye that gathers impressions is no longer the eye that
sees a depiction on a surface; it becomes a hand, the ray of
light becomes a finger, and the imagination becomes a form
of immediate touching.”

See Johann Gottfried Herder, 1778. Sculpture: Some Obser-
vations on Shape and Form from Pygmalion’s Creative Dreams,
translated by Jason Gaiger, Chicago University
Press, 2002, pp 19. (<)

4 The ten Epson inkjet colours I use are vivid magenta,
yellow, cyan, orange, green, vivid light magenta, light cyan,
light black, matte black or photo black, plus an irreversible
choice of either light light gray or violet. (<)

5 Casey Reas and Ben Fry, 2014: Processing, A Programming
Handbook for Visual Designers and Artists, MIT Press. (<)

6 ACSLogo for Mac OS X. (+—)

7 Words and languaging, are very closely tied up with see-
ing. If you cannot say what you are looking at, are you
seeing anything? If you think you are seeing something,
but can’t say anything about what it is you're seeing, how
do you know you are seeing anything? For more paintings
by Afriko, click on these words. (<)

© Afriko, 2017.

http://www.alancsmith.co.uk/logo/
http://www.cantab.net/users/tim.smithers/
http://www.cantab.net/users/tim.smithers/

