REPRINTED FROM:

PARALLEL é
COMPUTING 89 é

Proceedings of the International Conference
Leiden, 29 August - 1 September, 1989

Edited by

David J. Evans

Department of Computer Science
University of Technology
Loughborough, England

Gerhard R. Joubert

Corporate CAD Centre, Philips
Eindhoven, The Netherlands

Frans J. Peters

Corporate CAD Centre, Philips
Eindhoven, The Netherlands

L
E15%

1990

NORTH-HOLLAND
AMSTERDAM « NEW YORK « OXFORD * TOKYO

Parallel Computing 89
DJ. Evans, G.R. Joubert, FJ. Peters (Editors)
© Elsevier Science Publishers B.V. (North-Holland), 1990 425

PARALLELISM IN A DEFINITIVE PROGRAMMING FRAMEWORK

Meurig BEYNON

Department of Computer Science, University of Warwick,
Coventry CV4 7AL, United Kingdom

A method of programming based on the use of definitions is outlined and
illustrated. lts potential merits as a medium for general-purpose parallel
programming are examined with reference to criticisms of approaches
based upon traditional programming paradigms.

1. INTRODUCTION

The problems of supporting general-purpose parallel programming are well-
recognised. As the Parallel Architecture and Languages Europe project illustrates [11],
many different programming styles have been advocated for parallelism, but the most
appropriate choice - if such exists - remains controversial. An analysis of existing
paradigms [2] suggests that multiprocessors cannot be programmed effectively without
radical developments in programming language design. This paper discusses the
application of a definition-based computational paradigm ("definitive programming”) to
general-purpose paraliel computation.

2. DEFINITIVE PROGRAMMING
The key idea behind definitive programming is the representation of computational
state by a set of definitions of variables and of a transition between states by a set of
redefinitions. A simple application of this principle underlies the spreadsheet. By way of
illustration (when augmented by definitions of voltage etc) the set of definitions:
resistance = resistance_of_lamp + cable_length * coefft_of resistance

current = if switch_on then voltage / resistance else 0
light_on = switch_on and current >= threshold
switch_on = FALSE

can be interpreted as describing the state of a simple electrical circuit. In this context,
an appropriate transition might involve the redefinition

switch_on = TRUE
or the redefinition of a parameter such as the length of the cable or the voltage.

The exploitation of this method of specifying states and transitions in general-
purpose computation has Been the focus of extensive research by the author over
several years ([3,4,5,6,7]). The need to address applications that require sophisticated
data representation motivates the introduction of complex data types and operators in
definitions. Previous work has addressed the design of prototype definitive systems for

426 M. Beynon

interactive graphics requiring data types such as points, lines and shapes composed of
families of points and lines, as in [4]. In such systems, the representation of state by a
set of definitions provides a "generalised spreadsheet" well-adapted for a simple form
of user-computer interaction in which all state changes are initiated by the user.

Generalising definitive principles to describe less restricted forms of computation
leads directly to the consideration of concurrent action by several agents - in the first
instance, the user and the computer - within the framework of a common set of
definitions. A set of definitions is a powerful way to represent computational state, but
arbitrary redefinition of variables is not in general an appropriate way to describe
computationally useful transitions. A suitable state-transition model of computation is
developed by regarding the user as a prototypical agent who carries out transitions
from one computational state to another subject to certain privileges and protocols. The
typical user of an electrical circuit can reset a switch or change a light bulb; an
electrician can alter the length or electrical characteristics of a cable; the definition of
the circuit current in terms of the voltage and resistance is invariant. The particular
transitions available to the user may also depend upon the context, as when the switch
is operated by a key. The roles of agents in a computation have to be circumscribed in
an analogous way.

The abstract definitive machine (ADM) is an appropriate machine model within
which to express context-sensitive parallel redefinition (cf.[3]). In the ADM, the
computational state is represented by a set of definitions D that is dynamically modified
through redefinition of variables and the creation or deletion of definitions. The
transitions to be performed in executing an ADM program are specified by a set of
guarded actions A to be executed in parallel as and when the guards allow. Each
action is a sequence of instructions that either redefines a variable, or leads to the
instantiation or deletion of an entity comprising a set of definitions and actions. The
ADM outputs by redefining variables whose values model the state of an output device.

An ADM program consists of a set of abstractly specified entities. Execution is
initiated by instantiating appropriate entities. On each machine cycle the guards
associated with actions in A are evaluated in the context specified by the definitions in
D. If there is no interference, those actions that are associated with true guards are then
executed in parallel. Evaluation required in a redefinition - as in "fixing the exchange
rate" for purposes of a currency transaction - is performed in the same context as guard
evaluation. Autonomous computation terminates when no action in A has a true guard.

Actions can interfere in several ways. The same variable may be redefined
independently in concurrent actions, or the set of parallel redefinitions may introduce
cyclic dependency. Such interference is detected during computation and the
execution is suspended. In one possible mode of execution of the ADM, the
programmer can act as an auxiliary agent to resolve conflicts as they arise. A similar
technique can be used to handle input. These issues will be illustrated with reference
to an ADM program to simulate a simple concurrent system.

Parallelism in a Definitive Programming Framework 427

3. AN ILLUSTRATIVE EXAMPLE

Suppose that the blocks L and R are under the independent controi of two agents.
For simplicity, assume that the blocks move in 1-dimension, have unit length, are
centred at integral points pL and pR and are always moved by steps of 1 unit in discrete
actions. Assume also that an inelastic string of integral length d-1 connects L and R.

An outline of the ADM simulation program appears in Figure 1. (The annotations on
the right are mnemonic labels for actions.) The given skeleton must be complemented
by adding a control() entity that provides the correct synchronisation between actions.
The actions of the handler() entities for instance, must be sequential: since actions [],
[<] and [>] are simultaneously enabled, these must be made mutually exclusive. A
simple method to ensure this is to generate an element from the set {<, *, >} at random
within the control() entity, and to select the appropriate action accordingly. In addition,
unless a suitable control mechanism is introduced, the definition invoked by an action
such as [?][<] persists, as though the blocks became glued together on touching.

Only some of the interference between actions of the blockmover() entity has been
resolved in the program. A static analysis shows that at most two actions of the
blockmover() entity can be performed in each execution cycle: at most one from each of
the sets {[<]~, [<]--, [>][?], [>]..} and {~[>], --[>], [?][<], --[<]}. Certain combinations of action
are impossible - e.g. the enabling conditions for [<]-- and ~[<] are incompatible. Actions
[<]-- and --[>] interfere on parallel execution: they correspond to a situation in which the
string is taut and the handlers are pulling in opposite directions. There is a conflict
between actions [<]-- and ..[<] in so far as concurrent action is only possible because
actions specify movement through the same distance. The actions [>].. and ..[<] are in
conflict when this entails a collision of the blocks at a single location.

The possible patterns of singular behaviour are summarised in Figure 2. Most will
be dynamically detected as instances of interference. For instance, the actions [<]-- and
--[<] interfere; they invoke an inconsistent system of definitions if executed in parallel.
The conflict between the actions [>].. and ..[<] that arises when pR-pL=2 is not detected
as interference; in another model, co-location of blocks might be possible. The way in
which the conflict between the actions [<]~ and ~[>] when pR-pL = d-1 is resolved in the
model illustrates one possible method for resolving exceptional behaviour. The conflict
arising from the parallel execution of [<]-- and --[>] could be resolved by permitting no
movement, by allowing one handier to dominate the other - whether arbitrarily or
otherwise, or by deeming that the string snap.

No output has been specified in Figure 1. The most appropriate form of output is a
graphical animation that depicts the position of the blocks and the status of handlers
throughout the simulation. Such an animation can be programmed within the ADM
using a definitive notation for line-drawing within which parametrised figures composed
of points and lines can be specified by a set of definitions. For instance, block L can be
depicted by adding a set of definitions to D that describes a square centred at a point
with coordinates parametrised by pL. Details of such a specification are given in [4].

428 M. Beynon

entity handler(block)

definition
driving[block] = drivingL[block] or drivingR[block],
drivingl[block] = holding[block] and pushingL[block],
drivingR[block] = holding{block] and pushingR[block],
pushingL[block] = false,
pushingR[block] = false,
holding[block] = false

action
not holding[block] -> holding[block] = true,
holding[block] and not driving[block] -> holding[block] = false, 4]
holding[block] and not driving[block] -> pushingL[block] = true, [<]
holding[block] and not driving[block] -> pushingR[block] = true, [>]
drivingL[block] -> pushingL[block] = false,
drivingR[block] -> pushingR[block] = false
}

entity blockstate()

definition
pL, pR, d,
stringtaut = not stringsnap and (pR-pL)==d,
touching = (pR-pL)==1,
stringsnap = false

action
not stringsnap and (pR-pL)>d -> stringsnap = true
}

entity blockmover(blockL, blockR)
{

action
drivingL{blockL] and not stringtaut -> pL. = |pL|-1, [«]~
drivingL{blockL] and stringtaut -> pR = pL+d; pL. = |pL|-1, <}
drivingR[blockR] and not stringtaut -> pR = |pR|+1, ~[>]
drivingR[blockR] and stringtaut -> pL = pR-d; pR = |pR|+1, -[>]
drivingR[blockL] and not touching -> pL = |pL|+1, [>]..
drivingR[blockL] and touching -> pR = pL+1; pL = |pL|+1, [>][?)
drivingL[blockR] and not touching -> pR = |pR|-1, <
drivingL[blockR] and touching -> pL = pR-1; pR = |pR|-1 (7<)

}
blockstate(); blockmovef(L,R); handler(L); handler(R)

FIGURE 1: Blocks - a skeleton ADM program for the block moving simulation

[<]---[>] String under tension: conflict to be resolved

>ll<] Agents pushing against each other: conflict to be resolved

[<]--[<] Conflicts unless the agents cooperate ([>]----[>] , [<][<] , [>][>] are similar)
[<]~~[>] String can snép - and will under this model - if pR-pL = d-1

[>]...[<] Blocks collide if pR-pL =2

[<]~~[<] Never generates interference ([>]~~[>] is similar)

FIGURE 2: An analysis of interference and anomalous behaviour

Parallelism in a Definitive Programming Framework 429

4. DEFINITIVE GENERAL-PURPOSE PARALLEL PROGRAMMING?

In the ADM, states and transitions are explicitly described. The description of a
complex state-transition system is made tractable by using definitions to represent that
part of the computation concerned with maintaining the relationships that characterise
a transition (cf [7]). This is in contrast to the use of constraints or logical predicates for
specifying information about the current state. For instance, in Blocks, the definition
pR=pL+d is invoked when the string is taut if block L is driven to the left, but is
inappropriate if block L is driven to the right. The subtlety of such a representation is
best appreciated by considering variants of Blocks where the interconnection is (e.g.)
an elastic string, a rigid rod or an umbrella handle. Comparison with [9] - an application
of "qualitative reasoning” methods to a similar simulation problem - is also instructive.

Conventional computer programs typically use what is in essence a batch-
processing paradigm. The programmer specifies the sequence of transitions that the
computer is to perform, making provision for the user to supply input in a preconceived
fashion. If an exceptional state is encountered during program execution, the program
is edited and re-compiled. The ADM can be programmed for autonomous computation
of this kind, but may also execute in such a way that the user is privileged to contribute
actions at each machine cycle, cooperating directly with other agents - e.g. the
preprogrammed computer - in directing the computation. Dynamic resolution of
conflicts in Blocks is an application of this principle; yet more forceful user intervention
can be viewed as blurring the distinction between the programmer and the user (cf. the
design of software for modelling and animation in [8]).

The ADM was derived from research into implementing interactive definitive
systems [6] and modelling and simulating concurrent systems [5]. Its wider application
requires techniques for identifying and specifying the role -of computational agents. The
Blocks program illustrates a subtle model for parallel action, but does not realistically
simulate block-handlers that act asynchronously, move blocks at different relative
speeds and may observe protocols to avoid conflict (e.g. a block can move at most one
unit distance whilst the other is released). This problem has been addressed by
developing methods of specifying agent privileges and protocols independent of timing
considerations [5]. A derived ADM simulation program can then express relative timing
of agent actions as determined by communication ("the sprinter starts when the pistol is
fired"), by speed of execution ("the gas ignites before the match can be extinguished"),
or by definition ("the article is purchased when the document is signed"). Future
research will examine the application of analogous techniques at a lower level of
abstraction to the implementation of abstract algorithms on paraliel architectures.

Baldwin [2] studies parallelisation in programming paradigms. He identifies "two
deep flaws of existing langyages: 1) reliance on side-effects, 2) use of iteration or
recursion to express data parallelism ..." and describes "the ultimate goal for a parallel
programming language" as "supporting a clear statement of the data dependencies”.

Data dependency has a key role in definitive programming. A set of definitions

430 M. Beynon

expresses the dependencies between variable values explicitly; its use in representing
states and transitions entails the rationalisation of side-effects. As scripts in functional
programming environments [10] indicate, sets of definitions can have such power to
represent states and transitions that complex procedural abstractions are unnecessary.

A potential source of interference in parallel procedural programming is "has this
variable currently an appropriate value?" and in paraliel evaluation in a declarative
programming environment "is this variable currently defined?" [2]. Definitive principles
alleviate these problems, since the order in which a set of definitions is introduced is
immaterial and undefined values can be gracefully accommodated.

5. CONCLUDING REMARKS
Definitive programming has significant connections with several programming

paradigms that have been studied in connection with paralle!l architectures. in many
respects, it seems likely to meet the criteria for an appropriate programming medium for
multiprocessors, as identified by Baldwin in [2]. lts combination of procedural and
declarative features indicate good prospects for application at different levels of
abstraction, potentially bridging the gap between application-oriented and architecture-
oriented language concerns. In due course, it is to be hoped that it will contribute
towards the objectives set out by Backus in [1], perhaps ultimately providing the
foundation for alternative parallel computer architectures.

ACKNOWLEDGMENTS
I 'am much indebted to Mark Norris, Mike Siade and Edward Yung for significant
contributions to the design and implementation of the abstract definitive machine.

REFERENCES

[1] Backus J, Can programming be liberated from the von Neumann style?,
Comm ACM 21, 8 (August) 1978, 613-641

[2] Baldwin D, Why we can't program multiprocessors the way we're trying to do it
now, CS Tech Rep 224, University of Rochester 1987

[3] Beynon W M, M D Slade, Y W Yung, Parallel computation in definitive models,
CONPAR'88, British Computer Society Workshop Series CUP 1989, 359-367

[4] Beynon W M, Evaluating definitive principles for interactive graphics,
New Advances in Computer Graphics, Springer-Verlag 1989, 291-303

[5] Beynon W M, Norris M T, Slade M D, Definitions for modelling and simulating
concurrent systems, Proc IASTED conference ASM'88, Acta Press 1988, 94-98

[6] Beynon W M, Cartwright A J, A definitive programming approach to the
implementation of CAD software, intelligent CAD Systems Ii: Implementation
Issues, Springer-Verlag 1989, 126-145

(7] Beynon WM, Norris M T, Slade M D, Yung Y P, Yung Y W, Software construction
using definitions: an illustrative example, CS RR#147, University of Warwick 1989

(8] Chmilar M, Wyvill B, A software architecture for integrated modelling and
animation, New Advances in Computer Graphics, Spinger-Verlag 1989, 257-276

{9] Ginsberg M L, Smith D E, Reasoning about Action | & Il
Artificial Intelligence 35, 1988, 165-195 & 311-342

[10] MIRANDA System Manual, Research Software Ltd 1987

[11] Parallel Architectures and Languages Europe Vol 1, Lecture Notes in Computer
Science 258, Springer-Verlag 1987

