Programming Principles for Visualization in Mathematical Research
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We describe programming principles for visualization under development at the University of
Warwick. These exploit systems of definitions - resembling the formulae that define the values
of cells in a spreadsheet - to specify the structure and interrelationship between mathematical
images such as Hasse and Cayley diagrams. The use of a prototype visualization system
incorporating the definitive (ie "definition-based") notations ARCA and DoNaLD - for graphics -
and SCOUT - for screen layout - is illustrated using a specific mathematical research problem
involving combinatorial analysis of planar arrangements of lines. We briefly discuss the practical
potential of our methods and possible directions for further development.

1. Backgroun Motivation
1.1. The role of Vi ization in Mathemat h

Identifying relationships between abstract objects is a common feature of mathematical research.
Such relationships are often first discovered by experiment, and subsequently proved to be valid.
In the initial phases of mathematical research, it is useful to be able to examine many particular
instances of associated objects. This involves developing algorithms to construct one object from
another, and representation techniques to make the relevant features of these objects apparent to
the mathematician. Graphical representations of objects typically play a crucial role in enabling a
mathematician to comprehend relationships between objects. This paper describes programming
principles for developing graphical representations of objects - a process of visualization.

1.2. An Nlustrative Example

The illustrative example used in this paper is motivated by mathematical research currently in
progress [1]. It concerns combinatorial characteristics of simple arrangements of lines, in the
sense of Grunbaum [7]. The mathematical concepts and relationships to be discussed below
apply to arrangements of arbitrary size, but for our purpose it will suffice to consider
arrangements of just 4 lines, such as are depicted in Figures 1 and 2. These arrangements are
simple because the 6 points of intersection of the lines are distinct.

With each simple arrangement of 4 lines, there is an associated family of representations ofithe
permutation p = (14)(23) — the permutation that maps the sequence of indices 1,2,3,4 to its

reversal — as a product of adjacent transpositions. Informally, to derive such a representation of




p from an arrangement, it suffices to scan the arrangement from left to right (by introducing a
scanning line) and record which pair of adjacent lines is transposed as each point of intersection
is encountered. Such a scan generally leads to an unambiguous representation for p, unless it
should happen that two or more intersection points are encountered simultaneously in the
scanning process. Note that there can be no ambiguity about the order in which points of
intersection that lie on the same line of the arrangement are encountered on scanning.

A partial rather than a total order of the intersection points aptly represents ambiguity in ordering
the intersection points when constructing a representation of p from an arrangement. We
associate with an arrangement A of n lines a poset P of size N=n(n-1)/2. The covering relation in
P is defined by pairs of intersection points (p.q) and (g,r) where p, q and r are lines and, in the
scanning process, the intersection point (p.r) is not encountered between (p,q) and (q,r). There
is then a natural correspondence between a family of products of adjacent transpositions
representing p and the linear extensions of the poset P.

In studying the relationship between arrangements of lines, families of representations of p and
posets, we use geometric representations for each mathematical object. No loss of combinatorial
generality results from normalising the arrangement of lines so that the line i connects the points
[0,a;] and [b;,0] for 1<i<4, where 0=a;<a;Saz<as=1 and 1=b;2b,2b32bs=0. Each poset arising
from an arrangement of lines can be represented by a Hasse diagram. Each representation of p
can be represented by a geodesic in a standard Cayley diagram for the symmetric group Sa.

13.0 . o< of an Effective Visualization §

Figure 1 depicts a specific instance of the relationship between the three mathematical objects
under consideration. It is defined by an arrangement of lines A, a family F of representations of
p, and a poset P. Merely constructing a diagram to statically display A, F and P is a relatively
complex process. When exploring the relationship between A, F and P, many instances must be
generated and displayed, such as Figure 2 depicts, for example. Effective exploitation of such a
geometric representation demands a convenient method of modelling the relationship between A,
F and P by computer. Programming principles appropriate for developing such a "visualization
system” are very different from those traditionally used to define graphical displays.

An effective visualisation system must be more than a sophisticated toolkit for modelling.
Practising mathematicians who cannot employ full-time computer programmers must themselves
specify and implement the visualization process. The relationship between A, F and P above is
typical of the kind of relationship that a mathematician might investigate, but it may only have
ephemeral interest in the subsequent development of the mathematical research. Modificatign or
refinement of the relationship under investigation is frequently necessary, and radical cha}lges
may be required if a new geometric representation of an abstract object suggests itself. The




highly problem-specific nature of the visualization process in this context argues against a
comprehensive preprogrammed system built on a conventional programming model.

What then are the requirements for an effective visualization system? It must be
+ sufficiently easy for a mathematician who is not a specialist programmer to use
» programmable in such a way that incremental modification is possible
« versatile enough to give the user control over all relevant aspects of the display.
None of these criteria is easily met by conventional approaches to programming.

2. Principles behind our A I

Our computational paradigm for interaction rests on a basic premise: if the user is to have control
over some aspect of the system behaviour, the mode of interaction must be such that the user acts
within a formal framework in which this aspect of the state is faithfully modelled with respect to
« what privileges the user has to change the state
» what consequent change of state occurs when a privilege is exercised.
The primary modelling technique used to ensure this is the principle underlying the spreadsheet,
viz the representation of state by sets of variables whose values are specified by defining
formulae ("scripts”). It should be emphasised that this technique addresses a concern entirely
separate from the development of efficient or ingenious algorithms to evaluate defining formulae.

General principles have been developed to formulate state information using sets of definitions.
These are illustrated in their simplest form in the abstract operation of a spreadsheet. Each cell of
the spreadsheet can be viewed as a variable whose value is either explicitly defined or specified
by a formula expressing its value in terms of that of other variables. The data dependency
between variable values established by the set of variable definitions will be assumed to be
acyclic. The nature of the defining formulae is determined by an underlying algebra of values and
operators. For a conventional spreadsheet, this might be a 2-sorted algebra including scalars and
arithmetic operators together with alphanumeric strings and associated operators on strings.

2.2, Definitive Notations

A definitive (definition-based) notation is a simple programming medium in which scripts
resembling those underlying a spreadsheet can be formulated. The precise syntax of the notation
is influenced by the values and operators that appear in defining formulae, as determined by the
underlying algebra. The choice of underlying algebra in tumn reflects the nature of the interactive
application. Definitive notations developed in our work include ARCA — for displagiing
combinatorial diagrams, DoNaLD - for line drawing, and SCOUT -~ for screen layout.




ARCA was the first definitive notation to be developed. The data types in its underlying algebra
were designed to represent n-dimensional realisations of combinatorial graphs. Because the
model adopted for such graphs is based upon the Cayley diagram, the edges may have associated
colours and directions. ARCA is well-adapted for expressing the kind of information that arise in
research areas such as automata theory and combinatorial group theory. For instance, it can be
used both to specify abstract finite automata and to describe a layout for its realisation as a graph.
Defining formulae in ARCA can be used to establish rich data dependencies such as are needed
to express symmetries between component parts of a Cayley diagram. For instance, if x and y
generate a finite group and f and g are elements such that f = g.x.y.x"1, we can assert that the
node of the associated Cayley diagram representing the element f is defined by rotating the node
representing g through 21/3 about the origin. For further details of ARCA, sce references in [4].

The edges of a combinatorial graph such as a Cayley diagram are abstractly defined by adjacency
relationships between vertices. In ARCA, the directed edges of a particular colour within such a
diagram are specified by a (partial) permutation of the indices of its vertices. DoNaLD - a
definitive notation for line drawing, is complementary to ARCA. Its basic data types are points
and lines in the plane. Whereas the use of ARCA is appropriate when the abstract vertices and
edges of a graph have an interpretation independent of their geometric realisation, DoNaLD is
adapted for describing aggregates of points and lines whose interpretation is rooted in their
geometry alone. Further details of DoNaLD, and examples of its use, can be found in [2,3].

SCOUT is designed for describing screen layout [4]. A SCOUT script abstractly specifies the
nature, content and location of a set of windows and how they are composed to make up a
display. The specification is abstract in the same sense that a window manager delegates control
of particular windows to other application programs rather than specifying their content directly.
For instance, the SCOUT specification of Figure 1 is made up of windows containing ARCA
and DoNaLD pictures and textual commentaries. Much of the expressive power of this method
of representing the state of the screen display derives from being able to describe relationships
between information represented in many different forms. This is illustrated in [4], in which the

role of SCOUT in specifying interfaces is discussed in detail.
3. Technical Detail

3.1. A Scri Define Fi  and 2
The script that defines Figure 1 comprises about 380 definitions: these include
« SCOUT definitions to lay out windows and supply a textual commentary
« DoNaLD definitions to define the arrangement A and poset P/

« ARCA definitions to specify the Cayley diagram S4 and poset P.




Defining the poset P associated with the configuration A so that the data dependency is modelled
correctly is technically difficult, but can be done in DoNaLD. It involves translating the definition
of the poset as described in §1 into a geometric dependency relation. The realisation of the poset
most easily generated is P' as in Figure 1. A typical element of P' represents the point of
intersection of a pair of lines i and j in A; if this intersection point has coordinates (X,Y) — as
coordinatised in §1, then its coordinates relative to a suitable origin for the Hasse diagram of P’
are (X',Y"), where X' is determined by the number of lines that pass above the point (X,Y) on
the line x=X in arrangement A, and Y' = X. To be more explicit, the x-coordinates of points in
the posets P and P, modulo a scale factor, can be defined by integers representing the index of
the adjacent transposition associated with the intersection of lines i and j. The y-coordinate of an
element in P would normally also be represented, modulo a scale factor, by an integer value - its
rank as an element the poset. In practice, this rank can be approximated simply by recording
when a scan line parallel to the y-axis encounters the associated intersection in A.

These observations determine appropriate DoNaLD definitions. The arrangement A is specified
in terms of real parameters L12, L23, L34 and R12, R23, R34 that respectively determine the
distances between the left- and right-hand endpoints of lines in the arrangement. These
parameters in turn fix the relative size of the six ratios:

r12=L12/R12, 23 = L23/R23, r34 =34 /R34

r13 = (L12+L23) / (R124R23), r24 = (L23+L34) / (R23+R34)

r14 = (L12+4L23+L34) / (R12+R23+R34)
which define the y-coordinates for points in P'. From these ratios, it is also possible to infer
whether or not — in the L-R scanning order — the intersection of the line k with the line i is
preceded by the intersection of the line j for each index j=k. This knowledge in turn determines
the x-coordinates of points in P'. For instance, it may be seen that the x-coordinate x23 of the
point at which lines 2 and 3 intersect is the number of lines passing above the point of
intersection of the lines 2 and 3, as defined by the formula:

1 - int (r12<r23) + int (r14<r24),

where int designates conventional coercion of boolean to integer values.

Having determined the positions of the points in P, it remains to specify the covering edges of
the poset. The form of the boolean condition required to specify whether the line joining a pair of
intersection points involving a common line is inferred from the definition of the poset P in §1.
As an example: the line joining the points p13 and p23 that respectively depict the points of
intersection of lines 1 and 3 and lines 2 and 3 is a covering edge subject to the condition

d1323 = (x13#x23) and ((r34-r13)*(34-123) > 0).

The poset P is defined from P’ using ARCA. The definition of P in ARCA imitates the Way in
which a mathematician interprets P' as a Hasse diagram, converting perceived geometrical




relationships into an abstract order relation. The points of P are vertices of an ARCA diagram
whose incidence relationship is determined by geometric properties of P’ that can be defined in
DoNaLD. The edges of P are directed to reflect the order relation in P and coloured according to
their L-R orientation. For instance, we need to know if the edge (p13,p23) is present, and if so,
how it is oriented L-R and up-down. The incidence structure of P is defined in ARCA in terms
of the values of appropriate DoNaLD variables such as d1323. The vertices of P are given
integral coordinates respectively defined by the x-coordinate of P’ and the length of a shortest
combinatorial path from a minimal element of the poset P. Distance in a combinatorial graph is
used in a similar way in conjunction with projection of a truncated cube to define the Cayley
diagram S4 in ARCA. The definition of the path to represent geodesics is discussed in §4.2.

ri i isualisation

The use of scripts to generate displays such as Figure 1 and 2 has many attractive qualities. The
user can build up the components of a picture incrementally and independently and introduce
links between picture elements that are described in conceptually quite different ways. Because
the script of definitions represents a particular state of the final picture, rather than the cumulative
effect of a sequence of procedural actions, the way in which the user can interact with the visual
image is very open-ended. Changing a parameter transforms Figure 1 to Figure 2 for instance.
Subject to a good choice of script, the scope for manipulating a picture compares favourably with
what can be achieved by providing the user with a customised menu-driven interface where the
privileges to amend the state of the picture are already wired-in. This emphasises the difference
between our approach, directed at the informal use of visualisation techniques, and approaches
that involve encapsulating knowledge about how the user may wish to experiment with a visual
image and precompiling a program to allow these specific experiments.

Some specific features of typical interaction with Figures 1 and 2 will illustrate this point:

+ exceptions are a common problem in geometric display. In our example, some of the
ratios r12, r23 etc may be undefined, so that some points of P* cannot be displayed. In
our interpreters, variables whose values are currently undefined are handled routinely.

« the DoNaLD script defines P as a continuous transformation of the arrangement A. As A
is deformed continuously between combinatorial forms, the poset P* passes through a
singular states in which covering edges coincide. Near such singularities, the user can
compensate for loss of definition in P' by changing the vertical scale.

« auser experimenting with mathematical objects typically wishes to make minor changes
e.g. introducing pointers or modifying the presentation or annotations of figures to reflect
different features of the image. Interactively revising a script is much more convenient
than the tiresome process of modifying a conventional program for geometric realisagion.

« definitions have powerful latent effects e.g. the script for Figure 1 defines the number of
minimal triangular regions. This is 2 as p is currently set, but applies to any choice of p.




3.3, Implementation Issues

The DoNaLLD, SCOUT and ARCA prototypes are based upon the programming language
EDEN(3] that was primarily designed to implement definitive notations in a UNIX/C
environment. The EDEN interpreter automatically monitors data dependency and updates
variable values efficiently through selective re-evaluation. Its features include definitive variables
of basic C types (viz. lists, strings and scalars), conventional procedures, and actions in the form
of procedures whose execution is triggered by changes to the values of specified variables.
Generic ways of interfacing with system utilities such as X-windows have also been developed.

Each definitive notation is implemented by devising EDEN representations for the data types and
operators in the underlying algebra. Input definitions can then be translated into EDEN
definitions at a lower-level of abstraction. Where the value of a variable represents the state of a
displayed entity, such as a geometric point or shape, EDEN actions to maintain the display must
also be generated by the translator. This implementation technique can be adapted to permit the
definition of predicates to act as monitors — displaying messages as and when particular boolean
conditions prevail, or as imposed constraints — revoking a user definition leading to a violation.

At present, the practical integration of several definitive notations within a single SCOUT
interface, as in [4], uses EDEN as a common form of intermediate code in conjunction with an
interface to X-Windows. EDEN then provides a uniform internal representation of definitions
allowing data dependencies between different types of windows to be established.

t. Evaluai | Future Directions far R |
+ 1. Definitive Sate R . { Informal S .

Experiments with our present prototypes clearly show how in principle scripts of definitions can
be exploited in constructing a visualisation system in which

»  auser can exercise the privileges that normally belong only to the programmer

+ programming and reprogramming can be carried out incrementally

» auser can adapt the visualisation process to meet unforeseen requirements
To understand the full significance and potential for these methods, it is helpful to contrast
environments based upon sophisticated extension of calculator vs spreadsheet models.

Using a computing environment for mathematical research involves manipulating many different
kinds of information. Knowledge of mathematics, of system response, and even about the
operation of the computer itself may be required. A calculator relieves a mathematician of few
problems in organising and recording this knowledge. Intermediate results can be sgored
electronically, but this does not assist their interpretation, upon which the computational
strategies adopted by the user crucially depend. To be precise, the calculator only encapsulates




generic knowledge (e.g. about arithmetic relationships and operators, such as "what is the result
of multiplying x by y"): in no way can it be adapted by the user to reflect problem-specific
knowledge (e.g. "what it means to say that p denotes the profit from a transaction”).

The spreadsheet has greater potential in this respect. By introducing a formulae that defines the
profit (p) in terms of manufacturing cost (mc) and selling price (sp), a spreadsheet user creates a
simple state-based model of a perceived relationship between values. The claim that this mode of
representation assists the user in interpreting the computations performed in application-oriented
terms can be justified: a third-party, having no knowledge of the intended meaning of the
spreadsheet cells that display the values of p, mc and sc can verify that this is an appropriate
interpretation either by referring to the defining formula for p, or — with less confidence — by
observing the results of experimenting with the values assigned to mc and sc.

Definitive scripts derive their power from the simple principle illustrated in the spreadsheet. A
script can be used to represent knowledge about functional relationships between data that persist
throughout transition from one state to another. Subject to the usual limitations of the
experimental method, this knowledge can be gained through experiment within the application
(e.g. as when a mathematician studies many configurations of lines in Figure 1 to discover how
to construct a configuration of 4 lines to realise any given shortest path in the weak ordering of
S4), then encapsulated through the formulation of appropriate sets of definitions (e.g. formulae
to express the parameters of a configuration of lines in terms of a choice of shortest path).

Our underlying thesis is that a system of variables represented in the computer is most easily
interpreted by the user if the data dependencies associated with interpretable transformations of
their values are also specifed. Definitive representations of state play a fundamental part in this
specification. This link between the interpretation of variables and definitive state-transition
models explains the special qualities of the spreadsheet paradigm. In such environments the user
can dynamically construct faithful models of external state-transition systems, representing
knowledge that is specific to the problem and the context, rather than generic and preconceived.
These external systems may include abstract objects (e.g. the relationships between mathematical
entities as in Figure 1), physical objects (e.g. the relationships between objects in a room, as
modelled in [6]), or reflect the computer environment itself (e.g. the current state of the screen
display). The applicability of this technique is determined solely by whether the underlying data
types and operators can conveniently represent the perceived state of an external system.

4.2 Limi f nt Pr

We have 1dent1fied two factors that determine the expressive power of a definitive scnpt:z the
richness of the underlying algebra, and the clarity of its interpretation in state- -transition terms.
The definitive notations DoNaLLD, ARCA and SCOUT have underlying algebras with relatively




simple operators: the values defined by scripts in these notations are components of visual
images with state-transition interpretations readily accessible to the user. As Figure 1 illustrates,
SCOUT links together scripts based on diverse underlying algebras in a single context. In effect,
this unification is achieved by exploiting the fact that all the state changes being represented to the
user are ultimately registered as actual physical changes to the display. This meets the needs of
visualisation, but another kind of unification of definitive notations is ideally required. The
specification of the path representing the family of geodesics F in Figure 1 illustrates this point:
this path is defined by the linear extensions of the poset P (e.g. 1,6,5,2,3,4) that are first
transformed into a sequence of x-coordinates (e.g. 1,2,3,1,2,1) and then interpreted as a product
of generators to obtain a path through the Cayley diagram Sy4. This process cannot be represented
directly by an ARCA definition; in our specification for Figure 1, this data dependency is
maintained by introducing EDEN functions and an EDEN action to manipulate the intermediate
representation of an ARCA variable.

In their present form, our prototypes are not yet appropriate for informal use. This is illustrated,
for instance, by the technical difficulty of expressing the data dependency between an
arrangement A and its associated poset P in DoNaLD, as outlined in §2 above. Of course, some
conceptual difficulty in understanding the relationship between P and A is to be expected —
describing this relationship formally is an essential part of the mathematician's task. Yet even
when the relationship is understood, it is tedious to express it in DoNaLD definitions.

There are two aspects to this problem: we ideally require
» more powerful ways of constructing scripts e.g. including convenient methods of
specifying families of similar definitions
 aricher underlying algebra e.g. including sorting operators for lists of scalars.
For consistency, we would also wish to exploit definitive principles in introducing these

features. How should this be done?

Experimental work suggests solutions to these problems. A functional programming language
such as Miranda [8] has an extraordinarily rich underlying algebra of values and operators.
Typical Miranda scripts have characteristics complementary to DoNaLD scripts: they describe
sophisticated functional relationships, but it is difficult for the user to attach a state interpretation
to the script. It is relatively easy to develop a Miranda script that can generate DoNaLD scripts
through evaluation of variables: in this way, we have generated DoNaLD scripts to describe A
and P in Figure 1 for larger values of n for instance. By editing the Miranda script, the user can
exercise privileges more powerful than those permitted by the use of a DoNaLD script alone,
e.g. changing the number of points in the arrangement, or formulating different dependgncy
relationships (as when either generating a script in which the appropriate dependencies between
the components of Figure 1 are described, or simply generating a script to display Figure 1).




How should we interpret this use of Miranda and DoNaLD scripts in combination? Miranda and
DoNaLD scripts can be integrated within a unifying definitive paradigm, as follows:
 introduce admira, a definitive interface to Miranda
« interpret DoNaLD scripts associated with Miranda variables as values that can be given
interpretations by the user analogous to the values of DoNaLD variables
« conceive an underlying algebra appropriate for the generation of scripts as values.

The admira prototype has already been developed.The idea of 'script as value' requires careful
analysis of the external state-transition model concept discussed in §4.1. Informally, we contend
that asserting that the value of a DoNaLD variable represents the present position of a particular
point on the screen is in principle no different from asserting that the value of a Miranda variable
is a description of Figure 1 as an object with a particular inherent state-transition interpretation
modelled by a set of data dependencies. Finally, general-purpose operators in Miranda can be
adapted for the macro generating activity that is best suited to describing scripts abstractly.

Conclusions

We have developed principles and prototypes that offer good prospects for the eventual
development of visualisation systems that are simple and flexible enough to be used without deep
technical programming knowledge by research mathematicians. From a theory of programming
perspective, our research indicates dual roles for visualisation — which is primarily concerned
with the way in which the state of a computer system is represented to the user — and declarative
programming (as represented for instance in Miranda) — which is concemned with powerful
models of computation making state invisible to the user. The significance of our methods lies in

the synthesis of these two aspects of programming that they achieve.
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