Programming as Human-Computer Interaction

Meurig Beynon

Dept of Computer Science, University of Warwick, Coventry CV4 7AL
1. Motivating issues for programming research

These notes concern a programme of research into a new programming
paradigm that has been developed at Warwick over recent years. As
explained in [1], cur approach has been informed by fundamental concerns
arising in a variety of different areas of CS:

programming paradigms Backus

Is there a good general-purpose programming paradigm?

Can we resolve the tension between theoretical respectability and
practical power and usefulness?

How should we approach parallel programming challenges?
What is a good programming paradigm for interaction?

software engineering Harel, Brooks, Balzer

How do we move from requirements to module decomposition?
How do we deal with reactive systems development?

What is the role for formal specification in software design?

Can we generalise sequential specification techniques to concurrent
systems?

Al and applications McDermott, Cantwell Smith, Kent

How do we develop intelligible programs?

How do we relate programs to their real-world interpretation?
Can we develop an adequate theory of reference?

Can we overcome the problems of a logicist position?

Are there modes of programming suitable for the naive user?

Objects and the problems of generalisation e.g. penguins can't fly
Closed world assumption
Non-monotonic logic

foundations Turing, Tarski, Scott-Strachey
Is Turing's framework for computation adequate for modern CS?

Are the concepts used to provide foundations for classical mathematics
appropriate for CS?

2.

Perspective of the paper

Take the view that current wisdom in programming practice and
software engineering doesn't address the essence of the problem of
developing software for modern applications (cf Brooks' No Silver
Bullet).

Our central thesis is that the essence of programming is representing
transformations of state in a way that assists human interpretation.
The methods we exploit involve a far-reaching generalisation of a
principle for human-computer interaction to be found in spreadsheets.

We do not argue that our approach will displace current methods and
concepts, but believe it has the potential to integrate them in a way that
is hard to envisage without a radical change of perspective.

In particular, can see the roles for techniques from e.g.
functional programming
object-oriented design
formal specification

Content of paper
Personal view of how these issues are being and will be successfully
addressed in our program of research into a new programming
paradigm.

Little technical detail: sketchy overview of the main concepts

Consideration of some of the key distinctive features of our approach +
identification of the future framework for programming they suggest

Disclaimer:
spectrum of issues is wide
practical realisation doesn't yet do justice to the concepts
Previous paper [1] introduced our research program with reference to:
what are the problems we're trying to solve?
where are the most useful and relevant insights to be found?
In this paper, complementary (more speculative) concern with
what we've achieved and can achieve

how far we can clarify a vision and a goal for the research
conclusions we can draw about the future of programming 4

4. Two interpretations of programming
"programming in the narrow sense”
Computer programming
= prescribing a sequence of computer instructions to solve a
computational problem
"programming in the broad sense”
Programming as process
= all that is involved in developing a complex software system

to perform an appropriate function

Share Brooks' view that the essence of the programming problem is
bound up with the process aspect.

5. The essence of programming
What have the two definitions in common?
programming = transformations of state + human interpretation
In the narrow sense
states are machine states
transformations are machine state changes
human interpretation is encoding input and decoding the output.

In the broad sense

states are concerned with all state-changing agents
transformations with states of these agents and their interactions

also concerned with
the state of the software design + design transformations

6. Classical computer programming
programming = transformations of machine state + human interpretation

transformations of state are automatic and reliable
execution of a Pascal program on a traditional computer

human interpretation is off-line
establish conventions for giving input and inferring output

Historically, programming culture has been dominated by mathematical
theory of algorithms and "batch mode computation”. In this framework,
we are concerned with how to automate a transformation that can be
interpreted as computing a particular input-output relationship.

Simple example: Turing machine computation to add two numbers.
7. Computer Programming: States and tranformations

In computer programming, conceive state in terms of the values recorded
in the registers of the machine. For this reason, see state as an undesirable
focus of attention.

traditional programming paradigms focus on describing transformations
of state.

e.g. functional programming circumscribes the whole computation as a
single transformation of state, and discourages any consideration of
“"intermediate computational state"

In practice, need to worry about intermediate execution e.g for debugging
and interaction with the computer

In a procedural framework, there is another perspective on state in the
programmer's mind: an abstract algorithm that involves state concepts
closer to the application. In this view, can interpret the intermediate
execution to some degree.

Note:
Use of assertions, invariants, multiple assignment, predicate
transformation methods etc reinforce the model in the programmer’s

mind by stressing the need to describe interpretable states formally.

Even abstract algorithmic languages reflect the influence of traditional
machine code (e.g. unnecessary sequentiality, superfluous encoding).

8. Programming — state in design and execution
Classical Computer Programming operates in a tightly constrained world
can rely upon the computer to carry out operations

we have well-established conventions for communicating data to and
from the machine

because we're only concerned with sequential interactions, we don't
have to worry about complex interference and synchronisation

... even in this context, led to consider states in more than one role
machine state, abstract state of algorithm execution procedural
state of the functional program definition functional

In practice (e.g. because we need to design a complicated procedural
program, or invoke lazy evaluation in the specification of a functional
program, have to consider all three). Observation also suggests - possibly
misleading - that we can commute the state problem from execution state
to design state. [Misleading because don't get a satisfactory view of the
execution from a specification of a functional program whose design is
transparent, and vice versa.] Even so, there's confirmation here that
execution and design states do both matter in good programming practice.
For instance, care about efficiency and maintainability.

9. The role of state in software development

In programming in the broad sense, the need for satisfactory state
representations is even greater

state-changing agents are less reliable
modes of interaction more diverse, more problem specific
concurrency leads to problems of synchronisation and interference

["programming a reactive system entails machine design"]
The design / maintenance process is far more complex
problems include
decomposing the program into modules
propagating design changes between modules

coping with incompleteness and inconsistency

taking account of the views of more participants in design process:
e.g. different kinds of user, conflicting design requirements

10. The definitive script state model cf spreadshect
state = agent view
represented by definitive script + protocol for redefinition

variables in the script correspond to observations (in the scientific
sense) of the real-world system being represented

definitions express the way in which changes in these observations are
synchronised in transition between states

Central abstraction: indivisible propagation of state-change
11. Applications in the software development process

1. representing the assumptions about interaction between state-changing
agents in the application

identify the observations needed to express how each agent

can register changes of state in its environment through
perceived (synchronised) changes in values

is privileged to affect the state of other agents through
changing parameters observed by the other agents

cf the agent-oriented model of the VCCS: speed-transducer, vehicle
dynamics, speedometer

2. representing the ways in which different design agents can interact
with the current design

e.g. privileges of the dashboard designer vs the engine designer
refining the design (e.g. enhancing the speedometer)
debugging the specification (e.g. relocating the backwheel)

3. representing aspects of the design process

e.g. deconstruction of design
design of speedometer in isolation
modes of inspection of design
design of screen layout / design of vehicle profile
vs experimentation with simulation over time

recovering / recording history / versions

12. Observations and definitive variables
Observation = scientific observation

Underlying the modelling strategy is the identification of a
comprehensive set of observations. For the VCCS, this set is "what the
designer(s) of the VCCS need(s) to be able to observe to investigate the
model fully". This includes the observations associated with
appearance of the dashboard
profile of the vehicle
components required for visualisation of the vehicle performance
relevant attributes of the vehicle in motion (e.g. speed, forces acting)
values computed / communicated between internal components

This in particular accounts for how the engineer interprets the model
what are the forces acting?
how are the components behaving?
how is the cruise controller responding?

Also accounts for how we assess the role to be played by the driver
where are the control buttons?
how intelligible are the input and status conventions?

Intended to accord with the behaviour of an actual vehicle cruise
controller such as might build. Privileges of the designer include refining
the integrator that models analogue changes.

13.

Global state

Comprehensive set of observations <--> global system state
The omniscient omnipotent perspective: can see all and change anything

State-based model to support programming BUT

doesn't represent state by accumulation of side-effects
have persistence of state

cf calculator vs spreadsheet, function key vs graph of function

Definitive script and agent emerge as fundamental concepts

Analysis of data dependencies in transformation determine the scripts

Independence of changes identifies agents

Moving the candle and its reflection is one and the same action: it
pertains to a single agent

Moving the candle and turning the mirror are independent actions
whose concurrent execution presumes two agents

"Analysis of observations leads us to the identification of agents"

14.

Significance as a Method of Requirements Analysis

Requirements analysis can be oriented to solution of a specific task

Consequence may be that the specification is hard to change

This is the argument for modelling the application rather than addressing

the

specific task cf JSD and OOD.

Our approach is in the spirit of JSD BUT exploits the fact that the same set
of observations can be the basis of an enormous variety of models

Reinforcing this idea:

same script + different agents gives a completely different model

fundamental mechanisms that relate observations much more easily
re-used and have far greater generality in application than objects

cf lever mechanism
used in car, nutcracker, crane, signal object
i.e. devices for transport, demolition, lifting, communicating function

Practical evidence from rapid prototyping with extensive re-use
e.g. VCCS -> sailboat, billiards simulations

15. Global state vs views

Data dependencies are much richer than we can satisfactorily model with
current tools cf if ... then ... else ... definitions. There are interactions where
data dependency changes dynamically ...

... this + applications above indicate that we need more dynamic view-
oriented methods of organising scripts

e.g. select a subset of definitions
compose two sets of definitions
substitute one set of definitions for another
introduce a specialisation of a script
replicate a piece of script
partially evaluate :
generate script dynamically (e.g. change TopSpeed of vehicle)

Our present implementation methods are inadequate for such use.

16. The act-of-faith

Central to the use of agent-oriented modelling over definitive
representations of state is a qualitative distinction between two kinds of
interpretation of state. This is associated with the “Experiment Paradox”.

The experiment paradox involves two perspectives on state changes

investigating what might happen “requirements analysis”
confirming what does happen "preliminary design specification”

Traditional activities associated with computer programming
e.g. logical specification and object-identication

are post-confirmation

Requirements analysis investigation is prior to the act-of-faith

Relevant issues:

modelling in a database not amenable to total automation
what we enter into the spreadsheet is not predictable

make presumptions about experimental context in science:
there aren't any other agents around / can't intervene

act-of-faith associated with clarification of the underlying assumptions
re reliability of state changes

¢

17. Concept of Interpretation differs according to side of the act of faith

interpretation has two ingredients:
that which is referred to: "identifying the referents"
presumptions about the relation between referents

Variables in a mathematical theory
give no guidance about what are the referents "abstraction”
precisely prescribe how the referents relate

Variables in a definitive script
can be readily associated with their referents
"state-based correspondence with observation”
can stand in relationships that are not preconceived

Can confirm the interpretations of variables in a spreadsheet by interacting
with them: does the relationship between them in change of state conform

to what is observed in experiment?

cf isn't appropriate to say of the VCCS as absolute logical assertions: "the
length of the vehicle is 30" or even "the length of the vehicle is positive"

There is a role for such interpretation in "AI" programming:

e.g. In modelling legal transactions can't abstract the machine operations -
the significance of an action is entirely different according to context

cf computer breaks down at a particular point in a transaction, what is my
balance? perhaps (probably a hairy point of law) even the activities within
the machine have external significance

lawyer has fatal heart attack just as enters last detail into computer,
computer crashes before transaction is processed ...

10

18. Passing from Experiment to Theory

requirements -> specification
experiment -> theory
agent-oriented observation-based framework
"this is what I observe to be the case”
-> programming framework
"this is what I confidently believe is reliably true”

Unlike representing requirements in conventional idiom because
incomplete observation and partial objects, particular constraints

are qualitatively different. In particular, identifying an object or a
constraint is more than incomplete observation can justify ... perhaps you
haven't observed that this object has other methods, or its actions entail

other consequences, or that the constraint can be violated.

Difference borne out by the relative difficulty of changing the specification
in the two approaches

cf incrementally refining observations, introducing new agents vs
revising theories, modifying predicates, hacking objects

19. Fundamental Principles underlying Model-Building
A most important aspect of experiment is what agents we presume
e.g. do we believe in miracles?

What could have switched on the light?
A person, an animal, a bird: not a woodlouse, not the wind

Presume that nothing changes except through action of an agent

Actions of agents only interact through common perception

[cf whenever I brush my teeth my uncle in Australia blows his nose]

11

20. Advantages over logical specification framework
Important foci for (unsuccessful) research in logical setting are

Problem of negation (closed world assumption)

"What isn’t provably true is deemed false"
In our framework, we don't presume observation complete at any point
In specific problem-solving, we can proceed as an experimental scientist
might: "hang on, while I perform another experiment"

Problem of Exceptional Objects (commitment in OOP)

"Penguins are birds but penguins don’t fly.”
The semantics of our model can be defined by use. Our use of a penguin
model can reflect the more scientifically accurate proposition that "a
penguin is a bird that is never observed to fly". We can take up an agnostic
position, and need not commit ourselves concerning the truth of the
predicate “penguins can fly".

Problem of Monotonicity of Logic
"a consequences of a set of statements is also a consequence of a superset”

Treating observations as predicates leads to problems of non-monotonicity
e.g. when we tie a brick onto a bird that can otherwise fly. A definitive
script is not a set of assertions of incontrovertible truths. What's more, the
introduction of a new agent has quite the opposite effect to the
introduction of a new predicate: it liberates the model rather than
constrains it: "There are more things in Heaven and Earth than are
dreamt of in your philosophy".

12

g

21. Role for Commitment
Commitment can enter the picture in variety of ways

Can adjoin assumptions and compile to a conventional program
e.g. implementing the button user's VCCS

Can add monitors and constraints to help us to maintain invariants

The operators underlying definitions are presumed to have reliable
interpretations

Expect that commitment increases as the model is developed
e.g. functionality of VCCS is strongly prejudiced towards particular modes
of redefinition by this stage: as if we'd written a VCCS program
22. Passing from Experiment to Theory is a universal process
Have discussed applications to
Design Representation
Program Debugging
Program Construction

Other examples of usefulness

Proof presentation
leading the reader through a sequnce of states

Complex Task Management

assembling large volumes of inexact and incomplete data
translating between data formats for incompatible tools

13

23. A New Programming Paradigm
states in programming
states in the construction of a complex function

states associated with assertions (WP):
procedural element magnified by consideration of invariants

states as manifestations of agent views
data structure: different concurrent agent views
parsing as involving hierarchical agent activity

... parallels with debugging mode of development
modes of composition of state
Harel's statecharts: orthogonality and depth

... parallels with programming constructs ...
loci, iterations, parallel composition, arrays

24. Reference

.. wherein many other references may be found

1. W. M. Beynon New Paths for Programming in Theory and Practice
University of Warwick, September 1992

Section Index Page
1. Motivating issues for programming research 1
2. Perspective of the paper 2
3. Content of paper

4. Two interpretations of programming 3
5. The essence of programming

6. Classical computer programming 4
7. Computer Programming: States and tranformations

8. Programming — state in design and execution 5
9. The role of state in software development

10. The definitive script state model cf spreadsheet 6
11. Applications in the software development process

12. Observations and definitive variables 7
13. Global state 8
14. Significance as a Method of Requirements Analysis

15. Global state vs views 9
16. The act-of-faith

17. Concept of Interpretation and the act of faith 10
18. Passing from Experiment to Theory 1
19. Fundamental Principles underlying Model-Building

20. Advantages over logical specification framework 12
21. Role for Commitment 13
22. Passing from Experiment to Theory is a universal process

23. A New Programming Paradigm v 14

24. Reference

14

