Interactive geometric modelling
based on R-functions:
an agent-oriented approach

V.D. Adzhiev W.M. Beynon A.A. Pasko

Abstract

This paper describes a new approach to interactive ge-
ometric modelling. based on the application of an agent-
oriented modelling technique. Our methods are conceived
with exploratory modelling that involves experiment and
observation particularly in mind. Our geometric modelling
system is based on CSG principles and uses R-functions for
implementing sets of operations over functionally defined ob-
jects. This supplies a high-level symbolic description of the
n-dimensional geometric model being updated during the
modelling process. Our approach to building a definitive ge-
ometric language to allow incremental and extensible mod-
elling is described. An agent-oriented notation is used to
describe both the interaction of the user with the geometric
modelling system and the interactions between the principal
components of the system itself. A case-study that involves
exploratory modelling of morphing between two CSG objects
is introduced. The future development of an agent-oriented
approach to geometric modelling is discussed.

Introduction

Established applications of traditional CSG systems model a static
3-dimensional object from a limited rather low-level and incomplete
set of standard primitives using built-in Boolean operators. The
user can typically edit the CSG representation of an object via a
graphical interface by modifying or replacing one of the leaves or
subtrees of its associated binary tree.

Certain categories of users feel themselves restricted when work-
ing with such systems. Without forfeiting the well-known merits
of CSG representations. they would like to use a wider and more
general class of primitives (e.g. swept objects. blobby models. con-
volution surfaces etc.) and operations (e.g. blending. morphing
etc.) and—moreover—would like to introduce them during the mod-
elling. There is also interest in increasing the dimensionality of the
modelling space. as. for instance. when developing time-dependent
models of interacting objects.

Finally, such advanced users are interested in modelling environ-
ments of a different character. in which it is easy to create new geo-
metric objects and transformations. and subsequently explore their
characteristics and behaviour. In this process. the modeller applies
principles similar to those used in a traditional scientific investi-
gation of a physical phenomenon [1!. performing experiments with
the geometric model and observing its behaviour under changeable
conditions.

To meet these requirements. it is essential that the user can es-
tablish a close and intelligible relationship between the specification
of an object and its observed characteristics. This requires both a
high-level “user representation” and means to develop the geomet-
ric model incrementally and interactively through observation of its
visualization at every step.

R-Functions as a high-level user representation
for geometric objects

“Generative Modelling” [12] is a promising new approach to unified
shape representation, based on multi- dimensional parametric func-
tions, that allows textual specification of a geometric shape using
a set of symbolic operators. The approach to geometric modelling
described in this paper also uses a high-level representation. but is
based on using so-called “R-functions™ for the description of opera-
tions over geometric objects with implicitly defined boundaries.

The set of geometric objects we specify comprises topologically
closed subsets of n-dimensional Euclidean space E, defined by an
nequality

flry.xa.cox) 20 (1)

N

where f is a real continuous function of coordinates of the point
in E,,. We refer to f as the descriptive function defining a certain
geometric object goby. A descriptive function can be defined by an
analytic formula. by an algorithm for evaluation or by interpolation
from tabulated data. Operations on geometric objects specified as
in (1) are derived from operations on their associated descriptive
functions. For instance. set-theoretic operations over geometric ob-
jects for which the resulting object includes its boundary points cor-
respond to 3-valued logic operations over point-membership predi-
cates. Analvtic definitions of such operations have been proposed
and studied by V. Rvachev [10],[11] and are represented by R-
functions. There is a variety of systems of R-functions. each of which
has the closure property. The most frequently used svstem includes
the following analytic expressions for R-functions corresponding to
set-theoretic union. intersection and complementation:

FVag=(F+a+\/(FP+9*—2af9)/(1 +a)

fAag=(f+g—(f*+¢*—2f9)/(1+a)
—‘afz _f

where a = a(f. g) is certain function satisfying following conditions:

-1 <a(f.g) <1 a(f.g) =alg, f) = a(=f,9) = a(f, —g).

The form most useful in practice corresponds to a = 0.

There is also an R-function system that provides C™ continuity.
As shown in [8]. this representation is unified in that it is possi-
ble to specify not only the above-mentioned primary set-theoretic
operations but also such operations as cartesian product, projec-
tion. bijective mapping (in particular affine mapping), some kinds
of blending [9] etc. Note also that, with the help of R-functions,
both algebraic and semi-algebraic geometric objects can be repre-
sented using a single descriptive function.

Computing tools for geometric modelling and visualization [7]
that use R-functions in conjunction with more low-level CSG repre-
sentations have already been developed. In this paper, we describe
preliminary work aimed at exploiting R-function representations in

a highly flexible interactive geometric modelling system meeting the
requirements set out above. To this end, we invoke a new pro-
gramming paradigm that has already been successfully applied to
interactive modelling and visualization with graphical images of a
simpler nature [1].

R-function representations and definitive scripts

Figures 1 and 2 are specifications and images of two geometric ob-
jects. The objects are prechair—an approximation to a chair such
as can readily be described using elementary CSG principles. as in
the archetypal language PADL-2 [3]. and chair—chosen to illustrate
the complexity of object representations that can be specified us-
ing R-functions. The components of the chair, synthesized from
superellipsoids, have themselves been constructed by a process of
incremental modelling with intermediate step-by-step visualization.

These specifications take the form of definitive scripts [1], in
which the variables represent parametrized geometric objects within
a modelling space. The algebraic expression that appears on the
RHS of a formula defining a geometric object, such as gob_seat. is its
associated descriptive function. The user modifies the specification
of a geometric object. changes the mode of presentation, or simulates
changes to its state (as in movement of the chair). by redefining
variables in the script. The characteristic property of a definitive
script is that such redefinition of a variable automatically affects
the values of any dependent variables. For instance. redefinition of
r affects the descriptive function that defines gob_wheels which in
turn affects the value of gob_chair. Note that the specification of
prechair is essentially equivalent to a traditional CSG description
of an object. such as might be formulated in PADL-2. and that
redefinition within such a definitive script is in essence equivalent
to editing a CSG tree.

A geometric modelling system based on definitive scripts pro-
vides an interactive environment that supports a very flexible mod-
elling process. By redefining variables in scripts, the user can

o define the modelling space in a symbolic manner. giving its di-
mensionality, coordinate variable ranges, geometric types etc,

e introduce the names and descriptive functions of geometric

/* Built-in set-theoretic operations based on R-functions:

*|” — union, “&™ — intersection. *\” — subtraction. */
x1_min = —-8.0:

xlmax = 8.0:

x2_min = -12.0:

x2_max = 12.0;

x3_min = -8.0;

x3_max = 8.0;

gob_preseat = ((x146) & (—x1+6)) &

gob_preback = ((x1+4) & (—x1+4)) & (\2 & (—x2+11))
c ((x34+7) & X

gob_pedestal = ((x1+7) & (-x147)) & ((x2+11 2-7.1
& ((x347) & (—x3+7)):
gob_preleg = ((x1+2) & (—x142)) & ((x247) & (—x2~-1.3))
& ((x342) & (—x3+2)):
gob_prehole = ((x2+1) & (—x2+41)) & ((x3+44) & (—x3+4)):
gob_prechair = (gob_preseat \ gob_prehole) | gob_preback
gob_pedestal | gob_preleg:

Figure 1. A geometric object constructed from blocks

gob_seat = 1—(x1/6)**4—((x /2)**4—(:{3/6)**4:
gob_back = 1—(x1/4)*¥*4— ((2 5.5)/5.5)¥*4—((x3+3)/1.5)**4:
gob._dent = 1—(x1/6)**4—((x2-6.5)/7.8)**2~((x3-1.3)/5.15)**2:
gob_arms = (((1 ((x1-6.5)/0.5)**4—(x2/1.2)**4—(x3/4)**4)

| (1-((x146.5)/0.5)**4—(x2/1.2] **4 (x3/4)%*4))
\ (1=(x2/0.8)¥*2—(x3/3.5)**2))
I

(1=((x1—6.5)/1)**4—((x2—1.6)/0.4)**1—(x3/5.5)**2)

(1-({x146.3)/1) **4 ((x2-1.6)/0.4)**4—(x3/5.5)**2):
gob_props = (1-(x1/6.5)**8—((x2+5)/0.3)**8~(x3/0.5)**8)

| (1=((x1—6.5)/0.25)**8—((x2+3)/2)**8— (x3/0. 5)**)

| (1—((x146.5)/0.25)**8—((x2+3)/2)**8~(x3/0.5)**8):
gob_strut = 1—(x1/0.8)*¥*4—((x2-4)/5.8)¥*4—((x3+5)/0.5)**4;
gobleg = (1—(x1/0.5)**2~(x3/0.5)**2) & (x249) & (~x2-4);
gob_cross = ((1—(x1/0.5)*¥*2—((x2+8)/0.5)**2) & (x3+7) & (7—x3))
| ((1=((x248)/0.5)**2~(x3/0.5)**2) & (x147) & (T-x1));
gob_wheels = (1—-((x1=7)/r)**2—((x2-x2k)/r)**2—(x3/5)**6)
| (1=(x1/s)**6—((x2—x2k)/r)**2—((x347)/r)**2)
| (1=((x14+7)/s)**6~((x2—x2k)/r)**2—(x3/1)**2)
| (1—(x1/r)*¥*2—((x2—x2k)/r)**2—((x3—7)/s)**6):
x2k=-9.4; r=0.6; s=0.4;
gob_chair = ((gob._seat | gob_back) \ gob_dent) | gob_arms
| gob_props | gob.strut | gob_.leg | gob_cross | gob_wheels;

Figure 2. A geometric object synthesized from superellipsoids

objects using mathematical formulae constructed from tradi-
tional algebraic functions and R-functions.

e assign numerical values to parameters.

As explained elsewhere [1], the expressive power of represen-
tations based upon definitive scripts stems from the close corre-
spondence that can be established between values of variables in
the script and observations of the object being modelled. As the
specification of chair illustrates. the perturbation of parameters in
descriptive formulae leads to subtle changes in shape of the geomet-
ric object of the kind that a designer might wish to perform. In
contrast, however accurately an object is represented by a boolean
combination of basic CSG objects. there is in general no easy way
to perform transformations of this nature. On this basis, the vari-
ables in an R-function representation can reflect the components
of a complex geometric object much more faithfully than those in
a conventional CSG representation. Practical experience with the
prototype Hypersurf system also shows that the modeller can de-
velop insight into the way in which the choice of parametrization
and the redefinition of parameters affects the geometry of objects.
The experimental process of redefinition and evaluation through in-
spection of the visual image is ideally suited for modelling tasks that
involve aesthetic judgements.

Agent-oriented modelling for interaction

Our geometric modelling system is being developed within a broader
framework established by our previous work on interfaces for engi-
neering design 2], [3]. We use an agent-oriented modelling technique
to specify this system. The user is an agent who constructs and ob-
serves visual images of a geometric model. and who incrementally
comprehends the correspondence between the abstract mathemat-
ical model and its visualization through an exploratory modelling
process. The components of the modelling system are treated as
agents that interact with the user and with each other. The per-
spective of each agent is characterized by a particular mode of obser-
vation and particular privileges to augment and modify the model.
The mode of observation determines the nature of the variables in

-1

the definitive script. whilst the protocol for redefinition reflects the
privileges.

The specification method resembles extensions to object-oriented
programming for concurrent execution. such as the ACTORS model
[6]. but adopts agents and observations rather than objects as its
fundamental abstractions. Our approach differs fundamentally from
an object-oriented paradigm in that

e message passing is only one mode of agent interaction.
e direct action of one agent upon another is possible.

e single actions typically effect state changes in several agents
in one indivisible transition.

The abstract characteristics of an agent are specified using a
special-purpose notation called LSD [2]. An LSD specificaton is
oriented towards understanding the interaction between agents in
a system by applying principles intimately connected with experi-
ments and observations.

The variables in an LSD specification represent observations of
the system such as might have to be monitored in explaining the
interaction between agents. The variables associated with an agent
are classified according to their status as observations with respect
to the agent. These classifications are:

o STATE variables that the agent owns;
e ORACLE variables to which it responds:
o HANDLE variables that are conditionally under its control;

e DERIVATE variables representing indivisibly coupled stimulus-
response relations.

The same variable can be classified in different ways by different
agents. Each agent has a PROTOCOL that specifies its privileges
to change the system state. subject to certain enabling conditions
being met.

The nature of LSD specification can be illustrated with reference
to a particular agent visualization that governs the way in which a

geometric object within our exploratory modelling system is dis-
plaved on the screen. Listing 1 is a simplified LSD specification
for visualization. The period of existence of the agent visualization
1s specified by the special DERIVATE LIVE whose value is TRUE
whilst the user is in the process of getting a visual image. The
visualization agent responds to variables such as rotate_image and
film as ORACLEs whose value is set by the user to determine the
mode of visualization. The STATE variables include the viewing
angles alpha and beta. whose very existence is indivisibly linked to
visualization activity. The primary HANDLE variables are parame-
ters alpha. beta and x_time that are manipulated by visualization in
its PROTOCOL, and these indivisibly change the image of the geo-
metric object currently under consideration as expressed by another
DERIVATE.

AGENT visualization {
STATE (degree)alpha=—30. beta=30. (bool)film., ...
ORACLE rotate_image, x_time_delta. point_membership_value ...
HANDLE
visual image[gname_curr].
x_time
DERIVATE
(bool)LIVE = (mode=="get visual_image™),
visual image[gname_curr] = FUNC _visualize(...)
PROTOCOL
{ film) — FUNC_save_frame(...),
(x[i]-geom_type == “t”) A (xminli] < x_time < xmax]i])
— X_time = |x_time| + x_time _delta,
(rotate_image == “right”) — alpha = alpha — delta_alpha,
(rotateimage == “down~) — beta = beta + delta_beta,

Listing 1. Outline LSD specification for visualization

Note the use of special-purpose functions identified by the pre-
fix "FUNC_"; these describe computational activity associated with
visualization that establishes functional relationships in a manner
that is invisible at the appropriate level of abstraction. In List-
ing 1. as in the other listings. it is inconvenient to itemize all the

arguments that such functions require. For instance. the param-
eters upon which the value of the variable visualimage depends
include: csg_tree[gname_curr]. [x[i] geom_type (i=1.2.....n)]. x_time.
alpha, beta. and colour. Note also that the redefinitions in a PRO-
TOCOL can refer to the current value |v| of a variable v isee for
instance the action that updates x_time). In this way. redefinition
1s a true generalization of reassignment.

A brief review of the LSD specification

In our interactive geometric modelling system, there are two princi-
pal agents on the same level of abstraction: user (see Listing 4) and
modelling (see Listings 2 and 3). At any stage, the nature of the
modelling activity in progress is reflected by the variable mode. The
mode variable is a STATE for modelling and simultaneously an ORA-
CLE and a DERIVATE for user: its value is functionally determined
by the user’'s STATE variable user_conclusion that is set through
a special procedure, representing a human thought process. that
cannot be formalized. Other significant STATE variables of mod-
elling include built_in_algebraic_functions and built_in_R_functions
specifying the functions that can be used in symbolic descriptive
functions.

The user and modelling agents have hierarchical structures of
different kinds. The following sub-agents of modelling can be active
simultaneously: point_in_space. geometric_object, R_csg_conversion,
point_membership relation, and visualization.

The sub-agent point_in_space serves to represent a given point
of the modelling space and to specify the characteristics of its coor-
dinate variables. It includes STATE variables specifying the dimen-
sionality n of the modelling space, values x[i] and ranges xmin/i],
xmax[i] for the coordinate variables. and special geometric tvpes
establishing the conventions governing the semantics of coordinate
variables. in particular. for visualization. The default values for co-
ordinate variables in 4D space are: “r”, *y", “z”.“t" but certain
other types (for example, mapping values to colours) can also be
introduced. The STATE variable x_t_delta determines the incremen-
tal interval used in animating a coordinate variable with geometric
tyvpe “t". The DERIVATE variable point_instance is a list of val-

10

AGENT modelling {

STATE
(stringjmode. (string)R_model = ~a=0.0",
(list)built_in_algebraic_functions = [~sqrt”."exp”,"log"....].

(list)built_in_R_functions = [*|".~&".~\",“7".*@" .

(list Jgname list. (string)gname_curr.

(booligob_exist[x] = FALSE, (string)message
ORACLE

modelling_in_progress. point_valid. fun_valid[gname]....
HAXNDLE

gob_exist[x]. csg_tree_exist[+]. message....
DERIVATE

(bool)ILIVE = modelling_in_progress.

(string)message = FUNC _message(point_valid.fun_valid....)
PROTOCOL

(mode == “define_new_gob”) A - (gob_exist[gname_curr])

— gob_exist[gname_curr] = TRUE:

gname list = FUNC_append(|gname list|.gname_curr).

(mode == “define_new_gob”) A (gob_exist[gname_curr])
— csg_tree_exist[gname_curr] = FALSE,
(mode == “eliminate_gob”) A (gob_exist{gname_curr])

— gob_exist[gname_curr] = FALSE:
gname list = FUNC _remove(|gname list|.gname_curr). ...

AGENT point_in_space {

STATE
[(real)xmin[i] = 0 (i=1.2,....n)].
[(real)xmax[i] = 1 (i=1.2.....n)].
[(real)x[i] = xmin[i]} (i=1,2,....n)].
(integer)n = 4.
(point_type)point_instance, (bool)point_valid,
x[1].geom_type = “x”, x[2]_geom_type = “y”,
x{3].geom_tyvpe = “z”, x[4]_geom_type = "t".
x_time = xmin[4]. x_time_delta = (xmax[4]—xmin[4])/10

DERIVATE
point_instance = [x[1], x[2].... x[n]].

Listing 2. Outline LSD specification for modelling

11

AGENT geomnietric_object [gname] {
STATE
(svmbolic_rep)gob_descr_fun[gname].
(real)gob_par list[gname],
(csg_tree_rep)csg_tree[gname},
(screen_picture)visual _image[gname].
(real)gob_value[gname].
{(bool)csg_tree_exist[gname] = FALSE
ORACLE point_instance
DERIVATE
(bool)LIVE = gob_exist[gname)].
gob_value[gname] =
FUNC_descr_fun_eval(point_instance.csg_tree[gname]....)
}

AGENT R_csg_conversion {

DERIVATE
(bool)LIVE = (mode == “define_new_gob™).
fun_valid[gname_curr] = FUNC_test(gob_descr_fun[gname_curr])
PROTOCOL
(fun_valid[gname_curr]) A - (csg-tree_exist{gname_curr])
— csg_tree[gname_curr] =
FUNC_create_csg_tree(gob_descr_fun[gname_curr],...);
csg_tree_exist{gname] = TRUE

}

AGENT point_membership_relation {
STATE (string)point_membership_value
ORACLE gob_value[gname.curr]
DERIVATE
(bool)LIVE = (mode == “evaluate_po_memb _rel”)
V (mode == “get_visual_image”),
point_membership_value =
FUNC_predicate_eval(gob_value[gname_curr])

Listing 3. Outline LSD specification for modelling sub-agents

ues of coordinate variables that is re-evaluated whenever any x[1] is
re-defined.

Within the modelling process. many instances of the sub-agent
geometric_object can exist simultaneously. Each instance is iden-
tified by its associated gname. A geometric.object instance has
STATE variables specifving various representations of it: a symbolic
descriptive_function, a more low-level csg_tree. and a visual.image
whose value is a picture on the display screen.

The agent R_csg_conversion is invoked as required to create a
csg_tree representation from a valid descriptive function. and the
agent visualization maintains visual_image as a DERIVATE as ex-
plained above.

The user agent is composed of several sub-agents that corre-
spond to the different modelling activities being performed accord-
ing to the value of mode. The sub-agent user_interpretation, which
is key for making observations and subsequent decisions on the
part of user (see its ORACLE variables). i1s active at all times.
and the other sub-agents can act in paralle] with it. Only one
such sub-agent user_define_gob is included in Listing 2 but oth-
ers, such as user_set_modelling_space, user_assign_geometric_types.
user_set_gob_parameters. and user_delete_gob. appear in our com-
plete specification.

We illustrate how the LSD specification is to be interpreted by
following a typical sequence of processes during a geometric mod-
elling session. If user wants to introduce a new geometric object
at some stage. it reaches the corresponding user_conclusion and the
DERIVATE variable mode gets the value define_new_gob. At once,
the sub-agent user_define_gob becomes active. and user can input
the name of a new geometric object gname_curr and its symbolic de-
scriptive function gob_descr_fun. (Note that the processes by which
an actual user might convey a change of mode to the geometric mod-
elling system-—as in choosing a menu option. or supply input—as
in filling in a dialogue boz. are hidden in FUNC... operators at this
abstract level of specification.)

Further. in accordance with its PROTOCOL. modelling checks
whether an object with such a gname_curr already exists. If not, the
variable gob_exist[gname_curr| becomes TRUE and a new instance

13

AGENT user {
STATE
(thought)user_conclusion = “let’s_start™,
(bool)modelling_in_progress = FALSE
ORACLE mode
HANDLE modelling_in_progress. mode
DERIVATE
mode = FUNC _user_choose_mode(user_conclusion)
PROTOCOL
(user_conclusion == “let’s_start™)

— modelling_in_progress = TRUE

AGENT user_interpretation {
ORACLE
mode, message. point._instance,
point_membership.value, visual image[gname_curr].
gname list. gname_curr,
gob_descr_fun[+], gob_par list.
[xmin[i]. xmax{i]]. i=1.....n,
X_time, alpha.beta
HANDLE user_conclusion.
DERIVATE
LIVE = (modelling_in_progress),
user_conclusion = FUNC _user_observe_thinkingf...)
}
AGENT user_define_gob {
ORACLE
mode, built_in_algebraic_functions,
built_in_R_functions,
gname list. gob_descr_fun[*]
HANDLE
gname._curr. gob_descr_fun[gname_curr]
DERIVATE
LIVE = (mode == “define_new_gob™).
gname_curr = FUNC_user_input(gname_type).
gob_descr_fun[gname_curr] = FUNC_user_input(fun_typej

Listing 4. Outline LSD specification for the user agent

14

geometric_object[gname_curr] is created. Agent R_csg_conversion.
which 1s also active in this mode. simultaneously checks the validity
of the gob_descr_fun introduced and sets the appropriate value of
the variable fun_valid[gname_curr]. The DERIVATE message which
appears on the display screen is set by the agent modelling according
to the value of this variable. Provided that fun_valid[gname_curr]
1s TRUE, the agent R_csg_conversion creates an internal represen-
tation of the geometric object csg_tree[gname_curr] in accordance
with its PROTOCOL. The DERIVATE gob_value[gname_curr] that
1s the value of the descriptive function at the point point_instance
of the modelling space (the origin of the coordinate system, by de-
fault) is simultaneously evaluated. And this is the end of the chain
of actions connected with this particular mode.

In the sequel. user_interpretation. responding to the message
displayed, can set the next user_conclusion. Entering the mode
get_visual_image. for example, will invoke both visualization and
point_membership relation. which is implicitly used in evaluating
FUNC_visualize. The agent point_membership relation can also be
used directly when user wants to classify a particular point with
respect to a particular geometric object. In this case. introduction
of the coordinates of the point x[i] and the gname_curr leads to the
indivisible sequence of evaluations: point_instance in point_in_space.
followed by gob_value[gname_curr] in geometric_object[gname_curr].
then point_membership value in point_membership_relation, and fi-
nally message in modelling.

The complete LSD specification provides a clear and concise de-
scription both of the interaction between user and modelling system
and of the main processes taking place through interaction between
the components of the modelling system. In particular. the descrip-
tions of the user sub-agents specifv what interface to the system
is needed in each specific mode. Since the LSD specification indi-
cates what agents act concurrently during the modelling process.
it can also be viewed as a preliminary specification for a parallel
implementation of the modelling system.

Morphing between CSG-objects as a case-study

The exploratory geometric modelling process described in this pa-
per is illustrated by a case-study concerned with morphing between
two CSG objects. Such a morphing is considered as a 4-dimensional
operation. If the geometric objects goby, gob, have descriptive func-
tions f. g respectively. the resulting geometric object is goby. where
h is defined by

h(r.y.z.t) =alx.y.=.t) f(x,y. s t) (1~ t) + b(a,y. = t)g(x. y. . t)t

and « and b are positive real-valued “modulation functions™ that
influence features of the visual sequence of frames. Defining these
functions for particular objects is a problem that can only be solved
effectively through exploratory geometric modelling.

We consider morphing between prechair and chair as a particular
case-study. We develop this case-study by extending the definitive
script obtained by concatenating the scripts in Figures 1 and 2, and
using the default geometric types as described previously. In this
context, the above formula takes the form:

gob_sculpturing_chair = al*gob_prechair * (1-x4) + a2*gob_chair*x4:

Figure 3-—generated using the interactive geometric system Hyper-
surf [7]—depicts corresponding visual sequences of frames generated
for 4 different values of the time parameter r4.

When we define the parameters al and «2 to be 1, observation
of the sequence of images shows that the morphing is unsatisfac-
tory. Inspection of the specification shows that this is due to the
different “densities” of the objects. We accordingly choose al much
larger than «2., and redefine al to be 10. This morphing is more
satisfactory. but there are some undesirable features in the region of
the chair arms. The form of the corresponding descriptive function
and some experiments suggest the following functional form for a2:

a2 = 1+95*%e**(—abs(x2)):

with peak value at 22 = 0. The morphing process is now satisfac-
tory. Of course. the process of experiment and observation can be
taken further until an even better result is achieved.

16

s

time =0 time =1

time = 0.25 time = 0.5

ay=1l.a, =1

ay = 10, agy =
a) = 10
ay = 1 + 956

Figure 3. Four steps of the morphing process

17

Conclusion

In principle, R-function representations can be used to give precise
and subtle specifications of complex geometric objects. The meth-
ods of exploratory modelling outlined in this paper have already
made it possible to develop an impressive range of useful construc-
tion techniques. To derive the maximum benefit from the approach.
we propose to develop an interactive environment, based on defini-
tive principles. that exploits an extended set of symbolic operators
(such as symbolic differentiation. search for global extremum etc.).
Operators of this nature have already been introduced by Snyder
[12] within a procedural programming framework.

Our LSD specification can be interpreted operationally using
definitive scripts to represent computational state. We are currently
developing a sequential implementation in the interactive environ-
ment supplied by EDEN [3]. An alternative approach. better suited
for a parallel implementation, is to exploit the concurrency in the
specification in the computational framework of the Abstract Defini-
tive Machine [4].

A complementary concern is that of exploiting our exploratory
modelling technique in a design context. For this purpose. we
must provide a practical interface for a designer who has no spe-
cialist mathematical knowledge, and make it possible to construct
R-function representations from object descriptions better suited
to conceptual design. It is particularly important to make provision
for references to characteristic points and special features of objects.
and to enable the user to develop suitable R-function representations
based on these. Issues for future research include effective methods
for generating R-function representations:

¢ to reflect the construction of an object from a component
hierarchy—as in separating a chair into the parts that would
be separately manufactured,

e to capture the functionality of geometric objects. so that redef-
inition of parameters in a script can be used to represent phys-
ical operations—as in rotating or tilting the seat of a chair.

¢ to develop exploratory modelling techniques combining shape
modelling with complex motion using a set of special time-

18

ot

dependent transformations—as in investigating the problems
of moving a chair from one room to another.

Much previous related work has been done on the use of defini-
tive scripts in conjunction with agent-oriented modelling in en-
gineering design [2]. The advantages of using such a modelling
paradigm in conjunction with simple 2-dimensional visualization
techniques have been demonstrated in several case-studies, and the
possibility of generalizing this work to higher dimensions has al-
ready been investigated. The research described in this paper has
close points of contact with the design and partial implementation
of a definitive notation for geometric modelling CADNO as first in-
troduced in [3]. CADNO is centrally concerned with developing an
abstract framework within which many different ways of specifying
and referencing geometric objects can be unified. The versatility
and homogeneity of R-function representations suggests that thev
are well-suited to complement the object representations conceived

in CADNO.

Acknowledgements

We are grateful to Steve Russ and Yun Pui Yung for useful discus-
sions relating to this paper. and to Alexei Sourin and Nick Holloway
for software support. We are indebted to the Royal Society for sup-
porting Valery Adzhiev under its Postdoctoral Fellowship scheme.
and to the SERC for financial support under grant GR/J13458.

References

[1] W.M. Beynon, Y.P. Yung. A.J. Cartwright. P.J. Horgan, Scientific
visualization: experiments and observations. Proc. 3rd Eurographics
W/S on Visualization in Scientific Computing, Viareggio, (157-
173). 1992.

[2] WL Beynon. I Bridge. Y.P. Yung, Agent-oriented modelling for
a vehicle cruise control system, Proc. ASME Conf. ESDA 92, Is-
tanbul, (159-165), 1992.

[3] W.M. Beynon. A.J. Cartwright, A definitive programming approach

to the implementation of CAD software, Intell. CAD Systems II:
Implementation Issues. Springer Verlag, (126-145), 1989.

19

(4]

(8]

[9]

(10]

W.AL. Bevnon. M.D. Slade. Y.W. Yung, Parallel computation in
definitive models. Proc. CONPAR 88. BCS Workshop Series. CUP.
(359-367). 1989

M. Hartquist. PADL-2 User Manual. 1983.

C. Hewitt. Viewing control structures as patterns of passing mes-
sages Artificial Intelligence. 8. (323-364). 1977

A.A. Pasko. V.D. Adzhiev. I.A. Prostakov, Multivariate function vi-
sualization: the inductive approach. Proc. §rd Eurographics W/S on
Visualization in Scientific Computing. Viareggio. (303-316). 1992.

A.A. Pasko. V.\. Savchenko. V.D. Adzhiev, A.L. Sourin. Multidi-
mensional geometric modeling and visualization based on function
representation of objects. Tech. Report 93-1-008, Dept. of Computer
Software. The University of Aizu, Japan, September 1993.

A.A. Pasko. V.V. Savchenko. Blending operations for functionally
based constructive geometry. ibid.

V.L. Rvachev. On the analyvtical description of some geometric ob-
jects, Doklady of Ukrainian Academy of Sciences, 153. 4. (7165-767).
1963.

V.L. Rvachev. Methods of Logic Algebra in Mathematical Physics,
Naukova Dumka Publishers. Kiev, 1974.

J.M. Snvder, Generative Modeling for Computer Graphics and
CAD, Academic Press. 1992.

20

......

