Computer-Assisted Jigsaw Construction: a Case-Study in Empirical Modelling

W.M. Beynon, C.J. Sidebotham, Y.P. Yung
Department of Computer Science

University of Warwick

Coventry CV4 7AL

UK

Abstract

We connect the problem of finding a suitable programming paradigm for graphics with
its role in the visualisation of conceptual representations — state-based models that can
capture an experiential view of knowledge that arguably cannot be expressed in a
logical or declarative framework. Conceptual representations are identified by
selecting systems of observables, and analysing the functional dependencies through
which they are indivisibly linked in change. Such representations have a particularly
significant role to play in exploratory design — an activity that has a high profile in
modern computing applications such as modelling and simulation for virtual reality,
reactive systems and concurrent engineering.

Because it links programming and modelling, an object-oriented paradigm offers some
support for conceptual representation, but the emphasis it places upon object integrity,
circumscription and encapsulation is in general too restrictive. We introduce an
alternative modelling paradigm — empirical modelling — that is well-suited for
conceptual representation in exploratory design, and outline its application to
modelling the requirement for a computer-assisted jigsaw assembly environment. In
this way, we illustrate the use of a software environment, incorporating three definitive
(definition-based) notations for specifying graphical displays, that we have developed
to construct and visualise conceptual representations.

1. Introduction

Computer graphics presents a particular challenge to the theory of computer science.
The problem of finding an appropriate programming paradigm for graphics is
symptomatic of this. In this paper, we connect this problem with the use of computer
graphics to represent state in a direct metaphorical fashion, in a sense to be discussed
below. Declarative programming paradigms rely too heavily upon linguistic
frameworks and on modelling state through circumscription to be well-adapted for this.
Object-oriented programming is to an extent better suited for this purpose, but is most
effective only when a high degree of conviction about the potential transformations of
state to be represented has been acquired. The solution examined in this paper is based
on a new empirical modelling approach.

2. Empirical Modelling

The purpose of this paper is to introduce and illustrate the application of a new method
of modelling that is motivated by the same considerations that first motivated object-
oriented programming [4] — in brief, the concept that programming is a form of
modelling. Our modelling method — empirical modelling — is concerned with relating
two views of knowledge: experiential and theoretical. By way of clarification, an
experiential view of knowledge is illustrated when we first experiment with an object
such as Rubik's cube, which exhibits many different states and can be transformed in
many different ways. A theoretical view of same domain of knowledge of the

behaviour of the cube is expressed in established transformation patterns, such as those
that we memorise in solving the cube. This paper is centrally concerned with
techniques for the representation of experiential knowledge —an area in which
visualisation through computer graphics has a crucial role to play.

The essential focus of empirical modelling reflects the dictionary definition of
empirical: "that which is based upon observation and experiment". Empirical
modelling addresses the process of transforming from experiential to theoretical
perspectives. Its philosophical stance is a form of empiricism that is concerned with
tracing knowledge to its roots in experience. The extent to which an experiential view
of knowledge can be transformed to a theoretical view depends both upon the domain
and the observer. Not all experience can be captured by theory. Consider, for example,
how the directions to a landmark in a city might be expressed in terms of observations
that are particular and personal ("you'll see a fishmonger with a big red scarf on the
corner") that will not appear on any map.

Experiment is the key concept in empirical modelling. It provides the mechanism by
which an experiential view of knowledge is converted into theoretical view. The nature
of this conversion process is subtle: it is associated with reinterpretation on the part of
the experimenter rather than newly acquired experience. This is most simply expressed
by the paradoxical nature of experiment:

* A Good Experiment is one in which the outcome is uncertain
* A Good Experiment is one in which the outcome is entirely predictable.

A pattern of experience (as defined by a scenario of action and response) can be viewed
as a theory when the experimenter has conviction that it will be reliably observed.

Computer Science is well-versed in the representation of theoretical knowledge. Logic,
as mediated through formal languages with a well-defined operational semantics,
supplies the conventional framework for this representation.

The representation of experiential knowledge, such as an experimenter acquires
empirically, is (by contrast) inadequately addressed by theoretic computer science. In
our view, the appropriate paradigm for this kind of knowledge representation is that
employed by the craftsman or the engineer, who traditionally constructs a physical
model that makes experience accessible through imitation. Unlike a document, such a
model is not linguistic in nature but metaphorically represents one amongst many
external states that can be explored through observation and experiment.

The basic principle of empirical modelling is the construction of conceptual
representations of real-world phenomena. Such representations are defined by the
selecting a set of observables and — by analysing the indivisible relationships between
these observables through experiment —identifying the functional dependencies
amongst them. In the classical engineering context, conceptual representations are
typically embodied in a physical model (e.g. a scale model of a mechanical device), but
can also be more abstract in nature (e.g. a circuit diagram metaphorically represents a
configuration of observables). The advent of computers and multimedia has
enormously enhanced the potential for the abstract construction (as in the spreadsheet)
and physical realisation (as in a virtual reality environment) of conceptual
representations. The representation techniques we have developed for empirical
modelling exploit visualisations of generalised spreadsheets based on scripts of
definitions (definitive scripts), as illustrated in §4.

When realised in a physical model, conceptual representations exhibit features that
correspond directly to external observables in the experimental context to which they
refer, and can be observed and realised in many different configurations. Their
exploitation relies upon establishing a close correspondence between the outcome of
experiments on the model and in the associated real-world environment (thought
experiments may be involved in either or both contexts). Empirical modelling is the
process by which parallel experiments in these two contexts are correlated. It leads to
the refinement of conceptual representations, either through a more precise articulation
of dependencies, or through the introduction of additional observables.

Its emphasis upon imitating indivisible relationships between observables distinguishes
empirical modelling from object-oriented modelling. (In object-oriented modelling,
observables are grouped together into local state-transition models, without regard for
whether changes in observables propagate across object boundaries.) Indivisibility can
play a powerful role in establishing the connection between a state-based model and its
real-world referent — a feature that associates form and content in a way that is beyond
the scope of logical representations. Our concept of indivisibility does not require that
the changes that occur within a model should be instantaneously synchronised (cf the
way in which spreadsheet updates propagate), but that this propagation cannot be
suppressed and that there is no ambiguity about which states of the model are to be
interpreted.

The significance of graphics in modern computing stems from three factors:

+ The increasing prominence of applications in which the computer is used to embody
conceptual representations of external state,

« the importance of sight as our primary sensory channel,

* the pre-eminent role of the screen interface in making the internal state of a
computer perceptible.

In effect, modern applications put a premium upon being able to construct graphical
displays in which the functional dependencies between geometric features directly
imitate dependencies between external observables. Our empirical modelling software
tools are concerned with constructing geometric models of just this nature.

Computer models based solely on graphical conceptual representations are typically
only components of larger systems. Their role may for instance resemble that of a
scientific instrument, such as a speedometer, in a reactive system. Such models belong
to a broader class of direct representations (including virtual reality systems) and can
incorporate embedded linguistic components (such as messages) whose presence and
content may also be determined by functional dependency. Roadside hazard warning
notices that are triggered when a high vehicle approaches a low bridge provide one
example of this kind. Visualisation of conceptual representations is not only significant
where human interaction is explicitly involved — some form of visualisation is also
arguably essential in the design of any complex system([7].

The development of models based on conceptual representations differs from that of
theoretical models. It is necessarily constructive by nature, so that the evolution of the
model accompanies understanding and insight. In this process, we can draw upon pre-
established conventions (cf map construction), but cannot rely upon them exclusively.

The process involves more than developing conventions in general — we must conceive
a physical device that reliably displays an appropriate state-changing behaviour.

3. The Case-Study

The principles of empirical modelling will be illustrated with reference to a case-study:
viz. requirements modelling for a computer-assisted jigsaw assembly environment.

There are several reasons for this choice of case-study:

 requirements modelling tasks are well-suited for empirical modelling techniques,
since they involve the representation of tentative concepts that require frequent
extension and modification. Annotated graphical models can play a most significant
role in the representation process, allowing us to construct explicit state-based
environments for interaction in which to imitate experiences that (in view of their
uncircumscribed nature) defy explicit description in a logical or theoretical
framework. In such applications of graphics, object-oriented programming is a
cumbersome tool that forces the designer to circumscribe the behaviour of objects
prematurely and to establish artificial barriers around objects through encapsulation.

« the process of jigsaw assembly is itself an open-ended task with many characteristics
in common with a design activity. It combines high-level and low-level aspects, in
which a human agent operates in both conceptual and technical frames of reference.
It has exploratory and experimental aspects, and involves milestones and
commitments. It involves perpetually shifting contexts, as the "design artefact" (the
partially completed jigsaw) and the environment (represented by the assembler's
view of the jigsaw) evolve. It is also a process in which human cognition and
interaction plays an essential role. (For instance, the most common strategy for
jigsaw puzzle solution: "locate and assemble all the significant and meaningful
pieces first and leave the background and vague pieces to last" would in general
involve human intelligence.)

« the characteristics of a jigsaw assembly environment cannot be determined entirely
without reference to the specific jigsaw to be solved (nor indeed the specific human
assembler). This effectively means that a suitable jigsaw assembly environment
must allow the assembler to customise the generic environment as initially supplied
— this customisation process is itself similar in character to the requirements
modelling exercise as a whole. For this reason, the modelling paradigm we
introduce may also be appropriate for the implementation of a jigsaw assembly
environment.

The fact that jigsaw puzzles are essentially visual of course lends graphical interest to
the case-study, but the issues it raises are of broad relevance to all applications in which
design and conceptual representations are involved. The complexity of the human
cognitive processes surrounding the evolving model demand a framework within which
conceptual representations, and graphical representations in particular, can be freely
integrated into an environment that in general also includes textual and direct
manipulation ingredients. Similar considerations and principles would apply to the
requirements specification for a musical jigsaw for instance, in which the role of the
jigsaw pieces was played by musical fragments, and the objective was to assemble
these fragments to realise a given aural effect.

Preliminary work on the jigsaw assembly environment case-study has been carried out
by Cheryl Sidebotham as her final-year undergraduate project since October 1994.
This has led to the development of a prototype "vanilla" environment in which a
simplified computer-based jigsaw puzzle can be automatically constructed from a
coloured 2D line drawing by automatic subdivision into square pieces, which can then
be manipulated by the human assembler through a suitable interface to assemble the
jigsaw (Figure 1). The assembly process is monitored by recording the combinatorial
relationships between pieces that make up the partially completed jigsaw.

Figure 1

The modelling process used to construct the environment in Figure 1 is very open-

ended, and Figure 1 is just one of several possible variant designs that have been

derived in an exploratory fashion. Variants that can readily be derived by relatively

minor modification of the vanilla environment include jigsaw assembly environments

in which:

* pieces can be displayed in many different orientations, including upside-down

* the jigsaw picture is dynamic, so that the pictorial content of pieces changes whilst
assembly is in progress.

* the pieces are rectangular in shape.

The full potential for a computer-based jigsaw assembly environment is harder to
conceive. In one of several different directions of development, we might envisage
being able to transport a commercial jigsaw (with several hundred pieces) into a
computer environment, so that it can be manually assembled with computer assistance
in classifying and selecting pieces according to criteria introduced dynamically during
assembly. In principle, it would then be possible for the assembler to mark subsets of
the pieces according to their characteristic properties (e.g. pieces that are uniformly
coloured, or form part of a pictorial feature etc), and to invoke automatic retrieval

according to the classification established in this way. It should be noted that the aim
of developing a jigsaw assembly environment is not to automate jigsaw construction to
such a degree that it becomes a routine process for the assembler (cf [6,9,10,13]), but
to automate the tedious and routine aspects of the task.

4. The Tools

The model we have constructed is based on a set of modelling/programming tools
designed and implemented locally in the University of Warwick, primarily by Y.P.
Yung. These tools are built upon a common principle of representing state using a set
of definitions. A definitive state (a set of definitions) differs from states in ordinary
procedural or object languages in that relationships between variables are implicit in the
definitions of the variables. In this respect, definitive variables resemble spreadsheet
cells. A definition such as “Y =2 * X + C” is taken to mean that as long as this
definition holds, Y will be maintained to be 2X+C. That is, whenever X or C changes
value, so will the value of Y. This declarative nature of the definitive variables entails
less commitment than is presumed when defining variables in many functional or
constraint-based languages, however. A definitive variable can be redefined both
during model execution and in model revision. Persistent relationships subject to
revision of this kind are highly suitable for modelling empirical results such as the
intermediate states of the jigsaw puzzle assembly. Definition-like principles have been
applied to computer graphics before (cf [5]), but we apply them to a more general
modelling framework. The way in which we apply the principles in modelling the
process of jigsaw assembly will be dealt with in the next section. This section describes
the tools that facilitate the modelling process.

Our set of tools comprises an interpreter for a general purpose definitive language
EDEN and several translators which transform definitions in higher-level application
domains to definitions and other supporting statements in EDEN. In the jigsaw
example, we have incorporated three definitive (definition-based) notations: Scout,
DoNaLD and ARCA. Each of these addresses a certain aspect of the jigsaw assembly
problem. DoNaLD is a definitive notation for line drawing. It is used to describe the
jigsaw picture. ARCA is a definitive notation for specifying and displaying
combinatorial graphs. It describes the symbolic interconnection between the jigsaw
pieces in the partial solution. Scout is a definitive notation for describing screen layout.
The window layout and the buttons are specified in this notation.

The simplest way to understand a definitive notation is to refer to examples. For this
purpose, the 2D line drawing notation DoNaLD may be the best starting point.
Listing 1 is a DoNaLD description of a simple clock face consisting of a circle
representing the perimeter of the clock and two lines representing the two hands set at
the 3 o’clock position. It may be helpful to point out at the outset that the within clause
is more like a scoping convention — similar to that in the Unix file system — than an
encapsulation convention in OOP. That is:

¢ = circle(centre, radius)
in this example has the same meaning as defining:

clock/c = circle(clock/centre, clock/radius)

openshape clock

within clock {
line hourhand, minhand
point centre, minHandEnd, hourHandEnd
real radius, minHandLen, hourHandLen
int minute, hour
circle ¢

hourhand = [centre, hourHandEnd]

minhand = [centre, minHandEnd]

minHandLen = radius * 0.9

hourHandLen = radius div 2

minHandEnd = centre + {minHandLen @ (pi div 2 - minute * 2 * pi div 60)}

hourHandEnd = centre + {hourHandLen @ (pi div 2 - (hour + minute div 60.0) *
2 * pi div 12)}

¢ = circle(centre, radius)

minute = 0

hour =3

radius = 120.0

centre = {460, 720}

Listing 1

For that matter, clock/c can equally well be defined in terms of other points associated
with another openshape variable. The essential function of a DoNaLD script is
therefore not to circumscribe an object boundary but to declare the types of variables
and their interrelationships. Variables can be defined in any order and can also be
redefined later. Redefinitions are possible for both variables defined by explicit values
and variables defined in terms of other variables. In this script for instance, one can
simply redefine radius in order to resize the entire clock. The redefinition of radius will
directly or indirectly affect the values of almost all other variables. Changes to the
variables hour and minute have a similar but less profound effect. These will change
the position of the hands only. (Of course, we usually introduce a clocking agent to
update the variables regularly. The role of agents in our models will be elaborated in
the next section.) More complicated redefinitions are also possible. One can redefine
hourHandEnd to:

hourHandEnd = centre + {hourHandLen @ (pi div 2 - hour * 2 * pi div 24)}

so that the clock is now a 24-hour clock. If so desired, one can introduce a new variable
to make the selection of clock type an option. For example:

bool twelveHours
hourHandEnd = centre + {hourHandLen @ (pi div 2 - hour * 2 * pi div (if
twelveHours then 12 else 24))}

All these changes can be done on-the-fly. On redefining a variable, our underlying
definition manager will automatically update the values of the variables dependent on
the changed variable and hence re-visualise them on the screen. The net result is that,
at any time, the graphical display will always reflect the state of the set of definitions
in store.

The concept of indivisible propagation of state change allows us to look at definitions
in a different light. We can now consider a set of definitions as a representation of states
and redefinitions as state transitions. All our definitive notations are interpreted in a
manner similar to that of DoNaLD, but use different underlying algebras. Instead of
points, lines, arcs and circles etc., ARCA allows us to define variables of types vertex
and colour (coloured edges) using special combinatorial operators, while Scout allows
us to specify regions and the contents of the regions. An example of a Scout window
is given in Listing 2 — it defines a Scout window that represents the 4th of the 25 jigsaw
pieces.

point dim = {50, 50}
integer width = (XMAX - XMIN)/ 5
integer height = (YMAX - YMIN) /5
window piece4 = {
type: DONALD
box: [{top4x, top4y}, {top4x, topdy }+dim]
pict: pictureStr
Xmin: XMIN + 3*width
ymin: YMIN
Xmax: XMIN + 4*width
ymax: YMIN + height
border: if (selectionl==4 |l selection2==4) then 2 else 1 endif
sensitive: ON

Listing 2

A Scout window has different attributes according to its fype - the kind of information
to be displayed. In this piece4 window, a DoNaLD drawing is to be displayed. The
size and location of the window is defined by the box attribute. The pict attribute
determines which DoNaLLD drawing (a collection of DoNaLD variables) is to be
displayed. In this case, a string variable pictureStr holds the name of a DoNaLD
drawing. By changing this variable, we can switch to another jigsaw puzzle. This
function can be performed using the buttons person and clock which essentially do
nothing more than redefine the pictureStr variable. The xmin, ymin, xmax and ymax
attributes define how the picture should map onto the region defined by the box
attribute. It is then obvious that we are defining all 25 pieces of the jigsaw as different
visualisations of the same drawing. For this reason, we are able to cope with dynamic
changing of the jigsaw picture without having shown foresight about the possibility of
its happening.

In Listing 2, border (thickness) is defined by a conditional expression. The jigsaw
assembly system allows the assembler to select up to two pieces of jigsaw at the same
time. These selected pieces will be highlighted by the thickening of the window
borders. The sensitive attribute determines whether mouse or keyboard activity within
the window should generate a redefinition. The variable to be redefined is related to
the Scout window name. Should a mouse button be pressed inside piece4 for instance,
the variable piece4_mouse will be redefined to a compound value containing mouse
information such as which button is pressed and the location of mouse click. There is
an agent, implemented in the EDEN language, that monitors changes to such variable
and reacts appropriately (e.g. by selecting piece4 or relocating the piece by redefining
top4x and top4y).

The reason why scripts of different definitive notations can be integrated in our
framework is that all these definitions of different notations are translated to the same
general purpose definitive language EDEN, and so are maintained by the same
definition manager. EDEN definitions can therefore be written to serve as linkages
(sometimes called bridging definitions) between variables of different definitive
notations. EDEN has arithmetic types, strings and heterogeneous lists, which can
simulate very complex data types. It also allows us to define functions and procedures
in C-like fashion. We can also specify some procedures to be automatically executed
in response to changes to some variables. This type of triggered procedure (or action)
provides basic support for agent observation and response and is used to synchronise
the visual states with the definitive states.

Figure 1 shows a sample screen display of our jigsaw assembly environment in action.
This environment not only allows the assembler to interact via the jigsaw assembly
interface (bottom-right window), it also allows the assembler to enter any statements
that are acceptable by EDEN, Scout or DoNaLD through the input window (in the top-
left corner). (Our prototype does not support ARCA directly at present.) Our
environment also allows the user to look at the current definitive state from different
angles. For instance, the windows behind the jigsaw display reflect the Scout and
DoNaLD definitions that have been processed by the associated definitive translators.
Note that these definitions do not necessarily reflect the current state of the definitive
machine. For instance, readers with good eyesight can read that the time recorded in
the DoNaLD translator is 3 o’clock while the actual time on the display is 5:30. This
discrepancy arises because after DoNaLD has translated the definitions of clock/minute
and clock/hour, the translated EDEN images of these variables are redefined so that
they are now linked to another EDEN variable denoting the current time. (This device
facilitates the motion of the clock.) There is potential for confusion here as to whether
we need to work with the translated script in order to know the current status of
definitions. A colour convention in the EDEN definition view is used to resolve this
confusion. In that view, definitions introduced via the DoNaLD translator appear in a
different colour from those directly defined in EDEN. These definitions can in fact be
eliminated from the view entirely, leaving only the EDEN redefinitions behind.

In summary, we have described a development environment for models based on
definitive representation of states. This environment provides facilities for user
interaction, for introducing unforeseen requirements, and for examining and storing the
current state of development.

5. The Development Process

The development of the requirements model is based upon a close analysis of the jigsaw
assembly process. The analysis is agent-oriented, in that the sensory and cognitive
elements involved in jigsaw assembly are expressed in terms of viewpoints and
privileges from which the entire activity can be synthesised. In this context, our use of
the term agent is similar in spirit to that introduced in Minsky's The Society of Mind
[12]: for instance, the role of the assembler is interpreted with reference to primitive
perceptions and actions that contribute to successful completion of the assembly task.
In its emphasis on viewpoint, our approach also resembles subject-oriented
programming, as introduced in [8].

At its present stage of development, our jigsaw assembly environment addresses only
the low-level aspects of jigsaw specification and assembly. These concern the
mechanics of setting up the jigsaw, of moving and joining pieces and manipulating

fragments of the partially completed jigsaw. Analysis of the low-level aspects leads us
to consider such questions as:

* how are pieces distinguished?

* how are pieces matched?

» when are pieces regarded as joined?

* how is the current completion status of the jigsaw assessed?

Close analysis of the physical capabilities of the assembler is directly relevant to
conceiving the jigsaw assembly environment. Whether pieces are presented in a heap
depends upon whether the assembler can distinguish one piece from another and move
them apart. In matching pieces it is appropriate to place them side by side, or to place
them on the jigsaw picture. In principle, our modelling methods offer great flexibility,
allowing us to prototype jigsaw-related activities that invest the environment and the
assembler with unusual characteristics. For instance, it is trivial to set up the control
environment for our existing model in such a way that the clock picture is frozen at a
time that can be freely selected by the user at any stage, yet the pictorial elements on
the pieces still change dynamically with time. Alternatively, the jigsaw can be set up
in such a way that the pieces are presented face-down in a grid arrangement, as in a
game of pelmanism, so that their selection leads to their temporary inversion. In this
scenario, an upturned piece would be removed only if it could be correctly placed the
jigsaw .

In practice, the present limitations of our tools make some scenarios of interaction more
convenient to implement than others. Scout windows can only be oriented to be parallel
to the axes, for instance. When pieces are re-oriented, it is difficult to keep track of their
attributes. The close connection between low-level human processing and the
functionality of the requirements model is illustrated by way that limitations of the tools
suggest constraints on the environment and profiles for the assembler. For instance,
magnetised pieces might be restricted in their orientation, and coloured pieces would
be monochrome in certain orientations if viewed through polarised lenses.

In our prototype environment, the higher level knowledge concerning whether pieces
are joined, and which jigsaw fragments have been constructed, is modelled in EDEN
and visualised in the ARCA diagram. Two pieces that are placed side by side are joined
by an explicit action on the part of the assembler, associated with selection of the join
button. The combinatorial relationships recorded in the ARCA diagram make it
possible to treat each completed fragment of the jigsaw as a generalised piece that can
be moved by selection of any of its constituent pieces. When the assembler joins a
piece to a jigsaw fragment in such a way that it simultaneously abuts more than one
piece, more than one adjacency relation must be introduced to the ARCA diagram.
This can be most conveniently handled automatically by adding agents in EDEN to
perform this action when required.

The ARCA diagram records information about the state of completion of the jigsaw. It
can also be used to check whether the jigsaw is correctly completed, and to monitor the
correctness of the assembler's actions. Different strategies for using this information
might be used to change the character of the assembly task. For instance, the assembler
might be barred from making false construction steps. It is a feature of our modelling
environment that the high-level control structures that govern the behaviour of the
model can be relatively easily reconfigured, even on-the-fly, through introducing
appropriate agents with relatively simple protocols for guarded redefinition. The
simplicity of such agents depends greatly upon the fact that the effect of redefinition
upon system state is context-dependent, as mediated by the definitions extant in the

10

context for execution. This eliminates the need for wholesale reprogramming of agents
to introduce new side-effects of existing actions.

The role of the ARCA diagram in our model is subtle. In the context of our vanilla
environment, where the pieces are square, the interconnection is very simple and easy
to realise as a combinatorial graph. The diagram itself should not of course in general
be visible to the assembler — its main value has proved to be in supplying useful
visualisation for the modeller, making it possible to detect problems arising in the
model development. The link between the geometry of the jigsaw and the structure of
the ARCA diagram becomes more obscure when rectangular pieces are introduced, and
also raises issues concerning dependency that are yet to be adequately addressed by our
tools. Ideally, one would like the insertion of a piece and the insertion of an edge to be
represented — as are other indivisibly associated actions — as a form of redefinition in
the model, but in fact an action has to be invoked to establish this link.

The greatest challenge to our modelling approach is presented by the cognitive aspects
of jigsaw assembly that impinge when we consider strategies the assembler might use
to identify and classify pieces. In this connection, the idea that a jigsaw piece has more
content than can possibly be expressed in a circumscribed model is clear. For instance,
the assembly environment, acuity of physical skills, memory, familiarity with the
jigsaw, knowledge. of the semantics of the picture etc all influence whether an
assembler can perceive the characteristics and relationships relating to jigsaw pieces.
The extent to which a jigsaw assembly environment can allow the assembler to invoke
automatic assistance in respect of such issues is difficult to assess. Itis evident however
that any satisfactory solution must exploit human-computer cooperation, e.g. allowing
the machine to apply an approximate selection criterion, whilst giving the assembler
scope to arbitrate in borderline cases.

Even relatively simple forms of classification involve functional dependencies that
defy expression in terms of our existing notations. For instance, "identifying all the
pieces that have red on them" is clearly a functional dependency, but requires operators
outside our existing underlying algebras for precise specification. An appropriate way
to specify such pieces would be to determine the list of identifiers of red geometric
elements in DoNaLD, then to identify which pieces of the jigsaw these entities
intersect. We at present have no syntactic framework for representing such
dependencies. A simpler and less precise characterisation of red pieces that has
incidental interest is defined by the set of Scout jigsaw piece windows (cf Listing 2) that
contain a red pixel. Such a characterisation depends upon the resolution of the screen
display, and corresponds metaphorically to an assembler working at a distance.

6. Object-Oriented Modelling and Conceptual Representation

The object-oriented programming paradigm, as originally expounded by Birtwistle et
al (Simula 67) was directly concerned with issues of conceptual representation. The
philosophy behind "programming as modelling" places the emphasis upon computer
programming as a form of system description. In Simula, objects are conceived as
corresponding to situated physical entities that interact with their environment, and are
constructed through analysis of the observables to which they react and through which
they respond. Object-oriented modelling has certain useful qualities for conceptual
representation. Encapsulation and methods can be interpreted as means to specify
synchronised change to observables (in as much as updates to procedural variables are
grouped within a method and presented externally as one conceptual state-transition).
In so far as Listing 1 identifies a clock with a conceptual representation specified in

terms of a fixed set of observables and transformations, a similar function of specifying
a clock as a geometric object can be served by an object-oriented model. However,
object-oriented principles would not assist the designer in making opportunistic
changes to the clock specification such as can be effected on-the-fly through
redefinition, nor allow changes to the clock to be conveniently synchronised with other
state-changing mechanisms subsequently introduced into the model.

The limitations of object-oriented programming (as presently conceived) in respect of
conceptual representation are largely consequences of the way in which the
fundamental abstraction (the "object") has been developed without sufficient reference
to the original context and motivation for its introduction. It is natural to associate
observables into local pieces of state whose presence in the environment reflects the
existence of particular entities, but too great an emphasis upon object specification and
integrity is obstructive. Considerations include the following:

» experience is acquired (in the first instance) through interacting with instances of
objects, not classes. Modelling the relationships between observables should be
primarily guided by what is observed, not based upon the premature commitment to
generic patterns.

o the set of observables associated with an entity cannot be circumscribed.
Circumscription of the set of observables associated with an entity only makes sense
in relation to particular functions it serves, subject to empirically acquired
conviction that all relevant attributes have been ascertained. (For instance, the
significant attributes of a jigsaw piece can surely never be completely
circumscribed, since they depend on altogether subjective perceptions and personal
knowledge of the assembler.)

+ atomic changes to observables in a system are not in general localised to objects.

The concept of object-oriented modelling is sufficiently broad, and ill-defined, that
none of the issues raised above is incompatible with an object-based framework. It is
the development of object-oriented programming as a paradigm for modular software
construction, its applications to distributed software development and its emphasis on
generic objects as a route to reuse that has distracted attention from the agenda
suggested by these issues.

To restore an object concept that is better suited to conceptual representation (cf [11])

requires a shift in perspective, whereby we acknowledge that in general

« neither the observables nor the possible transformations associated with real-world
objects can be conveniently circumscribed

« the classification of real-world entities is a process that most naturally follows the
circumscription of attributes and transformations, and that the attempt to describe a
real-world entity via generic properties is not in general a good way to capture its
specific characteristics.

These observations motivate an agenda that is broadly consistent with the original aims
of object-oriented modelling, but suggest a shift of emphasis, whereby the integrity of
objects is given lower priority and more attention is paid to the empirical framework
that informs object conception and design. We believe that such an agenda can be
addressed within our modelling paradigm, but only by much more sophisticated
analysis of the protocols that are implicit in the agent framework that surrounds our
scripts. Many of the relevant issues have been more fully addressed elsewhere, in
particular, in our proposals for concurrent engineering environments [1] based on
empirical modelling principles. The key concept is that of restricting the privileges and
patterns of interaction between agents to guarantee the integrity of particular subsets of

observables. This theme is evident in connection with many topics incidentally
discussed in this paper. These include: the interaction between the definitions of the
time variables in DoNaLLD and EDEN alluded to in our case-study, the problematic
dependencies between DoNaLLD and ARCA components of the jigsaw model, and the
tension between introducing generic definitions for entities (such as jigsaw pieces) and
faithfully reflecting the particular qualities of each individual entity.

7. Conclusion

The theme of this paper is broad and has connections with many different areas of
modern computing. Non-linguistic representations are acquiring an ever more
significant role in computer applications (cf the current level of interest in multimedia
and virtual reality) and the proper exploitation of graphical representations is a key
study of central importance. Much of our work on empirical modelling has already
been focussed on broader issues such as agent-oriented modelling in relation to
concurrent systems requirements and concurrent engineering and how graphical
conceptual representations can be applied in scientific visualisation [1,2,3]. In the
longer term, we believe that our approach can be made more effective by developing
explicit agent-oriented protocols that in particular will enable closer integration with an
object-oriented modelling paradigm.

Acknowledgements

We acknowledge the support of the EPSRC under Grant GR/J13458.
We are grateful to Dr. Steve Russ for his helpful comments. Dr. Beynon is indebted to
his mother for an early introduction to jigsaws.

References

[11 V.D. Adzhiev, W.M. Beynon, A.J. Cartwright, Y.P. Yung. A Computational
Model for Multi-agent Interaction in Concurrent Engineering, Proc. CEEDA’94,
Bournemouth University, 1994, 227-232

[2] V.D. Adzhiev, W.M. Beynon, A.A. Pasko. Interactive Geometic Modelling
Based on R-Functions, Proc. CSG'94: Set-Theoretic Solid Modelling: Techniques
and Applications, Winchester, Information Geometers, 1994, 253-272

[3] W.M. Beynon, M.S. Joy. Computer Programming for Noughts-and-Crosses:
New Frontiers, Proc. PPIG'94, Open University, January 1994

[4] G. Birtwistle, O-J. Dahl, B. Myhrhaug, K. Nygaard. Simula Begin, Chartwell-
Bratt, 1980

[5] M. Chmilar, B Wyvill. A Software Architecture for Integrated Modelling and
Animation, New Advances in Computer Graphics, Proc. of CGI'89, 257-276

[6] E.Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns — Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995

[71 D. Harel. Biting the Silver Bullet: towards a brighter future for Software
Development IEEE Computer, 1992, 8-20

[81 W. Harrison, H. Ossher. Subject-oriented Programming (A Critique of Pure
Objects). OOPSLA'93, 411-428

[9] S. Parry-Barwick, A. Bowyer. Woodwark's Method of Feature Recognition,
School of Mechanical Engineering Technical Report 099/1992, University of
Bath, December 1992

13

[10] Wolfgang Pree. Design Patterns for Object-Oriented Software Development,
Addison-Wesley/ACM Press, 1994

[11] B. Meyer. Object-Oriented Software Construction, Prentice-Hall International,
1988

[12] M. Minsky. The Society of Mind, Picador, London 1988

[13] AM. Turing. Proposal for Development in the Mathematics Division of an
Automatic Computing Engine (ACE), in Mechanical Intelligence, ed. D.C. Ince,
North-Holland, 1992, 1-86

14

