kY

Empirical Modelling:
A New Approach for Understanding Requirements

Pi-hwa Sun, Meurig Beynon

Department of Computer Science
University of Warwick
sun@dcs.warwick.ac.uk, wmb@dcs.warwick.ac.uk

Abstract

Any task of understanding requirements involves interaction amongst all
participants. This motivates the investigation of frameworks and
techniques that can support and enrich human interaction. In this paper,
three different relationships that can shape interaction are identified:
subordinative, coordinative, and collaborative, Traditional patterns of
interaction favour relationships of the first two kinds, since they presume
a clearer separation between analysis, design and use. Whilst
subordinative and/or coordinative relationships in interactions for
eliciting requirements are valuable, we believe that they have been given
disproportionate emphasis because of current techniques for knowledge
representation and paradigms for computer-based modelling. Failure to
support collaborative relationships is particularly significant in the
exploratory phases of requirements analysis, when it is appropriate for
the perspectives of designers, users and analysts to be equally influential.
This paper proposes an effective computer-based approach to tackling
many of the problems associated with this kind of collaboration.

1. Motivation and Background

Any task of understanding requirements needs to be carried out through interactions
amongst all participants. The different relationships that can shape the interaction have
provided the foundation for most models and methods in requirements engineering. There
is a particularly significant distinction between coordinative and subordinative
relationships. A coordinative relationship stresses the importance of user participation in

. design, and postulates responsibilities for all the participants. A subordinative

relationship assumes that users should be able to provide all the knowledge required by
designers because only they know what they want.

Traditional patterns of interaction favour relationships of these two kinds, since they
presume a clearer separation between analysis, design and use than modemn business
practice and associated information technology promotes. In the development of

information systems, it is standard practice for feedback from users to affect the product.
This feedback operates both in validating and debugging the original design, and in its
subsequent enhancement. In concurrent engineering of other products, the use of
information technology has subverted the rigid sequential stages of the traditional design
process. The ease with which design representations can be visualised and modified
enables wider and more opportunistic intervention from all kinds of participants. In these
contexts, the interaction for understanding requirements becomes exceedingly subtle
[SKVS95]. In effect, the design of a software system and the shaping of the requirements
satisfying the need of users often needs be negotiated in a symbiotic fashion. The
interaction amongst all participants that is appropriate in this context will be characterised
as a collaborative relationship.

A useful analogy can be drawn between the relationships of all participants for
understanding requirements and the ones of teacher and pupils in a classroom. A
subordinative relationship resembles a lecture context, where the teacher imparts
knowledge in the role of the expert, and there is no participation from the pupils. A
coordinative relationship, in which a rigid agreement sets out the respective
responsibilities of designers and users, resembles a tutorial context in which the teacher
imparts knowledge through a prescribed pattern of small presentations, exercises for the
pupils and evaluation of their performance. A collaborative relationship is concerned not
only with responsibilities but also with expectations, beliefs and other psychological
states that make understanding by learning more feasible and powerful [DL91]. The
appropriate context for such interaction resembles a seminar, where the precise learning
goals are not set out initially, and the knowledge content is shaped dynamically by the
contributions of the participants. In the same way that all three paradigms can be used in
one educational context, each of the three different kinds of relationship amongst all
participants can be represented in the same process of understanding requirements.

Collaborative relationships are concerned with understanding that is socially distributed.
They engage with issues of subjectivity and objectivity associated with distributed
cognition [Hut95a, Hut95b] and common knowledge [Cro94, Edw87]. This involves a
reappraisal of distinctions that are taken for granted in other contexts. There is potential
for several kinds of conflation:

e between the roles of all participants,
e between the properties associated with individuals and with artefacts,

¢ between the characteristics to be attributed to the internal mind and to the external
environment.

In a collaborative relationship, there is no possibility of relying entirely upon closed-world
representations and preconceived patterns of interaction. The interaction amongst all
participants has to be situated intelligent interaction that can only be planned in advance
to a limited degree, and knowledge for understanding emerges on-the-fly.

There are several approaches to understanding requirements, but one of the most efficient
and cost-effective ways is by computer-supported modelling. Conventional computer-
based modelling is better oriented towards assisting subordinative and coordinative rather
than collaborative relationships. As the above discussion indicates, it is essential to

e

develop modelling techniques that:

e allow data about requirements to be collected (as if) in such a way that participants
are engaged in activities in their customary context [Gog96, LK95];

¢ make it possible to visualise and analyse activities from the viewpoints of different
participants;

e provide for open-ended interaction.

The aim of this paper is to introduce a new approach - Empirical Modelling (EM) - to
support collaborative interactions in a situated and distributed context. An exploratory
study of a historic railway accident is used to highlight the application of EM in
modelling for collaborative relationships. The implications of this investigation for future
research are considered in the concluding section.

2. Empirical Modelling for Understanding Requirements

Empirical Modelling, as developed by the authors and their collaborators at the University
of Warwick over several years, involves computer-supported modelling with an emphasis
on learning [Bey98]. Its fundamental concepts are observable, dependency, agent and
agency.

® An observable is a characteristic of the modelled environment to which an identity
can be attributed. It can be physical or abstract in nature, €.g. the power of the
engine, the position of the airplane, and the balance of a bank account, the time on
the clock.

® A dependency represents an empirically established relationship between
observables. It is not merely a constraint upon observables, but reflects how the act
of changing one particular observable is perceived to change other observables
predictably and indivisibly.

® An agent is an instigator of change to observables and dependencies. A passive
agent will only act in a responsive mode, but an active agent may act autonomously.

® An agency represents a permission to access an observable. Agency can be
associated with an observable whose presence is intermittent rather than persistent.
So far two kinds of agency have been considered: permission to observe and
permission to change.

EM is a powerful form of interactive modelling. It allows the modeller to use the
computer to create an artefact with something of the character of an engineering
prototype. Through experiment and observation, the modelier construes an external
situation in terms of the primitive concepts of EM mentioned above, and concurrently
constructs a computer model that metaphorically exhibits similar patterns of observables,
dependencies, agents and agencies. In this way the evolving insight of the modeller is
reflected in coherence between an abstract explanatory model — or construal — in the
modeller’s mind, the physical embodiment of this construal in the computer artefact, and
a situation in the external environment.

S
S

In creating the embodied computer-based construal, the modeller identifies primitive
elements in the problem domain corresponding to the fundamental concepts above, and
records them by introducing appropriate definitions, functions and actions into the
computer model. A typical step in this process involves the specification of a user-
defined function f and the introduction of a definition of the form t = f(x,y,z) into an
existing script of definitions. From the modeller’s perspective, this is ‘recording a
dependency between the observables represented byt, X,y and z’. From a computational
perspective, the abstract semantics of introducing such a definition is typically similar to
introducing a new definition into a spreadsheet to which a visualisation of cell values is
attached. In particular, the dependencies amongst observables are automatically
maintained through a retrospective revision technique. What is more, unlike traditional
programming codes, definitions do not have to be entered and organised sequentially. For
these reasons, the construction of such computer-based artefacts is a useful vehicle for
exploring and developing insight.

EM is a means of constructing knowledge in an experiential rather than a declarative
fashion; the modeller’s insight is expressed as coherence between expectations in the
mind and the experiments that can be performed on the computer-based artefact and/or in
the external environment. The principle resembles “what if” experiments with a
spreadsheet. The modeller introduces new definitions to impose a change of state upon
the embodied construal. Almost simultaneously, the new state of this construal is
mediated to the user through the visual interface, and evokes a change of state on the
mind of the modeller. When this change of state is consistent with the modeller’s
expectations, it serves to reinforce the modeller’s confidence in the way in which a
situation has been construed. When the change of state confounds expectations, the
modeller must determine whether the situation has been construed in an inappropriate
way, or whether a hitherto unsuspected behaviour has been identified. In the latter case,
there is a creative element of discovery that is rarely encountered in conventional
modelling. This aspect of EM is particularly useful for understanding requirements,
especially for the purpose of re-engineering.

EM activities are carried out with reference to an external situation, even though in
practice this situation can be imaginary rather than concrete. Practical experience of EM
confirms its status as a situated modelling method, and activities in EM exhibit Goguen’s
“qualities of situatedness™: emergence, contingence, locality, openness and vagueness
[Gog94, Gog96] (cf. [Rol93, JP93]). The main reason why EM exhibits these qualities is
that, because of the nature of the modeller's interaction, the process of formulating
definitive scripts is never separated from the modelling context. At any stage, the
modeller can modify or reinterpret the script so as to change this context. This can reflect
a shift in viewpoint on the part of the modeller, a reappraisal of the external situation, or a
refinement of the mode of observation. And though the syntax of a definitive script is
formal, its semantics is established dynamically and informally through the modeller's
interactions with the model and with the external situation. Moreover, automatic
maintenance of dependencies amongst observables leads to techniques for retrospective
revision, as commended by Goguen in his discussion of tools to support requirements
engineering [Gog94].

A practical software tool, the dtkeden interpretor, has been implemented to support most
of the concepts of EM. It provides an interactive interface through which each user can

construct definitive scripts to represent his/her personal construal of the external situation,
and can observe graphical representation of the current construals of other users. The core
part of dtkeden, the dependency maintainer, is a virtual machine and can automatically
maintain the dependency of given definitive scripts. The current version of dtkeden
provides a stand-alone and a distributed environment for carrying out EM. Many case
studies have been developed to demonstrate the advantages and applications of EM (see
our website: http://www.dcs.warwick.ac.uk/modelling).

experiential manner with reference to an embodiment of their construal and their personal
observation of the external world. In this way, all participants can construct their personal
understanding of requirements throughout the evolution of the artefact in their own
computer in an interactive, open-ended way. In other words, knowledge of requirements
in EM is represented implicitly and metaphorically using an artefact, rather than expressed
in an abstract specification. Moreover, the processes of creating and accessing this
knowledge are associated with learning through experience of interacting with the
artefact. This meets the need identified by Naur [Nau95] for incorporating experiential
knowledge to complement knowledge as defined and processed by "logic and rules".

participant 1 E T e, . participant 2
_ heénomena T
evolving : in evolving
insight the real world insight
shared understanding

S = —(=2)]

Fig. 1. Shared understanding between participants

In this context, understanding requirements amongst all participants becomes a
collaborative task of building up shared understanding through these artefacts. As pictured
in Figure 1, shared understanding amongst participants is socially distributed as it evolves
through interaction between these embodied construals across a network. This process has
a crucial role in introducing objectivity to the model, as it implicitly connects individual
insights. More significantly, each participant can collaboratively contribute to the
evolution of shared understanding. Generally speaking, greater consistency between the
individual perspectives is associated with a better understanding of requirements. For this
reason, participants continually refine their observations and experiments with a view to

achieving more coherence and consistency. This process is open-ended, and consistency
can only be complete in relation to some restricted work activities and assumptions about
reliability and commitment. In practice, there are always singular conditions under which
a superior power must be invoked to mediate or arbitrate where there is conflict and
inconsistency. Scope to exercise such discretion is a fundamental element of EM, as the
modeller has the privileges of a super agent.

3. A Case Study: Shared Understanding in a Historical Railway
Accident

A railway accident that occurred in the Clayton Tunnel near Brighton in 1861 [Rolt82]
has been studied using EM and dtkeden. The modelling has involved constructing
computer-based artefacts to represent the perspectives of four human agents involved in
the accident, and to coordinate these from the point of reference of an external observer
with exceptional state-changing privileges. One significant motivation for making such a
model is to gain insight into the individual understanding of signalmen and drivers on
their work practices at the time, and into how these may have contributed to the accident.
Figure 2 shows a view of the Clayton Tunnel from the perspective of the signalman

Killick.

Figure 2. A signalman's view of the Clayton Tunnel

By way of illustration, consider how the two signalmen, Killick and Brown, whose
location is indicated by the boxes labeled K and B in Figure 2, communicate with each
other via the telegraph shown in the bottom-left corner of the figure. The private views of
these two agents are as follows:

E

eedlePosition is which_clicked;

. Killick
which_clicked is (clear_clicked):(1):((neutral_clicked):(0):((occupied_clicked):(-1))); signalman: Killic

signalman: Brown

eedlePos is clicked;
licked is (click_clear):(1):((click_neulral):(0):((click_occupied):(- Dy);

automatically maintains dependencies amongst observables. For example, in the case of
Brown, the value of the observable “needlePos” will be changed whenever the value of
the observable “clicked” is changed. Further description is needed to express the way in
which the signalmen inform each other about the state of the Tunnel. This could be as

follows:

unc send1: Killick_click_clear{
if (click_clear)

sendAgent(“Brown”, “Killick_click_cleaFTRUE;”);
else

sendAgent(“Brown”, “Killick_click_clear=FALSE;”);
)
Func send2: Killick_click_neutral{
if (click_neutral)

sendAgent(“Brown”, “Killick_click_neutml=’lRUE;”);
else

sendAgent(“Brown”, “Killick_click_neuh‘al=FALSE;”);

Func send3: Killick_click_occupied{
if (click_occupied)

sendAgent(“Brown”, “Killick_click_occupied=TRUE;");
else

sendAgent(“Brown”, “Killick_click_occupied=FALSE;”);

f

i

f

unc sendA: Brown_click_clear{
if (click_clear)

sendAgent(“Killick”, “Brown_click_clear=TRUE;”);
else

sendAgent(“Killick”, “Brown_click_clear=FALSE;”);

unc sendB: Brown_click_neutral{
if (click_neutral)

sendAgent(“Killick”, “Brown_click_neum:mUE;”);
else

sendAgent(“Killick”, “Brown_click_neun'al=FALSE;”);

unc sendC: Brown_click_occupied{
if (click_occupied)
sendAgent(“Killick”, “Brown_click_occupied=TRUE;”);
else
sendAgent(“Killick”, “Bmwn_click_occupicd=FALSE;”);

_ signalman: Killick

signalman: Brown

Although the above mechanisms send definitions from one agent to the other, this does
not of itself establish useful communication. To this end, there must also be a dependency
between the definitions received by an agent and the private definitions within its own
computational artefact. Only when definitions such as the following are added to their
computational artefacts is shared understanding about communication using the telegraph

reached:

%@ lear_clicked is Killick_click_clear or Brown_click_clear;
“ mneutral_clicked is Killick_click_neutral or Brown_click_neutral; signalman: Killick
occupied_clicked is Killick_click_occupied or Brown_click_occupied;

click_clear is Brown_click_clear or Killick_click_clear;
click_neutral is Brown_click_neutral or Killick_click_neutral; signalman: Brown
click_occupied is Brown_click_occupied or Killick_click_occupied;

This case-study illustrates how EM enables personal insight to be recorded in an open-
ended experiential fashion, and how all participants collaboratively work together to reach
a shared understanding through EM. It also highlights issues concerned with consistency
of shared understanding, since a conflicting interpretation of events by a signalman and a
driver was central to the accident. In addition, the case-study shows how “what if”
interventions within dtkeden help to disclose information and reveal the need for
additional data about the historical context being studied. Although this model is not
directly concerned with understanding requirements, it does highlight the potential of EM
in modelling for shared understanding amongst all participants.

4. Conclusion

Requirements are shaped by the goals and expectations of users, and the characteristics of
the tools and processes that constrain their interaction. In so far as requirements follow
1 intentional patterns, understanding requirements is intimately bound up with knowing
what shared understanding has been established amongst all participants. Many
techniques have been used in requirements engineering to develop and explore such
shared understanding, such as brainstorming and interviewing. However, we believe that
using the computer as a modelling tool is a particularly cost-effective and versatile
approach. Constructing a computer-based prototype is one way in which the designer’s
conception can be validated by users. Prototyping restricts interaction with the computer
model in preconceived ways, and is accordingly best suited for the exploration of
coordinative relationships between designers and users. In contrast, EM is oriented
towards a collaborative relationship, where the interaction among all participants is
situated, distributed and open-ended. In such a framework, it is possible to explore
diverse aspects of requirements that lie outside the preconceived framework established
by design.

Our work is on-going and there is still much scope for improvement and future work. For
example, the concept of a higher-order dependency has been introduced and a new
dependency maintainer has recently been developed in Java. In addition, established
techniques of requirements elicitation, such as scenario-analysis, may benefit from
integration with EM.

References

[Bey98]
[Cro94]
[DL91]

[Edw87]
[Gog94]
[Gog96]

[Hut95a]
[Hut95b]

[LK95]
[Nan9s]
[Rol93]

[Rolt82)
[SKVS95]

W.M. Beynon. Empirical Modelling and the Foundations of Artificial Intelligence.
In Proc. CMAA, ed. C. Nehaniv, University of Aizu, April 1998.

C. Crook. Computers and the Collaborative Experience of Learning,
London:Routledge, 1994.

L.Davies and P. Ledington. Information in Action: Soft System Methodology.
MacMillan Education Ltd, 1991.

D. Edwards, and N. Mercer. Common Knowledge. London: Methuen, 1987.

J.A. Goguen. Requirements Engineering as the Reconciliation of Technical and
Social Issues. In M. Jirotka and I. Goguen, editors, Requirements Engineering:
Social and Technical Issues. pp165-200, Academic, 1994.

J.A. Goguen. Formality and Informality in Requirements Engineering. In Proc. 2nd
Inter. Conf. on Requirements Engineering, pp 102-108, 1996.

E. Hutchins. Cognition in the Wild. MIT Press, 1995,

E. Hutchins. How a Cockpit Remembers Its Speeds. Cognitive Science, 19, pp 265-
288, 1995

P. Loucopoulos and V. Karakostas, System Requirements Engineering. McGraw-
Hill, 1995.

P. Naur. Knowing and the Mystique of Logic and Rules, Kluwer Academic
Publishers, 1995.

C. Rolland. Modelling the Requirements Engineering Process. In 3rd European-
Japanese Seminar on Information Modelling and Knowledge Bases, 1993.

L.T.C. Rolt. Red for Danger. Pan Books, 4th edition, 1982.

L. Sommerville, G. Kotonya, S. Viller and P. Sawyer. Process Viewpoint. In Proc,
4th European Workshop on Software Process Technology, The Netherlands, Apr.
1995.

