
Constructionism 2010, Paris

 1

Constructionism through construal by computer

Meurig Beynon, wmb@dcs.warwick.ac.uk
Department of Computer Science, University of Warwick, UK

Antony Harfield, ant@dcs.warwick.ac.uk
Department of Computer Science, University of Warwick, UK

Abstract

Traditional computer programming is not well-aligned to the needs of constructionism. Orthodox
programming principles are oriented towards prescribing processes that address clearly
specified uses. Functional specification and optimised execution do not encourage interactive
exploration and open-ended interpretation. We propose making construals by computer using
Empirical Modelling principles as an alternative to conventional computer programming. The
merits of this approach are discussed and illustrated using construals for Sudoku solving.

 Figure 1. A screenshot depicting the online Sudoku solving construal

Our Sudoku solving construals are made up of definitions that express dependencies between
observables. Many kinds of human agency can be expressed through modifying the current set
of definitions. The construal serves as a shared artefact with which developers, teachers and
pupils can all interact concurrently in essentially the same way, each according to their role and
experience. Our preliminary experiments with schoolchildren highlight potential for rich and
radically new kinds of learning experience and unprecedented scope for recording, monitoring
and intervening in support of constructionist learning. Further empirical study is a vital next step.

Keywords

Constructionism, programming, learning technology, Empirical Modelling, construal, dependency

Constructionism 2010, Paris

 2

Constructionism and Computing

As Richard Noss (2008) observes in his Open Letter to Logo and EuroLogo Communities,
Seymour Papert introduced constructionism as a name for "a pedagogy based on building and
sharing physical, virtual and intellectual structures". This characterisation makes no reference to
computers, but in practice it was the computer, and specifically the use of Logo programming,
that launched the concept of constructionism. No educational movement has since contributed
more to the cause of constructionism than the Logo community. Yet, as Noss also remarks, "the
fundamental hope of Logo’s creators and its later adherents remains largely unfulfilled".

The challenges for constructionism as a computer-based activity mirror those facing computer
programming within computer science. The Call for Papers highlights the fact that "The
developers of Logo and similar computational environments have ... encouraged learners to
better understand the world and their place in it by building their own meaning-making models
based on iterative, interactive exploration and testing of ideas and notions." It endorses a vision
for constructionism in which, in the words of one conferee: "I don't see any hard edges between
creating, sharing, consuming and learning. I want a system that allows people to shift effortlessly
between doing these things."

As computing technology matures, and computing systems become ever more complex, so
"constructionist" activities in this spirit become more relevant for software development. Agile
development methodologies embrace the notion of "iterative, interactive exploration and testing
of ideas and notions." They demand environments in which developers can play many different
roles - building, learning, communicating - and "shift effortlessly between doing these things."
But even if we look beyond programming paradigms and languages based on Logo, the vision
for efficacious software engineering of this kind also "remains largely unfulfilled". Even within
established computer science, the problem of giving computing support to constructionist
principles is unresolved (Ben-Ari, 2001; Beynon and Harfield, 2007; Beynon, 2009).

We believe the underlying problems faced in educational technology and in complex systems
development have a common root. They both relate to the difficulty of aligning computing
programming with learning, as is essential both in the classroom and in the software house.

In this paper, we illustrate an alternative approach to developing software that we believe offers
much better prospects for supporting constructionism. To reflect the radically different orientation
of this approach, we conceive constructing software as ‘making a construal’ rather than
‘developing a program’. A construal is a computer-based artefact similar in character to the
structures conceived by Papert, but with essential qualities that are not apparent when we
interpret it as a conventional “computer program”. A construal admits myriad interactions that are
not preconceived, for instance, and for which there may be no specified a priori use or
interpretation. The interpretations it supports depend in general on the experience and the skill
of the individual human agent who is interacting with it. On this account, they also depend
critically on qualitative and experiential aspects of the construal – how its state is communicated
and perceived, how it can be manipulated and how quickly it responds.

One reason why conventional programs - such as the Logo programs originally studied by
Papert – fail to support constructionist learning as powerfully as we might like is that they are
built with quite different objectives in mind, and according to quite inappropriate principles. For
instance, in order to make practical progress, computer programmers must specify the
interactions that their programs support and align these to specific purposes. To this end, the
programmer abstracts automatable patterns of interaction and interpretation (‘uses’) from the
environment. By contrast, a construal is a source of concrete open-ended experience that is not
typically intended to be understood in isolation from its environment. In this respect it resembles
a spreadsheet or a database in which the symbolic data stands in an intimate relation to
meaningful – and current - entities in the external world. When separated from the external

Constructionism 2010, Paris

 3

referent, or no longer current, such symbolic relationships lose their significance. Interactions
with spreadsheets and databases thus directly address sense-making.

A construal for Sudoku solving

The construal we shall study relates to the process of human solving of Sudoku puzzles. Of its
nature, a construal is an organic artefact that evolves over time as it is deployed by different
interpreters. We build construals using Empirical Modelling (EM) principles that we have
developed over many years. A full discussion of EM is beyond the scope of this short paper –
interested readers can consult the EM website for more details. The principal construal used for
illustrative purpose is available online, and other variants of this Sudoku construal can be
downloaded from the EM archive.

The key elements in a construal are observables, which represent meaningful entities that have
an identity and current status or value in the referent, and dependencies, which reflect
perceived connections between observables similar to those that link cells in a spreadsheet. As
the word ‘perceived’ suggests, the construal is to be understood in conjunction with a human
agent acting within an environment that encloses or evokes an external referent. There is no
clearly specified set of appropriate processes and states associated with a construal. The states
of the construal are intended to evolve in intimate conjunction with the states of mind of its
human interpreter – or more precisely with those of its human interpreters, since there is no
absolute constraint on the interpretative role that human agents can adopt in interaction with its
current state. Meaningfulness to the human interpreter is all that constrains the evolution of the
construal, which lends an open-ended exploratory character to its construction. This does not
rule out the possibility that patterns of interaction and interpretation emerge, some of which may
be automated to realise program-like functionality.

The Sudoku construal – or to be more precise, a state of a Sudoku construal – is depicted in
Figure 1. Because of the highly interactive nature of construals, it would be helpful at this point
for a reader unfamiliar with EM to invoke this construal via the online ‘General Introduction to the
Script’ at http://www.dcs.warwick.ac.uk/~wmb/sudokuExperience/workshops/. As explained in
that introduction, the underlying structure of the construal is a moderately large set of definitions
(some five thousand in all), each of which specifies the value of a different observable either
explicitly, or by a formula in terms of other observables. The size of the set of observables is
largely due to the fact that each observable associated with a particular cell of the Sudoku grid
has a counterpart in each of the other 80 cells. Examples of observables include:

d_3 = 7; ## the contents of the cell D3 in the 3rd row and 4th column of the grid
d3_fixed = 1; ## the status of the value in this cell – given in the puzzle, so fixed
d3 is mkstr(d_3); ## the string that is displayed to indicate the value in the cell
… the x and y coordinates of the cell D3 in the screen display:
D3_X1 is grid_startx + column(3.0) + (3.0 * spacer_x) + 2.0;
D3_Y1 is grid_starty + row(2.0) + (2.0 * spacer_y);
… the foreground and background colours of the cell D3:
D3_fgcolour is d3_fixed ? SD_fixed_fgcolour : SD_fgcolour;
D3_bgcolour is colourclue(possibledigits2binary(possdigit34),colourvalues);

The construal is built using the EDEN interpreter, depicted in Figure 1 in its online variant.
Definitions are first entered through the Input Window at the top left, either individually, or
through file inclusion. The current values and definitions of observables can then be queried and
displayed in the Output Window at the bottom left. Initially, before any definitions have been
entered, the interpreter affords only these two windows; other components of the display in
Figure 1, such as the Sudoku grid and the ButtonMenu panel at the top right are themselves
specified by sets of definitions via the Input Window. In Figure 1, the grid and button menu

Constructionism 2010, Paris

 4

supply the interface for a novice user. They allow digits to be entered into the grid directly, and
allow pre-packaged sets of definitions to be introduced to the model at the click of a button.

The perspective on a construal that best matches Papert’s constructionist vision is that afforded
by open interaction via the Input Window. Through this window, any of the observables
associated with cell D3 can be freely modified. We can determine whether or not the value in cell
D3 is to be deemed fixed, change the digit in the cell whether or not it is deemed to be fixed,
relocate the cell D3 on the screen, modify the string that displays the value of the digit 7 etc.

Figure 2. Observables and dependencies associated with cell 34 in a Sudoku grid

Figure 2(a) uses Allan Wong’s Dependency Modelling Tool to give a comprehensive overview of
the net of observables and dependencies associated with the cell D3 in Figure 1. The
dependencies in this net are acyclic, and the green nodes correspond to observables with
explicit definitions. From the diagram, we can infer that the attributes of cells are independent of

(a)

(b)

Constructionism 2010, Paris

 5

their location on the screen. We can also see that the background colour of cell D3 depends on
the observable possdig34, which records the set of plausible digits for a cell, given its status and
that of cells in the same region, row or column. This dependency is the focus of a later section.

The dependency net may appear to be static and structural in character, but in fact it is dynamic
and fluid. At first sight, it seems obvious that the dimensions of a cell should be independent of
its location, but – in fact – it might assist a partially-sighted person if the grid could be moved
around so that the cell at the centre of the screen was enlarged. Of course, what changes can
be made to the dependencies are constrained if the construal is to represent a Sudoku grid. This
is no more than what is expected of structure that is negotiated through experience and
established by convention. In this respect, a construal provides a representation that not only
favours a constructionist stance, but is in the broader sense constructivist in spirit (Latour, 2006).

Simple redefinitions play a vital – though sometimes hidden – role in the Sudoku construal. For
example, when a solver focuses on a specific cell (say E2) and enters a digit (say 6) from the
keyboard, they in effect instruct automated agents to redefine the current cell, thereby defining
an observable (e2_focus) to indicate that E2 is currently selected, and to make an appropriate
redefinition (e_2 = 6). More elaborate sets of redefinitions are associated with a shift in
perspective on the solving task, such as is involved in switching in and out of the ‘colour Sudoku’
mode (cf. Figures 1 and 3). The complex reconfiguration of dependencies invoked when the
‘Remove colour’ button is pressed can be seen by contrasting 2(a) with 2(b). Setting up these
different modes and patterns of agency for interaction involves the iteration and testing of ideas
characteristic of constructionism. Once created, they can then be recorded and replayed.

Figure 3. The initial state of the Sudoku solving environment for the ACE sessions

Blending learning, teaching and development

At the heart of constructionist education is the idea of shifting effortlessly between the work of
the learner, the teacher and the developer. The distinction between these roles is very stark in
conventional programming. In construals, by contrast, the net of observables and dependencies
serves as a playground where many agents can act, potentially even concurrently. What
distinguishes the roles of agents is their expertise and level of privilege where interpreting and
modifying definitions is concerned.

The potential for blending roles that construals afford has been illustrated informally in
educational activities we have carried out at the University of Warwick using our Sudoku-solving
construals. The first of these was in connection with two short visits by local schoolchildren

Constructionism 2010, Paris

 6

under the auspices of the "Aiming for a College Education (ACE)" programme in January and
February 2008 (see Figures 3 and 4). The second, in July 2008, was a week-long workshop
entitled “The Sudoku Experience” for pupils on the UK Young Gifted and Talented (YGT)
programme (see Figure 1). Further feedback on this workshop has been given by Daria
Antonova, a high-school student affiliated to the Nokia Toijala Center scheme in Finland.

Figure 4. The state of the Sudoku solving environment after colour has been introduced

The variant of the Sudoku construal used in the ACE activity highlights some of the ways in
which the perspective of developers, teachers and learners can be blended. The educational
objective was to expose pupils to abstract reasoning and problem-solving in a way they might
find entertaining. The basic construal on which the activity was based was initially developed by
an MSc student Karl King in 2006 (cf. Figure 3), and subsequently elaborated to include a cell
colouring by Harfield in 2007 (cf. Figure 4). These were combined into a single artefact by
Beynon for the ACE workshop, when the simple button interface in Figure 3 was added. This
process of re-use and adaptation is characteristic of our construals and illustrates the scope for
sharing and communication in development that EM affords.

The adaptations of King’s and Harfield’s construals for the ACE activity are typical of those that a
teacher might make. They introduce interfaces that disclose observables and allow them to be
manipulated in appropriate ways. The basic affordances in the button menu in Figure 3 make it
possible to inspect the plausible digits for the currently selected cell and to reset the puzzle. In a
routine solving process, the solver looks for cells that admit just one plausible digit, or instances
of rows, columns or regions in which there is only one cell in which a specific digit can be placed.
We introduced these abstract rules to the pupils before they used the construal.

Several skills are engaged in applying these simple rules. The yellow highlighting of cells in
Figure 3 helps to maintain focus on the digits that lie in the same row, column and region. A
teacher who wished to assess a pupil’s skill in identifying such relevant cells might remove these
highlights by redefining a single observable – SD_relevant_colour. Once pupils are skilful in
such identification, colour can be exploited in another way, as illustrated in Figure 4.

The basic principle behind “colour Sudoku” is that a colour can be associated with each empty
cell so as to reflect the ‘plausible digits’ for the cell. For the cell B7 in Figure 4, for example, the
set of plausibles is [3,9] because 3 and 9 are the only digits not found in its row, column or
region. Each empty cell can then be coloured according to its set of plausibles. One way of
doing this is to assign a unique colour to each digit and then colour the empty cell as a mix of the

Constructionism 2010, Paris

 7

colours of its plausibles. In the Sudoku construal the resulting colour for a cell is obtained by
adding together the RGB values of the assigned colours for each of the possible digits.

The two basic rules for Sudoku solving identified above have interpretations in colour Sudoku.
The colour of a cell having only one plausible digit (such as E1 in Figure 4) has the same colour
as that digit. The fact that there is only one location in which a particular digit can be placed
within a row, column or region can be disclosed by modifying the colour associated with that digit
and observing which cells are then affected. The interface in the left panel of Figure 4 enables
the colour associated with any specific digit to be modified. An application of this rule is then
illustrated in Figure 4, where the R component of the colour associated with the digit 4 is being
enhanced, and the impact on cells of the grid observed. In this case, the cell A1 is the only cell in
the top row that changes colour.

Extensions to King’s original construal of the above kind are of interest to the teacher in several
ways. They can be used to enrich the learning experience for the pupil, or to probe the nature of
a pupil’s difficulties. They can also be used in gathering insight into Sudoku solving prior to
framing activities for pupils. When solving puzzles without computer support, a solver may
survey the plausible digits for cells and commit them to memory, or record the plausible digits as
a list in each cell. To some degree, efficient solution of puzzles appears to rely on good fortune
in identifying cells to which one of the basic rules applies. Studying colour Sudoku helps to
expose issues that relate to perception, cognition and memory in the solving task.

Because of the brief and cursory nature of their visit, we had no opportunity at the time to study
the pupil’s reactions to the ACE sessions in a formal way. A feature of the Sudoku construals is
that the entire history of interactions associated with each individual pupil is recorded as a
sequence of redefinitions of observables, which can then be replayed. Figures 3 and 4 are
screenshots from just such a replayed sequence of interactions on the part of one pupil. What is
more, because each state constructed from the history is retrieved as a set of definitions, it
serves as an interactive environment in which the analyst can also interact. This is also
illustrated in Figure 4 – the display of plausible digits at the bottom left was not in fact invoked by
the pupil who created the history, but was added when the history was replayed.

From our preliminary studies of these histories, and our informal observation at the time, it was
apparent that the range of pupil reactions was broad. For some pupils familiar with Sudoku, the
elementary puzzle in Figure 1 proved too simple. Others – who perhaps lacked experience and
motivation for puzzle solving – did not understand the task, but seem to have completed the grid
in a random manner so as not to lose face. One pupil chose not to use the colour Sudoku
interface, maintaining that they preferred the presentation in Figure 3 to that in Figure 4. A virtue
of the openness of the construal is that it enabled us to adapt to special circumstances. For
instance, our button interface made no provision for changing the underlying Sudoku puzzle, but
we could show the more advanced pupils how to load different puzzles via the Input Window.

The Sudoku Experience workshop

The Sudoku Experience workshop consists of a number of activities to be undertaken inside the
online Web Eden environment. Each activity starts with the Sudoku construal loaded in a
specific state together with a guidebook for the student to follow or work through (see Figure 1).
For some of the activities the guidebook resembles a tutorial (e.g. in early activities the student
is taught how to use the environment). For other activities the guidebook is a guided exploration
of the construal (e.g. to give insight into essential elements of the construal). In other contexts
the guidebook proposes open-ended creative tasks for the student to undertake (e.g. building an
extension to the construal by modifying dependencies). In this way, the environment is utilised
for both ‘instructionist’ and ‘constructivist’ learning. In order for a student to progress to a deeper
level of learning in these workshops it seems to be necessary for exploratory activities to be
preceded by activities of a more closed and tightly prescribed nature.

Constructionism 2010, Paris

 8

The workshop had three core elements: playing, exploring, building. Students began on day one
by playing Sudoku. This could have been on paper or using the Sudoku construal. In its basic
state, the Sudoku construal appears to be nothing more than an interface for playing Sudoku
(much the same as the many Sudoku programs that are freely available). However, the vanilla
construal provides an interface for adding layers from which a student can begin to explore ways
to solve a puzzle. For example, a student might choose to show the plausible digits for a
particular cell as shown in Figure 4. The set of plausible digits for a cell is an observable in the
construal (cf. possdig34 in Figure 2) that is defined by a dependency. This is one of many
dependencies that are already given to the students in the Sudoku construal for them to explore.

An important feature of a construal is that it is always live. There is no separation between a
‘build’ mode and a ‘play’ mode. A construal is open to exploration and redefinition at the same
time as a student is using or playing with it. In the Sudoku construal, a student might start
playing by entering some digits into the puzzle, but then explore what this means in terms of the
underlying dependencies, or try to add new dependencies to derive new insight into the puzzle.
One of the activities that involved adding colour to assist solving serves as a good example.

By midway through the workshops, the students were familiar with solving Sudoku and able to
identify and write dependencies that describe simple rules for solving Sudoku. They had also
been introduced to the colour version of the Sudoku construal. At this point we gave the students
an opportunity to construct their own version of colour Sudoku.

Figure 5. The Sudoku construal as used for the colour creation activity

The colour Sudoku activity acquaints students with the way in which the visual colour clues in
Figure 4 are specified, and equips them to explore alternative ways in which these could have
been specified. It begins by introducing the observables for defining the background colour of a
cell. Students then start by experimenting with the dependencies that define the colour based on
the value in the cell, as shown in Figure 5. In previous activities, students had already explored
the observables for determining the possible digits of a cell. Using this knowledge we set them
the task of creating dependencies that colour the cells in a similar manner to the colour Sudoku
game they played at the beginning of the workshop.

Constructionism 2010, Paris

 9

The colour Sudoku activity illustrates how the Web Eden environment supports two key aspects
of constructionism: helping students to achieve new knowledge and skills through disciplined
guidance, and offering students opportunities to actively explore and experiment in order to
develop knowledge based on their own experiences.

In the colour Sudoku activity, before attempting to ‘actively explore and experiment’ a student
must be equipped with some knowledge of how to change the colour of cells and to access the
plausible digits of a cell. The information window on the right hand side of Figure 5 provides
disciplined guidance to colour specification in the colour Sudoku construal. It functions as a
guidebook to the construal in much the way that a tourist guidebook assists a foreign visitor,
pointing out places of interest, things to try, and essential facts that you cannot get by without.

With the guidebook as a reference for preconceived interactions that might be useful, the
student can explore the construal and experiment by changing observables or dependencies.
Such modifications might be achieved through a graphical interface (provided by the teacher or
developer) or by entering definitions into the Input Window. In Figure 5, a new definition for the
background colour of cell E1 is entered via the Input Window. In the colour Sudoku activity, the
student is encouraged to experiment by setting cells to different colours in this way. An
alternative colour scheme might associate the brightest colour with individual digits, and hence
represent cells with many plausible digits by dark colours, for instance. Many students were able
to progress to derive definitions for the colour of an individual cell based on plausible digits and
thereby eventually build up a specification for the full colour grid, as shown in Figure 6.

Figure 6. The Sudoku construal as used for the colour creation activity

Some feedback and reflection

Positive feedback from students during the workshop indicated that there is potential in the
approach. Comments such as “I did it! It works!” suggested that students enjoyed the activities.
Several appreciated the power of the metaphor of making and following a guided walk we had
invoked. One student expressed what he liked about the activities: “It was amazing to see what
we have actually done to the sudoku board and it was good that you said we could ‘wonder (sic)
off the path’ a bit, e.g. changing colours and numbers, which was good fun.”

Some of the most encouraging comments were directly related to the exploratory nature of the
environment: “A very good idea to have a ‘path’ but it was flexible.” Others saw the value in
building up towards a larger goal: “A good building progress from each of the tasks, so at the
end you can put all of them together.” Students found experimenting valuable, even when it was
the smallest change: “Having lots of stuff to do in every workshop, even if it looks easy, you still
feel a small achievement when you actually change a square to blue or make the number 7
green.” Students were also willing to try things out for themselves and take their learning into
their own hands: “Lots and lots of colours recognized, i decided to have a little play and started

Constructionism 2010, Paris

 10

putting random colours in like magenta, turquoise etc. and was really good fun making it
multicoloured”. The environment enabled some students to go beyond the set tasks: “I know that
the sudoku grid is supposed to give blanks when 0 is entered into a square but this does not
allow other programs such as the addition program to work properly. A solution to this would be
to set a key such as 'c' to a blank and tell users to press 'c' or clear to empty a box.”

Many of the critical comments related to literacy demands. One criticism was that there was too
much material to read: “There was a lot of writing to read during the first two tasks 18 pages and
14 pages, maybe other people feel differently, but the majority of the task was reading.” And
whilst some students remarked that: “it was well written and easy to understand”, others
struggled: “I had difficulties to knowing how to do things, as I don't think it was explain very well.
In the introduction I got confused straight away but then when I went onto workshop 2 I worked
out what to do. I think it needs to be made clearer how to do things.” Another said: “I really didn't
understand a lot of it - some of the basic stuff made sense and I think I got some of the stuff
about the colours, but a lot of it went over my head. A bit of getting to know the basics first would
have helped, I think if I knew more about programming, I would have enjoyed it more.”

The wide range of notations in the environment confused one student: “I have run into more
problems. Which (thing) should I be using; eden or scout”. Another was mystified by aspects of
the environment: “I also found the output box confusing and don't quite know why we need it.”
These issues point to a need to refine the environment for educational use. Although restricting
what tools the learner has available may be undesirable from a constructionist viewpoint, it may
sometimes be better to hide parts of the environment that are unlikely to be used.

Overall, the breadth of the issues addressed in the Sudoku Experience workshop and the open-
ended interaction it provokes go beyond blending developing, teaching and learning, blurring the
very boundaries between what is being taught, learnt and constructed. The student feedback
points to the difficulty some face in adapting to the fuzzily-defined objectives and rich and messy
interactions that discovery in a constructionist spirit can entail. Looking to the future, it is vital to
distinguish construal-by-computer from the sharply-defined goals and neat rationality of
programming. In these respects, Antonova’s independent verdict on the workshop activities is
encouraging: “They turned out to be pretty interesting and dont really require programming skills
or previous knowledge of programming language, just some logic. I had to think quite a while
about some of exercises to find answers but after you find them, exercises don't seem hard.”

References

Ben Ari, M. (2001) Constructivism in Computer Science Education, Journal of Computers in
Mathematics and Science Teaching 20(1), 45-73

Beynon, M. (2009) Constructivist Computer Science Education Reconstructed. HEA-ICS
ITALICS e-Journal, Volume 8 Issue 2, June 2009, 73-90

Beynon, M. and Harfield, A. (2007) Lifelong Learning, Empirical Modelling and the Promises of
Constructivism. Journal of Computers, Volume 2, Issue 3, May 2007, 43-55.

Latour, B. (2006) The Promises of Constructivism, In Ihde, D. (ed.) Chasing Technoscience:
Matrix of Materiality, 2006, 27-46

Noss, R. Open Letter to Logo and EuroLogo Communities, at the url:
http://www.aup.edu/news/downloads/constructionism2010_Noss.pdf (accessed 28/03/10)

The EM website at http://www.dcs.warwick.ac.uk/modelling/ (accessed 28/03/10)

The EM archive at http://empublic.dcs.warwick.ac.uk/projects/ (accessed 28/03/10)

The Web Eden interpreter at http://go.warwick.ac.uk/webeden/ (accessed 28/03/10)

