esearch report 124__

DEFINITIONS FOR MODELLING AND
SIMULATING CONCURRENT SYSTEMS'

Meurig Beynon, Mark Norris', Mike Slade

(RR124)

A novel activity-oriented approach to the modelling and simulation of concurrent systems is
described. A method of reasoning about the perceptions and capabilities of an agent is
illustrated. A brief evaluation, and a comparison with other approaches is included.

1 presented at the IASTED conference: Applied Simulation and Modelling '88.

Department of Computer Science
University of Warwick

Coventry CV47AL

United Kingdom

f British Telecom Research Laboratories
Martlesham Heath

Ipswich
IPS 7RE, UK May 1988

Introduction

The ever increasing move towards distributed computing systems has greatly increased the
complexity of their design. Many different methods for modelling and simulating such systems have
been proposed. There is a significant distinction between a modelling perspective based upon an
“event-oriented” world-view, in which the emphasis is upon describing the abstract behaviour of a
system, and an "activity-oriented" world view, where the objective is to describe the actions of the
objects comprising the model and the conditions for these actions to be performed [1]. In the
systematic development of sound concurrent systems software, there is in general an important need
to adopt both viewpoints: to abstractly reason about the behaviour of a system and at the same time
formally describe the roles of the participating agents. This can be achieved either by developing an
activity-oriented specification in such a way that we can formally describe the system behaviour, or
by developing an event-oriented specification in such a way that we can infer an explicit
representation for the concurrently acting agents.

We consider an activity-oriented approach based upon a new language for the description of
concurrent systems of interacting agents - the LSD notation ([2,3]). LSD is founded upon a novel
"definitive (definition-based) programming" paradigm, and has several unusual characteristics. A
distinctive feature is that the perceptions and capabilities of agents are explicitly modelled. This is
important in at least two respects:

1) it becomes possible in principle to consider the implications of altering the perceptions of agents
(e.g. when designing protocols for a blind user of a telephone system), or their capabilities (e.g.
when assigning privileges to the users of a computer system).

2) it is possible to distinguish between synchronisation based upon an agent's perception (as in
"inserting coins when the display is flashing"), and synchronisation based upon implicit
assumptions about the speed with which protocols are executed (as in "assuming that all dialled
digits are appropriately registered no matter how rapidly the user dials a number").

LSD also includes features for modelling the implications of actions that are - or are deemed to be -
instantaneous.

The paper is in three principal sections: an introduction to LSD, an example of an LSD model
of a very simple system, and a discussion of the behavioural issues. In the concluding section, the
potential rdle of LSD as a specification notation, and its relationship to other methods of modelling
and simulating concurrent systems is briefly examined.

81 An introduction to LSD

In this section we introduce LSD, and give some of the motivation behind its development
(c.f. [2,3]). The term process has previously been used in LSD - as in SDL - to refer to an
autonomous agent that acts sequentially according to a particular protocol, but such terminology is
inconsistent with [1]. The nearest equivalent to the LSD or SDL process is the object of [1] (c.f.
[4,5]), but the LSD process is significantly different from the object of an object-oriented paradigm,
and we prefer to adopt the term agent.

The concept of an LSD agent has its origins in a simple paradigm for user-computer
interaction [3]. In modelling the interaction between the user and the computer, we shall be
concerned with representing the user's knowledge of the current state of the system, and their
privileges to change this state. As has been argued in detail elsewhere [3], a particularly effective
way to represent this knowledge is via an acyclic system of functional relationships between
variables. In such a system, the variables that are explicitly defined serve as parameters in the
defining expressions for implicitly defined variables. By inspecting the system of variable
definitions, the user can infer the current status of the interaction, and precisely predict the effect of
changing a parameter. Such a mode of interaction is most simply illustrated by the spreadsheet; the
user may know (for instance) the profir as a function of the price at which the final product is to be
sold, the number of sales, and the cost of components and services.

The central concepts of LSD are derived by viewing the user as an archetypal agent i.e. as
one participant in a concurrent system, having a particular view of the system, and certain privileges
to interact with the system. To explain this more fully, the different characteristics of the variables in
the user's view must be distinguished. There are those variables - such as the profit - that are
implicitly defined and are subject only to indirect changes of value; these will be called the
derivates. Within an agent's view, a derivate is always consistent with its definition. The other
variables known to an agent have no such definition, and can be classified as follows. There are
those variables such as the cost of components, that are subject to change beyond the control of the
agent; these will be called the oracles. There are also variables, such as the price at which the final
product is sold, that are conditionally under the agent's control; these will be called the state
variables. The same variable may serve as both state and oracle.

The semantics of oracle, state and derivate variables is subtle, and we shall be content with
informal interpretations. To say that a variable x is bound to the agent a, acts as a state variable for
the agent b, and is an oracle for the agent ¢, corresponds to saying that "x denotes an entity that is
extant while the agent a is instantiated", that "the agent b is conditionally able to alter x in some
way", and that "the activity of the agent ¢ depends in some way upon the entity x that is subject to
change beyond its control". For example, if x is the colour of the house-next-door (agent a), then
my neighbour (agent b) may repaint the house under appropriate circumstances, and I (agent c) will
have an idea of what the colour x is at any time. The variable x is bound to a in as much as x has no
meaning if the house is burnt to the ground. For my neighbour to repaint the house, some
precondition such as "having a paint brush” must be met. The variable x is an oracle to me in that it
is subject to change beyond my control. It should be noted that a shared variable interpretation of
state/oracle pairs is not necessarily appropriate. It may be that my neighbour's house is repainted
whilst I am away on holiday, so that I act in accordance with an inappropriate assumption about its
present colour. To emphasise the orthogonality of these concepts, observe that an owned or state
variable will not necessarily be an oracle: my neighbour may be colour blind, whilst the relevant
activity in which the house participates is most probably independent of its colour. Naively, we
might formulate the guiding principle that "the activity of an agent is determined by its perception”
(c.f. viewpoint modelling in CORE [6]).

In LSD, a concurrent system is modelled by a family of agents, each having its characteristic
oracle, state and derivate variables. Identifying and classifying the variables of an agent in this way
is the first step towards specifying the relationship between an agent action and the associated
system response. A template for the specification of an LSD agent takes the form:

agent agent_name (parameter_list)

{
oracle list of oracle variables
state list_of state_variables

derivate list of derivates
protocol list of guarded commands

}

- where each derivate of an agent is defined (without cyclic definition) by an algebraic expression in
terms of its derivate, oracle and state variables, and each guarded_command takes the form of a
guard (i.e. a boolean condition expressed in terms of derivate, oracle and state variables), together
with an associated list of actions, each of which either redefines a state variable, or invokes another
agent instance.

As in SDL, such a specification may correspond to one or more active instances within the
concurrent system model, and agent instances can be dynamically created and destroyed. All
variables are bound to specific instances of agents - perhaps to agents that are permanently
instantiated throughout the simulation. There is an important distinction between owned variables -
those bound to the agent itself - and those bound to another agent; this is reflected syntactically in
the specification of an agent by prefixing each owned variable identifier by a "#". Since a state
variable for an agent may be owned by another agent, one agent can act directly to change the values
of variables owned by another agent. In this respect, our approach differs radically from the object-
oriented programming paradigm.

In using LSD for modelling and simulation of a concurrent system, we first specify an
appropriate set of abstract agents, then instantiate specific instances of agents. An agent's behaviour
is determined by its protocol: each agent acts sequentially, and each step of the simulation comprises
appropriate parallel redefinitions of variables and invocations of agents. At any point in the
simulation, each agent instance is either "in transition" - in the process of sequentially executing the
actions in one of the guarded commands specified in its protocol, or in a "waiting" state pending
commitment to the execution of any particular guarded command whose guard is presently true.
Note that the choice between guarded commands with true guards is non-deterministic, and the rate
of execution of the associated sequence of actions is unspecified.

There are many sources of ambiguity and potential conflict in the model of behaviour as
described, but this is not an oversight. The motivating idea is that an LSD specification identifies
those aspects of the system behaviour that depend upon the interrelated capabilities and perceptions
of its participating agents, but that a precise analysis of system behaviour in general involves
additional considerations - c.f. §3.

§2 An illustrative example: a remote control system

The characteristic features of an LSD model will be illustrated by an elementary example.
Consider a mechanical toy that moves in discrete steps along a track of length 2L+1 in response to
input signals from a remote control unit. For simplicity, assume that the toy is initially placed at the
centre of the track, and moves left or right one step at a time. As an initial specification of the LSD
agents, consider:

agent toy()

{

state (int) #position=0;

state-oracle (int) #switch=0;

derivate (bool) #on_track = abs(position)<L;

protocol
on_track and switch = 1 -> position=Ipositionl+1; switch = 0;
on_track and switch = -1 -> position=lpositionl-1; switch = 0;

}

agent remote_control()
{
oracle (int) #button;
state (int) #output = 0;
protocol
output = 0 and button =1 -> output = 1;
output = 0 and button =-1 -> output = -1;
output != 0 and button = 0 -> signal(output); output=0;

}

agent signal(direction)

{
state switch;
protocol
true -> switch = direction; LIVE = false;
}

agent operator()

{

oracle position;
state button;
protocol

position<L -> button=1; button=0;
position>-L -> button=-1; button=0;

To set up the model, three agents are instantiated: the toy(), the remote_control(), and the
operator(). These are all present throughout the simulation, but the remote_control() also invokes
instances of the signal() agent from time to time. The specification of these agents illustrates many
of the features of the LSD notation. Note in particular: the use of "I I" for expression evaluation; the
invocation of signal() agents in the protocol for the remote_control() agent; the special boolean
variable "LIVE" in the signal() agent, whose value determines whether or not the agent instance is
live.

The specifications of the participating agents above will be interpreted with reference to the
underlying principles outlined in §1. We shall also identify some of the significant behavioural
issues to be considered in more detail in §3.

The toy() process has a variable to record its current position, and a register switch that is
set to initiate movement. The condition for the toy to be on the track is defined by a functional
relationship, viz "the absolute value of position is at most L". Notice how this use of a derivate
illustrates the modelling of instantaneous side-effects: the value of the boolean variable on_track is
defined in terms of its position. Whilst the toy is on the track, it responds to a non-zero value in the
switch register by moving in an appropriate direction and resetting the switch. Notice that all these
variables are bound to the toy() agent: were the toy to be removed, these variables would cease to
have any meaning. Only the toy itself can act to affect its position, but the switch register is also set
by an external agent, viz the signal() agent, and is accordingly specified as a state-oracle. An
important behavioural issue is the possible interference between the signal() and the toy() agents
through concurrent assignment to this register.

The rdle of the signal() agent is to set the switch register in the toy() agent. Each such agent
is instantiated with a parameter to indicate the direction of movement of the toy that is to be invoked,
and in principle there may be several signal() agents extant at any one time. The presence of several
signal() agents would necessarily complicate the problems of potential interference over the setting
of the switch register. Notice that enforcing synchronisation upon a signal() agent is impossible
according to the specification above, since no provision is made for the signal() agent to reference
the value of an external variable.

The remote_control() agent has the most complex specification. There are two variables
bound to it: a button that is under the operator's control, and a register output that serves as a local
memory. The remote control responds to button pushes, and has a two stage protocol, whereby it
first records which button has been pressed in the register output, then proceeds to send an
appropriate signal to the toy when the button is released. Notice that, with the behavioural
interpretation described above, the remote control does not necessarily respond at all to a button
push.

The operator() agent is aware of the current position of the toy, and can press a button on the
remote control to initiate movement of the toy to the left or right. Pushing and releasing the right
button is modelled by the assignments "button=1; button=0". Note that nothing in the operator()'s
protocol prevents arbitrarily rapid sequences of button pushes: the pre-condition for pushing a
button is not directly affected by performing the action. Indeed, this pre-condition would not in

5

practice be enforced upon an operator - acting according to the specified protocol merely
corresponds to "acting with discretion so as to ensure that the toy at all times remains on the track”.
A protocol that more realistically modelled the operator's capability would remove the pre-
conditions upon button pushing entirely, thereby admitting the possibility of the toy being driven off
the track.

There are several ways in which the operator's protocol can be elaborated to model different
perceptions. In one model - appropriate for a young child, for instance - the operator would only
perceive whether or not the toy() is on the track at any time, and be permitted to restore the toy() to
the track. For a blind operator, it might be appropriate to model the current position of the toy() as
remembered rather than perceived, introducing owned variables for this purpose. The details are left
to the interested reader; our simple example illustrates the basic concepts required for this purpose.

§3 Behavioural aspects of the remote control system

As explained above, the primary rdle of an LSD model is to describe the independent
asynchronous behaviour of concurrently acting sequential agents, each responding to its perceived
view of the system. As our example illustrates, the relationship between the authentic value of a
variable and its value as viewed as an oracle by another agent is open to a variety of interpretations
in general, and need not be simply that of a "shared variable". This is accommodated in our model
by regarding each agent as actively evaluating its guards and executing guarded commands - even
where such activity is fictional. The behavioural analysis of a system then generally requires
additional assumptions about the "speed" at which each agent detects a true guard and processes a
command whose guard is perceived to be true, e.g. to ensure that parallel redefinitions of variables
are non-interfering. In effect, an LSD specification makes explicit the preconditions (in terms of
perceived values) for an agent to perform an action. This is sufficient to constrain the sequencing of
actions, but does not encompass real time concerns.

By way of illustration, it may be important to support non-deterministic behaviour on the part
of a user, yet to demand deterministic responses from other agents participating in a system. For
instance, a telephone user is unlikely to put down the receiver whilst awaiting a connection, even
though replacing the receiver when it is offhook is always a valid option in the user's protocol (c.f.
[3]). It is equally inappropriate to assume that the telephone responds non-deterministically and
intermittently to a user picking up the receiver. The LSD model also makes it possible to distinguish
between synchronisation through perception (as in "pouring fresh tea into a guest's teacup when it
is empty"), and synchronisation through independent assumptions e.g. about speed of propagation
of values or execution of actions (as in "assuming - when replacing a broken light-bulb - that
turning off the light switch will first render the light socket safe").

The limitations of the LSD model from a behavioural perspective are quite apparent in our
illustrative example. Taking a pessimistic procedural view, it may be assumed that the participating
agents sample their guards non-deterministically, and from time to time react to the identification of
a true guard by embarking on the associated sequence of actions at a finite but irregular rate of

6

execution. To assume more would be inconsistent with the behaviour exhibited for instance by the
operator(), who can be expected to assess the position of the toy and respond after an indeterminate
delay by depressing one or other button for an unspecified amount of time. In our example, such
assumptions serve to model several different communications protocols, each associated with a
variable that acts both as a state or derivate for one process and as an oracle for another. As our
example illustrates, they are also essential; the singular patterns of behaviour cannot otherwise be
eliminated without radically altering the perceptions of the participating agents.

The "intended" behaviour of the remote control system might be described thus: the user
notes the position of the toy and presses an appropriate button, the remote control registers the
button that is pressed, and on its release sends a signal to the toy that sets an appropriate switch,
causing the toy to move and to reset the switch. This LSD specification highlights problems to be
resolved in realising the intended behaviour.

The first problem is that pressing a button need not be registered by the remote control at all.
An omniscient malevolent operator could in principle ensure that redefinitions of the button variable
are precisely synchronised with attempts by the remote control agent to evaluate the guards in its
protocol. It is also clear that erratic execution of the guarded commands within the remote_control()
protocol can lead to responses that reflect the sequence of buttons pushed by the operator in a quite
unpredictable fashion i.e. so that only a small proportion of the button pushes generate a signal. In
practice, the design of a remote control unit will be such that the speed at which the operator can
manipulate the button is slow compared with the rate at which the control samples the button oracle
and acts to generate a signal. It may also be contrived that the duration of a physical button push is
only partially reflected by the button oracle - e.g. is normalised so that the value of the button oracle
remains non-zero for a fixed time interval. What is significant is that any more sophisticated solution
would require a more elaborate interface e.g. a buffer to record a sequence of button pushes, or a
"ready light" bound to the remote control - defined as a derivate by the functional relationship
"output=0 and button=0" - that served as an oracle for the operator.

Suppose then that the remote control is in some way equipped to deal with every operator
input, and is guaranteed to respond by sending an appropriate signal. The interpretation of the
behaviour of signal() agents is such that a signal - once instantiated by the remote control - may take
an arbitrarily long time to affect the switch setting. This is not altogether unreasonable: the direction
in which a signal is sent may be very critical in determining when - and even whether - it arrives. A
real environment could be contrived in which signals were alternately sent directly across a room or
routed via a satellite, for instance, when the order of arrival of signals at the toy would be uncertain.
An additional problem is that of potential interference between the signal() and the toy() processes
over setting and resetting the switch register. The toy() agent is free to move according to its
protocol at an unspecified speed, and to reset the switch register at any time after moving, whilst the
signal() agent is totally oblivious to the status of the toy() agent. There can accordingly be no
guarantee that resetting the switch by the toy() agent escapes conflict with an incoming signal.

In practice, there are several possible approaches to these problems. The issues of reliability
and sequencing of signals are ordinarily resolved by making reasonable assumptions about the
operating environment for the system. It is to be expected that all signals travel at the same speed for
instance, and that they set the switch register in the order in which they are sent. In using a remote
control for a television, the lack of a response to a button push within a short period of time is
normally assumed to indicate misdirection of the signal. Indeed, it might be more appropriate to
elaborate the protocol of the signal() agent to indicate that the orientation of the signal by the
operator is significant in determining whether the switch setting takes place.

Potential conflicts on switch setting can be handled in many ways. One simple but relatively
unsatisfactory solution is to admit the possibility of conflict. When operating a remote control for a
television, it would not be unreasonable to expect a non-deterministic response to two very rapid
channel switches, on the grounds that changing TV channels is normally done in response to what
is observed on one channel. This assumes of course that attempting to simultaneously assign O and
1 to the switch register does not lead to some irrevocable error condition. Were that to be a problem,
it would also be possible to separate the state-oracle switch within the toy() agent into state and
oracle components; this would prevent the signal() gaining direct access to the switch register, and
allow only for sequential access by the toy() agent. As with the resolution of conflicts over the
setting of the button variable and the output register in the control unit, other possibilities are to
ensure that the toy() executes its protocol sufficiently rapidly to guarantee that the switch is always
reset prior to the next signal, or to introduce a buffer between the signal() and toy() agents. A
similar device to the "ready light" described above for the remote control might also be attached to
the toy to indicate to the operator() agent that a further signal can be sent. This type of feedback also
helps when concerned with the issue of signal failure.

84 The rdle of LSD as a specification notation

It may fairly be said that LSD provides an agent-oriented view of interactive and
concurrent systems. At least for the present, our approach is most relevant to the task of modelling
concurrent systems in which the specific form and disposition of the principal agents is known. Its
immediate application is to the preliminary phase of the system design process, when the form of
the protocols for the participating agents has to be developed. A formal specification of the system
behaviour requirements within the LSD framework (c.f. JSD [7]), would require more
comprehensive techniques.

Two approaches might be considered for this purpose. A natural way to eliminate singular
behaviour from the system in §2 is to introduce a boolean state variable has_moved that is owned
by the toy() agent, and acts as a state-oracle for the operator. The operator can press the button only
if has_moved is true, assigns has_moved to false after pressing the button, and waits for the toy to
reset the variable after it has completed a move. Notice that this method of specifying intended
behaviour is outside the scope of the engineering design problem; it is a way of formulating a
constraint upon the operator. Elaboration of this technique of using flags to constrain the interaction
between agents leads to a framework somewhat resembling Numerical Petri Nets [8], but departs

8

from the semantics of state and oracle variables as informally illustrated above. (A formal protocol
designed to prevent an incoming signal from interfering with the resetting of the switch register by
the toy() agent could hardly make use of a realistic oracle to the signal() agent. A second approach to
synchronisation involves the introduction of an environment variable time used as an oracle by the
participating agents. This is more consistent with the semantics of state and oracle variables, but
cannot obviate the need to make assumptions about the time required for execution of actions by

participating agents.

The difficulty encountered in formulating a theoretical framework for simulation of
concurrent systems [1,9] is surely linked with the problem of relating the activity-oriented and the
event-oriented perspectives. The key problem is to devise a method for modelling concurrent
systems that can be used both to reason about the activity of agents and the behaviour of the system
as a whole. In this section, we shall briefly contrast LSD with other approaches: the use of CSP
[10,11], and the use of an object-oriented programming paradigm (OOPP) [12,13].

CSP typifies the abstract behavioural perspective on concurrent systems. The philosophy
behind the notation is that, where the behavioural view of a system is concerned ([10] p24): "...
there is no need to make a distinction between events which are initiated by the object and those
which are initiated by some agent outside the object. The avoidance of the concept of causality leads
to considerable simplification in the theory and its application." We do not dissent from the view
that consideration of the agents responsible for events unnecessarily complicates the abstract
specification of the behaviour of a concurrent system, but our experience with LSD suggests that
giving more careful consideration to the rdle of agents has very significant implications in an
activity-oriented approach, and may be helpful when reasoning about system behaviour.

CSP permits the representation of system behaviour as a family of traces, each comprising a
sequence of interleaved events. It is not generally easy for the designer of a concurrent system to
relate such a behavioural specification to given constraints about the configuration of processors, or
the nature of the participating agents. Nor is it easy within such a framework to correlate the system
behaviour with local modifications to the perceptions and capabilities of these agents.

It is perhaps more appropriate to compare LSD with the archetypal activity-oriented approach
to simulation, viz that based upon an OOPP [12]. The basic concepts of the OOPP - that the internal
structure of an object is hidden from other objects, and that the only way in which one object can act
to change the state of another object is by sending it a message - are clearly well-adapted for
programming in a totally distributed system. It does not seem that an OOPP serves the function of
modelling real-world interactions as effectively as LSD however. It is surely appropriate to assert
that the telephone user acts directly to take the telephone offhook for instance, rather than that he/she
sends a message to the telephone telling it to pick up its receiver. The concept of specifying the side-
effects of actions through derivates also has some advantages - c.f. [14], where the limitations of
the OOPP as a medium for abstractly specifying geometrical relationships between the components
of a robot arm are exposed.

It is nonetheless plausible to argue that most concurrent systems are abstractly “totally
distributed" at a sufficiently low level of abstraction. That is to say, most systems are built up from
digital components that communicate across channels that may be physically short but may yet
introduce problems of synchronisation. At this stage, it is not clear to what extent the use of LSD
can assist the specification of such systems. At first sight, it would appear that any advantages of
LSD are forfeit if we eliminate the possibility of direct action of one agent upon another, or of
"synchronised side-effects”. What is certain is that an LSD specification for such a system would
closely resemble a specification based upon the OOPP: the only way in which one agent could
change the status of another would be by first changing the value of a variable known as an oracle to
that agent, causing it to respond according to its private protocol. At the same time, we should
ideally need to improve upon the OOPP, since its semantics is obscure where concurrency is
concerned [15]. Our present expectation is that a method for the development of a system by
successive refinement may prove successful for this purpose. The prospects for such a method are
difficult to assess at this stage, but probably depend on being able to apply an anthropomorphic
approach: first constructing a model in which communication is represented via artificial oracle /
state / derivate variables, then systematically eliminating derivates by substituting appropriate
protocols and refining state/oracle pairs by introducing buffers etc to derive a specification at a lower
level of abstraction.

85 Conclusion

We have illustrated how an LSD specification can capture the logical framework of permissions
governing the actions of agents in a concurrent system. Such a specification technique allows a
separation of concerns: isolating aspects of the system behaviour that depend upon assumptions
about execution times and environmental factors from logical constraints on agent actions. Our
present research is directed at developing the techniques needed to reason formally about the
behaviour of an LSD model. We anticipate that our agent-oriented approach has particular relevance
for issues such as the development of fault tolerant systems.

10

Acknowledgements

The authors would like to acknowledge the Director of British Telecom Research Labs for
permission to publish this paper. They would also like to thank the many friends and colleagues
who contributed to this work.

References

[1] R E Nance, The time and state relationships in simulation modelling,
CACM 24(4), 1981, 173-179
[2] W M Beynon, M Norris, Comparison of SDL and LSD,
SDL'87: State of the Art and Future Trends, North-Holland 1987, 201-209
[3] W M Beynon, The LSD notation for communicating systems,
Computer Science Research Report number 87, Warwick University, 1986
[4] D Belsnes, B Mgller-Peterson, Rationale and Tutorial on OSDL: an object-oriented extension
of SDL, SDL'87: State of the Art and Future Trends, North-Holland 1987, 413-426
[5] R Braek, G Hasnes, New Pathways for SDL,
SDL'87: State of the Art and Future Trends, North-Holland 1987, 401-412
[6] G P Mullery, Controlled Requirements Expression
LNCS 1985 ISBN 3-540-15216-4
[71 M A Jackson, System Development,
Prentice-Hall International, 1983
[8] G R Wheeler, Numerical Petri Nets - A Definition,
Telecom Australia Res Labs Rep #7780
[9] B P Ziegler, Theory of modelling and simulation,
Wiley 1976
[10] C A R Hoare, Communicating Sequential Processes,
Prentice-Hall 1985
[11] W H Kaubisch, C A R Hoare, Discrete event simulation based on communicating sequential
processes, Computer Science Research Report, The Queen's University, Belfast 1978
[12] K Nygaard, O J Dahl, The development of the SIMULA languages,
History of Programming Languages, ed Wexelblat, Academic Press, NY 1981
[13] M Stefik, D G Bobrow, OOP: themes and variations,
Al Magazine 6(4), 40-62
[14] T Tomiyama, Object-oriented Programming for Intelligent CAD Systems,
in Intelligent CAD Systems 2: Implementation Issues, Springer Verlag (to appear 1988)
[15] P America, OOP: a theoretician’s introduction
EATCS Bulletin 29, 1986, 69-84

11

