
x

a

l

y

b

e

c

m

hw n

Controlling Robot Arms: An EM Approach

Abstract
At first glance, the modelling of a robot arm might seem an easy task. Indeed, much effort in this
area seems to involve the machine-vision problem of determining the position of the arm with rela-
tion to the object of our interest. Once this problem of ‘target location’ has been solved, the prob-
lem remains of moving the arm to that target position. This ‘secondary’ problem of arm control is
examined in this paper. Empirical Modelling offers us the opportunity to explore the control of a
robot arm in the ‘ad-hoc’ fashion, allowing various techniques to be tested in various situations,
and to evaluate and compare their effectiveness. This paper also discusses possible enhancement
of the current EM tools, (re)introducing a notion of object-enriched empirical modelling.

1 Introduction

This paper illustrates the steps involved with
modelling the software control of a robot arm. A
variety of different approaches to modelling the ro-
bot arm are considered, the unique difficulties and
advantages of using an Empirical Modelling are
given for each, and an indication of the relative effi-
ciency of the methods.

As the goal of this paper is to compare the dif-
ferent methods, the concepts and theories behind
the methods are only reproduced where necessary to
support the work in the paper.

1.1 The underlying model

To compare the different approaches fairly requires
a consistent and adaptable background model of the
physical attributes of the robot arm.

For simplicity the model is limited to a 2D model of
the robot arm, seen from the ‘side-on’ viewpoint.
This limits the arm to five degrees of freedom, sim-
plifying the problem from that faced in real life situ-
ations where there are up to ten degrees of freedom
with a robot arm. It is assumed that the problems of
correctly identifying and normalising the position of
the hand and target have already been solved.

1.1.1 Mathematical Model

Figure 1: Values of Interest

In the underlying mathematical model, we are inter-
ested in two points, the position of the target and the
position of the hand. In this case, the position of the
target is directly known, and the position of the
hand is calculated from the arm co-ordinates (x and
y), the lengths in the arm (l, m and n) and the angles
of the joints (a, b and c). The values are shown in
Figure 1.

For effective visualisation of the arm, the intermedi-
ate points e and w are needed too. The x and y co-
ordinates of the points e, w and h are given by the
following formulae:
ex = x + l * cos(a) ey = y - l * sin(a)
wx = ex + m * cos(b) wy = ey - m * sin(b)
hx = wx + n * cos(c) hy = wy - n * sin(c)

1

The success condition is given by:
hx = tx & hy = ty

1.1.2 User Interface

Figure 2: User Interface

Shown above is the user interface that allows all the
degrees of freedom to be controlled manually, both
in single steps and in larger grouped steps.

It also allows the target position to be set, shows if
the arm has reached the target, the number of moves
taken so far and allows the number of moves to be
reset.

The automatic methods of moving the arm are also
selectable from the bottom of the control panel. A
visual representation of the arm is given in the main
screen on the left hand side of the interface. The
target is also represented as a small cross.

1.1.3 Evaluation of performance
To evaluate the various techniques for moving the
arm, there must be some method of comparison
from one technique to another.

The most simple of these would be to stage a set of
experiments with differing tasks required of the
arm, and see which of these each technique com-
pleted successfully. However, as most of the tech-
niques will be able to solve every task required of
them, this is not a very effective method of evalu-
ation.

Instead, the performance will be evaluated by
means of a count of the number of individual moves
made to reach the goal in each case. Each move
consists of rotating a joint by one step, or moving
the position of the arm either horizontally or vertic-
ally.

To this end, the number of moves taken to get to the
current position is shown on the screen, as well as
an indication showing if the fingers are over the tar-
get.

Also, the opportunity presents itself to ‘cheat’
somewhat by just repositioning the whole arm so
the fingers are in the correct position. However, if
moving of the arm is disallowed completely then it
is possible to move the target outside of the range of
the arm, resulting in the arm never ‘finishing’.

Two solutions are possible: either weighting the re-
positioning of the arm higher than the other move-
ments. Alternatively, the backend will have to trust
the arm movement techniques not to move the base
position of the arm unless it is necessary. The best
solution to this problem can only be chosen once
some methods for moving the arm are available.

Overall, the underlying model took longer to imple-
ment in EDEN than in a standard object oriented
environment. This is more a reflection on the ma-
turity and design of the current tools than the cred-
ibility of EM techniques.

The individual differences between the three script-
ing languages required to make the model work
were often a source of frustration and error. The re-
petitive nature of adding buttons to the toolbar was
reminiscent of manual calculation that computers
were first designed to replace.

1.1.4 Extensions to the model
If there was more time available the model could be
expanded to have a graph of the distance from the
target, allowing a more in depth analysis to be
made. Properties such as minimising rotations of a
particular joint or spreading the movement out due
to overheating issues or similar physical constraints.

The model could also be extended to provide ‘no-
go’ areas that could represent blocking objects or
obstacles that the arm could face in a real situation
or to deal with any mechanical limitations of the
joints in the arm.

The model could be extended in to three dimensions
quite simply by using the Sasami notation. The ad-
ditional problems of collision detection and accur-
ate modelling would then have to be solved.

2

If the model were extended in to 3D, as well as the
other improvements given above, it would be of a
standard that could be used to solve simple prob-
lems faced by actual robot arms.

Indeed, if the model was deemed useful for real
world applications then a real robot arm could be at-
tached to a computer, and an interface to the EDEN
environment designed, to allow it to be moved dir-
ectly. This would also involve input to the system
as feedback to the model.

3

2 Automated movement

The following section discusses various different
methods that could be used to move the arm, how
they could be implemented in the model, and the
difficulties associated with each.

2.1 Hill-Climbing

2.1.1 Overview
One of the simplest AI techniques that can be ap-
plied to this problem is that of ‘hill climbing’, also
known as greedy local search. Due to time con-
straints, this is the only method actually implemen-
ted in the model.

The idea behind this method is to simply look at the
current state, and choose the action that makes the
biggest improvement. If there are several moves
that would make the same improvement then
choose one at random. Figure 3 is the ‘elevation
map’ of a typical situation in the implemented mod-
el. The target is shown as a cross, with ‘higher’

areas shown in a darker colour, denoting a point
closer to the target.

Figure 3: Simple elevation map

2.1.2 Implementation
The hill climbing model requires two considerations
to operate. The first is a representation of the cur-
rent state. This is stored implicitly in the state of the
model, namely the in variables arm_x, arm_y, etc.

The second is some way of evaluating every pos-
sible move available. The easiest way of achieving
this in EDEN is the introduction of a set of decision
variables that give the position of the arm in each of
these adjacent states.

For these adjacent states, the intermediate points of
the arm are not important, so the calculation can be
designated to a function.

The required behaviour is achieved by simply cal-
culating the distance between the points and the tar-
get using Pythagoras:

D � �
P x � T x � 2 � �

P y � T y � 2

All that remains is to select which of these has the
smallest distance D, and to make the move associ-
ated with that variable.

2.1.3 Evaluation
Given simplicity of the model, you would expect
that the performance of the arm would be of a low
standard when using this method of moving the
arm. In most situations the arm performs amicably,
the situations where it performs poorly are ones
where a smaller initial advantage in distance would
lead to a movement with less moves overall. This is
consistent with the greedy nature of the method.

The dependency method of programming was of
great advantage with the implementation of this
movement method. The update of the decision vari-
ables is handled completely automatically by the
system, removing the need to write triggered func-
tions to update the large number of values that the
variables depend on.

2.1.4 Dealing with Extensions to the Model

Figure 4: Advanced elevation map

Due to the simple nature of the method, it is easy to
adapt for the various extensions that are possible in
the model.

For example, to deal with blocking objects involves
a slight adjustment to the distance function to take
account of the objects. An example of this type of
elevation map is given in figure 4. The lighter areas

4

represent the ‘pits’ in the map made by the blocking
objects.

If the model were extended in to three dimensions,
the method would have to consider two extra de-
cision variables for each extra degree of freedom
that was given to the arm.
2.2 A* Informed best-first search

To overcome the limitations of the hill-climbing
method, it is necessary to consider a more advanced
form of AI agent. The most important difference in
this case is that the route is calculated beforehand.
This allows the most optimal movement to be de-
cided before making any move that might not be
part of that movement.

The A* search technique is the best of the informed,
search based AI techniques. A search tree is built
of all the possible states that could be reached from
the previous state, with the initial position of the
arm forming the root of the tree. Each node in the
tree is given a ‘cost value’ which is made up of the
cost of getting to that state form the initial state, and
an estimate of how far that state is from the goal.
The tree is expanded by looking at the successor
states to the node with the smallest cost value.

The advantages of this method come through the
sacrifice of the adaptability in the hill climbing
method. If the target changes position then the
whole route needs to be recalculated. This quickly
becomes computationally expensive, and rules out
any possibility of ‘catching’ a moving target.

The difficulties in implementing this method would
be storing and calculating the search tree. The final
search tree could have tens of thousands of nodes,
any of which could be needed at any time during
the route building process. The globally accessible,
loosely typed nature of EDEN makes storing and
accessing large amounts of structured data more
onerous than in a traditional programming lan-
guage.

2.3 Human Emulation

Another approach to the movement of the arm is to
consider the natural method that is used by the hu-
man arm.

Figure 5: Human method

From empirical observations, the method is split in
to two major parts. The first is aligning the hand to-

wards the object, while simultaneously moving the
wrist to lie on a line between the shoulder and the
target. The second is the extension of the arm until
the fingers are in the correct position, including
moving the shoulder forwards if required. Figure 5
shows the arm after stage one of this.

The implementation of this method poses an inter-
esting problem. The first part of the task is almost
equal in difficultly to the whole task, knowing
which way to rotate the arm and knowing when it is
as close to the line as it can be involves similar de-
cisions as the whole task.

Even when the arm is aligned correctly, extending it
in a straight line is not simple, involving a combina-
tion of trigonometric and the ratio of the component
lengths in the arm.

2.4 Scheduling approach

As discussed in Figueroa (1997) when a real time
programming approach is taken to the control of the
robot arm, the solution is equivalent to that of a
“general real time scheduler”.

Bearing close relation to parts operating system
design, there are several different scheduling al-
gorithms, including static, priority driven and dy-
namic (Ramamritham and Stankovic, 1994).

Although not specifically in the area of real time
scheduling, a body of work already exists exploring
an empirical approach to scheduling, resulting in
“The Temposcope”, a tool designed to assist a naive
user in solving the tutorial scheduling problem.

It would be interesting to see if dependency based
modelling could be used to enhance real time
scheduling, either through adapting the previous
scheduling work or through a completely new mod-
elling exercise.

The amount of effort involved to develop such a
system for the control of the robot arm through EM
would seem to far outweigh the benefits, except if it
were done with reference to the exploration of de-
pendency based scheduling, as detailed above.

2.5 Other considerations

Much of the current work in robot arms seems to be
the control of the arm’s movements though the use
of neural driven interfaces, both in primates

5

(Nicolelis, 2003) and in human subjects (Warwick,
2002). The roll of EM in this area seems unclear, as
the system’s response to the neural activity in
nerves is greatly complex, and modelling this re-
sponse and other factors are out from scope of cur-
rent tools.

3 Object enriched EM

The following section discusses how the combina-
tion of object orientation and empirical modelling
could be achieved, what benefits it could bring, and
the difficulties involved combining the two tech-
niques.

The motivation for changing the current tools is
threefold.

Firstly, the current set of tools is inconsistent.
While it is advisable to split the underlying system
from the extensions that provide e.g. visual layout
tools, there must be some notion of consistency
between them. Otherwise, the effort of becoming
proficient in a new language is tripled.

For example, in the current tools the DoNaLD and

Sasami notations do not require semicolons at the
end of statements, but SCOUT and EDEN do. To
access an EDEN variable in SCOUT, it is necessary
to re-declare it in SCOUT. To access an EDEN
variable in DoNaLD you append ! to the variable
name. These differences make scripting in the nota-
tions more difficult than it needs be.

Secondly, the lack of some level of collective iden-
tity for variables leads to so called ‘magic values’,
or in this case ‘magic variables’. When the textbox
x’s content is changed, it sets the variable
x_TEXT_1 to the content that was changed. Not
only does this pollute the global namespace with
unnecessary variables, but also it is less natural than
say x.text, as would be seen in an object-oriented
approach. This is also true for setting the appear-

ance of the DoNaLD shape x by setting the EDEN
variable A_x.

Finally, there is the issue of familiarity. For most
students, the programming language they are most
familiar with is Java, a strongly typed object based
language. The transition to EDEN, a weakly typed
scripting langue with no object system can be a step
in to the unknown.

Clearly, there are some fundamental concepts to
EM and object orientation that cannot be easily
combined. The idea of encapsulation in good object
oriented practice sits at odds with the freeness and
openness that is at the core of EM. When such is-
sues arise, it should normally be the EM principle
that takes precedence over the object oriented one.
The goal of object enrichment is not to undermine
the foundations of EM, but to supplement and sup-
port them.

There are, however, exceptions to this rule. The in-
troduction of strong typing would seem to reduce
the options available to us, removing some freedom
that was available to us in EDEN. However, the
underlying code is unlikely to be able to deal with
the unexpected data in a meaningful way. For in-
stance, setting what was a numerical value of speed
to the string “fast” is likely to produce undefined
results, a situation that is rarely profitable, even in
EM.

The introduction of a more structured method of
EM modelling would also enable greater reuse of
code, something that has gone unrealised in the cur-
rent tool set. Considering other models during EM
design work is more often than not just a matter of
inspiration, rather than that of serious reuse. A lib-
rary of commonly used agents could be introduced,
speeding the construction of more complex models.
For instance, there could be an agent (which in turn
could control many other sub-agents) that sorted a
given list of strings in to alphabetical order, or an
agent that stored a representation of a binary tree.
These agent-object hybrids would not hide the in-
ternal representation of themselves like traditional
object, merely ‘guide’ other agents to their correct
observables, in the correct order.

In conclusion, while the difficulties may appear
minor, added together they can turn frustrating very
quickly. The object-enriched system would over-
come most of the downfalls and bring other advant-

6

ages, but many could also be solved by ‘revamping’
the existing tools to be more consistent.

References

Ramamritham K., Stankovic J.A -
Scheduling Algorithms and Operating Systems Sup-
port for Real-Time Systems
-http://citeseer.ist.psu.edu/
ramamritham94scheduling.html - (1994)

Figueroa, M. A. - The control of a toy robot ARM:
a real time programming experience -
http://portal.acm.org/citation.cfm?id=31726.31791 -
(1997)

Nicolelis M. - Monkeys Consciously Control a Ro-
bot Arm Using Only Brain Signals
http://dukemednews.org/news/article.php?id=7100 -
(2003)

Warwick K. - Project Cyborg 2.0:
The next step towards true Cyborgs? -
http://www.rdg.ac.uk/KevinWarwick/html/project_
cyborg_2_0.html - (2002)

7

