
A definitive notation for behaviour in
Empirical Modelling?

0322756

Abstract

Definitions in Empirical Modelling are used to represent state, however it is possible to use defini-
tions to describe behaviour, as shown in this paper. To show the differences and benefits of beha-
viour definitions a new language called Doste is implemented based entirely on these behaviour
definitions. An existing EM model will be implemented in Doste for this purpose. Current EM tools
have no ideal solution for modelling agency so the aim of this investigation is to see how definitions
could be used for state and behaviour. Ultimately the idea is to come up with alternative and pos-
sibly better tools for Empirical Modelling which do away with procedures and at the same time al-
low greater integration with the operating system. This paper is meant as an introduction to these
ideas and showing the possibility for future work in this direction.

1 Introduction
A definitive notation is one in which the program-
mer/modeller can write a set of definitions used by a
runtime system as a means of representing depend-
ency. A spreadsheet is an example of definitions for
describing state as is the use of definitions in Empir-
ical Modelling (EM) [Russ97] . Using definitions to
describe behaviour is altogether different although
actually a subtle difference, where the definitions
describe state change and not current state. A differ-
ence that will be clarified in this paper. Current EM
tools [Ward04] do not have a clean way of describ-
ing behaviour as they have to use procedures that do
not fit well with EM principles or have limited func-
tionality. This is where using definitions for beha-
viour as well as state or instead of state may be be-
neficial and so is to be explored. To compare and
analyse the two different types of dependencies a
new language using only behaviour definitions was
created along with a modelling environment for it.
Using this language an existing empirical model
called 'Jugs' [Bey89] has been implemented for the
purpose of showing the different approaches and
how behaviour definitions can work.

The beginning of the paper will introduce Doste and
explain the use of behaviour definitions for model-
ling. It will then go on to explain the differences and
compare to Empirical Modelling.

2 Doste
Doste is a pure definitive language [Bey85] for be-
haviour based on previous work [Pope06] and Em-
pirical Modelling ideas. For this paper an interpreter
and runtime system for the Doste language has been
created which allows a modeller to construct models
with Graphical User Interface components along
with some OpenGL features for 3D models. The
language is based on the mathematical function and
has similarities to functional programming, although
there are significant differences which will be men-
tioned later. It can also be thought of as a prototype-
based object-oriented language instead of the more
common class-based languages [ACS03] , but again
there are significant differences.

The only type in Doste is an object which is a set of
attributes that are name-value pairs, both of which
are also objects. Each value part can either be a con-
stant object or a definition based on other objects
and their attributes. You could think of it as a kind
of database with some similarities to what is de-
scribed in a paper by Garrett and Foley [Garr82].
Here are a few simple examples to give an idea of
the syntax:

The following constructs an empty object and puts it
in attribute test of the system object.

system(test) = {};

Here is an object with three attributes that can be
used to represent a font.

Since everything must be an object the string “red”
must be converted by the interpreter into the follow-
ing:

Definitions are similar to having methods in an ob-
ject and they do correspond well to functions in
functional languages as they can have no side ef-
fects and only return an object. There is an import-
ant difference to note here, although the objects are
based on mathematical functions they are not like
functions of a functional language because they
have to be explicitly enumerated. Definitions on the
other hand are more like functions and do not have
to be enumerated, they simply re-evaluate when
some part of them changes. This seems to allow for
a side-effect free functional type language that can

store state and hence is useful for database applica-
tions and the like. Allowing these definitions to be
recursive means you can not only describe state and
dependency over space but over time as well, it can
define state change.

Below is an example of a simple non-recursive
definition that will return the true object if a jugs
capacity is equal to its contents, otherwise false.
Here current refers to jug A and this is also jug
A, however this is of little importance and the defin-
ition can be used unchanged for any jug due to ob-
ject-oriented encapsulation.

The following is equivalent to an if or switch state-
ment in most languages, however the condition is on
the last line not the first. Note that it is also a self-
referent definition that remains the same while the
clock is true but when it is false it becomes the value
of contents. Such definitions stop evaluating when
no change occurs otherwise it would be infinite.

Figure 1: A state transition diagram to illustrate how definitions are evaluated for one clock cycle of the jugs model. The
example given shows contents filling and becoming full at which point it stops. Note how nothing changes between state 5
and 6, this corresponds to idle time. It is also possible to see that two changes can occur at the same time, these can actu -
ally be done in parallel. Further, transitions 'c' and 'h' cause no change and so the system stops evaluating them, all the
dashed lines correspond to definitions that do not change and are not calculated.

current(isfull) =
this(capacity)
(compare)
(this(contents));

contents2 = 4

y = 20

isfull = false

contents = 4

tick = false

active = true

contents2 = 4

y = 20

isfull = false

contents = 4

tick = true

active = true

contents2 = 4

y = 20

isfull = false

contents = 5

tick = true

active = true

contents2 = 4

y = 10

isfull = true

contents = 5

tick = true

active = true

contents2 = 4

y = 10

isfull = true

contents = 5

tick = true

active = false

contents2 = 4

y = 10

isfull = true

contents = 5

tick = false

active = false

contents2 = 5

y = 10

isfull = true

contents = 5

tick = false

active = false

contents2 = 4

y = 10

isfull = true

contents = 5

tick = true

active = false

a

b

c

d

e

f

g

h

i

State 1 State 2 State 3 State 4

State 5State 6State 7State 8

{(0, 'r'),
 (1, 'e'),
 (2, 'd'),
 (size, 3)};

this(font) = {
(colour, “red”),
(size, 12),
(bold, true)};

The above definition describes the behaviour of con-
tents2 with regard to the clock. There is a state
between the clock going true and the value of con-
tents2 being updated, as shown in the diagram in
figure 1. This extra state is something that does not
exist in definitions that only describe state and its in-
clusion allows for behaviour definitions. It may not
be clear why contents2 is needed, without it the con-
tents of the jug will fill or empty instantly, contents2
prevents it from changing by more than 1 unit for
each clock tick.

3 Modelling with Doste
In order to demonstrate how Doste could be used for
modelling an illustrative example will be given.
This example is based on the empirical model called
'jugs' [Bey89] that was originally taken from an old
educational program. A simple basic model is first
constructed and then to show the dynamic modelling
process the base model will be modified and exten-
ded step by step to show clearly how one would
write a program or model. Some terminology has
been borrowed from Empirical Modelling however
there are some slight changes to interpretation that
will be discussed further in the next section. A de-
tailed account of the modelling process will not be
given as it follows the same principles as Empirical
Modelling.

These models can be constructed and changed at
runtime in Doste, there is no need for compilation.
This gives the user the ability to rapidly explore
what-if questions about the model just as in a
spreadsheet. Such openness is vital for modelling
purposes.

The base jugs model includes two jugs, one of 5
litres and one of 7 litres, it also has buttons with
which the user can fill or empty either jug. It is an
incomplete jugs model because there is no way as
yet of pouring the contents of one jug to the other.
The first few examples show simple changes of
state, the final example describes the process of
adding Pour behaviour to the existing jugs using
definitions.

This changes the capacity of jug A:

The statement below will redefine isfull to !(con-
tents < capacity) which is more correct and restrict-
ive than the original which only compared contents
with capacity and so failed when contents was big-
ger than capacity.

Now for a more complex example illustrating the
adding of pouring behaviour and interface to the
model. The full code for the jugs model and this ex-
tension are on-line [Doste], the code given here is
only an example and is incomplete. First we need to
add a button that will allow the user to pour:

The important part to look at is enabled, this is
true only when it is possible to pour and we are not
already pouring something. To make this work
however the observables canpour and pour need to
be created. canpourAB is true if it is possible to pour
from jug A to jug B. pourAB is true if we are actu-
ally pouring from jug A to jug B, note that it refers
to itself so it stays the same until it cannot pour any
more. The following definitions are added and du-
plicated accordingly for the other case.

This still is not enough, the definition of contents for
each jug now has to be slightly altered to allow its
value to change if it is being poured from or to. The
only changes that have been made is to make it in-
crement if the user clicked fill or if pour is true, and
to decrement if emptying or the opposite pour is
true. Jug A is shown, jug B is the opposite.

system(models)(jugs)(canpourAB) =
 this(window)(EmptyA)(enabled)

(and)
(this(window)(FillB)(enabled));

system(models)(jugs)(pourAB) = {
(true, true),
(false, this(..)(pourAB)
 (and)(this(..)(canpourAB)))
}(this(window)(Pour)(onclick)
 (and)(this(canpourAB)));

%using
system(models)(jugs)(window);
current(Pour) = {
 (widget, button),
 (text, "Pour"),
 (enabled, this(..)(..)(canpourAB)

(or)(this(..)(..)(canpourBA))
(and)(this(..)(..)(pourAB)(not))
(and)(this(..)(..)(pourBA)(not)))};

current(contents2) =
{
(*, 0),
(true, this(..)(contents2)),
(false, this(..)(contents))
}(system(devices)

(clock)(tick));

system(jugs)(A)(isfull) =
this(contents)
(less)(this(capacity))(not);

system(jugs)(A)(capacity) = 6;

4 Comparing Definition Types
Both Doste and Empirical Modelling have the
concept of observables which is the same as vari-
ables only there is a correspondence to real world or
abstract quantities that have meaning in the model.
Dependency is however modelled completely differ-
ently in the two systems. Definitions in Empirical
Modelling are atomic and are in effect rules that
agents follow when making a change, there is no
possibility of being halfway through updating all the
definitions. As a result it does not make sense to
have recursive definitions as there is no state
between the initial and final. Doste however does
have states existing between evaluation updates al-
though some do happen atomically in parallel which
has similarities to what Eden does. By having extra
states it is possible to use recursive definitions
which just add more states before reaching the final
one.

Here is a very simple example showing the differ-
ence between the two. This example does not in-
clude self-referent definitions but it is not too diffi-
cult to see how it would work.

Eden Doste
a = 5; system(a) = 5;
b is a*a; system(b) = system(a)

(mul)(system(a));
c is a+2; system(c) = system(a)

(add)(2);
d is b+a; system(d) = system(b)

(add)(system(a));

If an agent does a = 6; or system(a) = 6; then in
Eden that agent also makes all the changes needed
based on the definitions. In Doste it only makes that
one change and the definitions themselves are re-
sponsible for evaluating to make the changes, which
results in extra state transitions. The following state
transition diagrams are produced for Eden and Doste
respectively:

Notice how Doste has two extra visible states that
can be used by definitions. Significantly, the value
of d is changed twice corresponding to a partial res-
ult. Ultimately both systems get to the same state
but because Doste has these extra visible states
definitions can be self-referent and describe/cause a
sequence of changes. It does however sacrifice some
of the atomicity of definitions and creates problems
if an external agent made a change during one of the
partial states, although currently in Doste external
events can only happen when the definition evalu-
ation system is idle and so behaves correctly.

5 Relevance to EM
Empirical Modelling has three principles, Observ-
able, Dependency and Agency. Observables are
equivalent to variables for storing state, dependen-
cies describe their atomic relationships and agents
cause redefinitions and state change. In Eden, a tool
for Empirical Modelling, procedures are used to de-
scribe the agents. Definitions can be used for
everything except when a self-referring definition
would be needed which in effect is to do with time
or a sequence of states. Procedures have to be used
in this case however the system can be abused be-
cause procedures can also be used for all other cases
and definitions become redundant. It is sometimes
difficult to know what should be a definitions and
what should be a procedure. This issue needs to be
resolved by somehow requiring the use of defini-
tions except in the self-referent cases or by using a
different type of definition in those cases.

a = 5

b = 25

c = 7

d = 30

a = 6

b = 36

c = 8

d = 42

a = 5

b = 25

c = 7

d = 30

a = 6

b = 25

c = 7

d = 30

a = 6

b = 36

c = 8

d = 31

a = 6

b = 36

c = 8

d = 42

Eden

Doste

1

2

3

4

1

2

3

4a 4b

Figure 2: Shows the different state transitions of Eden
and Doste. Doste has two extra states that are visible
to definitions. The numbered arrows correspond to
the same definitions, note that 4 becomes 4a and 4b in
Doste as it is evaluated twice.

%using system(models)(jugs)(A);
current(contents) = {
 (true, this(..)(contents2)(add)(1)),
 (*,{
 (true, this(..)(..)(contents2)
 (sub)(1)),
 (*, this(..)(..)(contents))
 }(this(..)(..)(window)

 (EmptyA)(active)
 (or)(this(..)(..)(pourAB))
 (and)(system(devices)

 (clock)(tick))))
 }(this(..)(window)(FillA)(active)
 (or)(this(..)(pourBA))
 (and)(system(devices)
 (clock)(tick)));

Doste only has definitions so there is no issue of ab-
use, however self-referent definitions are difficult to
design and so frequently go into infinite loops. This
can also be a problem with recursive functions. The
other issue is that dependency updates are not atom-
ic which in a truly concurrent situation could cause
certain states to be missed. The current implementa-
tion of Doste does not allow external agents to
change anything until dependency evaluations be-
come idle which means it appears to behave the
same as Eden. If, for example, an agent could do
a = 7; in the above example in state 2 then the value
of 'd' would never become 42. Should therefore such
evaluations appear atomic externally but not be
atomic internally and so allowing recursive defini-
tions?

This question is a very important one if Doste or,
more generally, behaviour definitions were to be
used in some way for Empirical Modelling.
Presently it is possible to appear to describe state
with definitions in the same way Eden does, but it
also allows for self-referent definitions. There is no
clear separation in Doste which is similar to abusing
procedures in Eden. So why is it important to separ-
ate the two concepts? A very debatable issue that
depends on your view of dependency, do dependen-
cies exist over time or not and are real world de-
pendencies maintained instantly with no partial
transitions. In reality things are not instantaneous
and things do depend on themselves so behaviour
definitions make more sense, however when consid-
ering agents who are entirely outside of that model
universe and can make changes at any time you
have problems. For ease of understanding it may be
a good idea to in some way separate the two even if
ultimately they use the same system.

A benefit of behaviour definitions in combination
with the object-oriented nature of Doste is that it is
simpler to interact with the computer because an ex-
ternal device or OS signal only has to change one
observable which will cause other definitions to be
evaluated. In Eden interacting with the OS typically
requires special functions or procedures which in-
creases the complexity of the language and moves
away from EM principles.

6 Doste Potential
In addition to exploring the modelling potential of
Doste other uses have been considered. As a con-
tinuation of previous project work [Pope06] Doste
can be shown to integrate well into an operating sys-
tem as a replacement of the file-system but also as a
kind of virtual machine in which all programs and
devices are run. Preliminary analysis has also hinted
at the potential for Doste to be distributed over a

network and used concurrently by multiple users,
something which would be very useful to Empirical
Modelling. Another possible application which
relates to Empirical Modelling is its use in a game
engine as the scripting and database system, such a
game engine in currently under development by a
small group of people to test its potential in this
area.

With regard to existing EM tools, there may be a
possibility of converting Eden procedures into beha-
viour definitions, however this is proving quite com-
plex and would have to be automated. If this could
be done then Doste could be the underlying platform
of Empirical Modelling in the future and would be a
more well defined system.

7 Conclusion
A definitive language for behaviour is capable of
being used for modelling. Its fundamental principles
are Observables and Dependencies (OD) where de-
pendencies are behavioural ones. This is different
from current Empirical Modelling principles of Ob-
servable, Dependency and Agency (ODA) where
dependencies are for state only and so agency is re-
quired as a separate concept. It is not possible in this
paper to compare the relative merits of either model-
ling framework as there are not enough models writ-
ten using Doste to compare with. However, for the
simple Jugs model Doste seems as capable as exist-
ing EM tools are at modelling it with perhaps some
advantages of not having ambiguous language con-
structs (procedures) and by allow encapsulation of
observables into objects.

Adding behaviour definitions to EM is far more in
keeping with its principles and as this paper shows it
is possible that the two ideas could be brought to-
gether. The best solution at present seems to be to
add a layer above Doste which separates the two
types of definitions for ease of understanding but in-
ternally uses only behaviour definitions. Adding
syntactic sugar or a good visual interface to Doste
would also improve its ease of use.

Acknowledgements
This paper would not have been possible without the
time and effort of W.M. Beynon in explaining Em-
pirical Modelling and how Doste differs from it.

References

[ACS03] Arnstrom M. Christiansen M. and Sehl-
berg D. (2003). Prototype-base Programming

[Bey85] Beynon W. M. (1985). Definitive notations
for interaction. Proc. HCI'85, ed Johnson and Cook,
Cambridge University Press, 23-24, 1985.

[Bey89] Beynon W. M. et al. (1989). Software Con-
struction Using Definitions: an Illustrative Example.
CS-RR-147.

[Doste] Pope N. (2007). Doste Models. [on-line].
(url: http://www.dcs.warwick.ac.uk/~csudek). Ac-
cessed 25/1/2007.

[Garr82]Garrett M. and Foley J. (1982). Graphics
Programming Using a Database System with De-
pendency Declarations. ACM Transactions on
Graphics, Vol. 1, No. 2, April 1982, 109-128.

[Pope06] Pope N. (2006). Prototype-Based Object-
Oriented File System. 3rd Year Project, Department
of Computer Science, University of Warwick.

[Russ97] Russ S. B. (1997). Empirical modelling:
the computer as a modelling medium. BCS Com-
puter Bulletin, Volume 39, Number 2, April 1997,
20-22.

[Ward04] Ward A. (2004). Interaction with Mean-
ingful State: Implementing Dependency on Digital
Computers.

http://www.dcs.warwick.ac.uk/~csudek

	1 Introduction
	2 Doste
	3 Modelling with Doste
	4 Comparing Definition Types
	5 Relevance to EM
	6 Doste Potential
	7 Conclusion
	Acknowledgements
	References

