

 Modelling Dining Philosopher Problem in DOSTE and EDEN

0955502

Abstract

The Dining Philosopher Problem is a classical example illustrating “mutual exclusion” in concurrent system[1].
In this paper, the Empirical Modelling (EM) approaches will be used to analyze and model the dependency
between chopsticks and the philosophers, as well as some more new features, e.g. chopstick machines. The
objective for this project is to model the same problem using two different EM languages: in DOSTE and in
EDEN, as well as to show how to link DOSTE to EDEN GUI. Finally, this paper will show some advantages
and limitations of EM languages.

1 Introduction
The Dining Philosopher Problem has always been
illustrated as an example for the concurrency
concept, e.g. “deadlock”, “critical section” and
“mutual exclusion”. In this paper, a model has been
built based on the “waiter solution”, which has
already solved the deadlock problem by using the
“eating permission” from the waiter. However, all
the philosophers can not have dinner together at the
same time, as the number of the chopsticks is
exactly the same as the number of the philosophers,
whereas one philosopher needs two chopsticks to
eat. To solve this problem, a revised dining
philosopher problem model has been built by adding
the chopstick machines which could provide
chopsticks whenever requested.

The aims of this model:

First, modelling the Dining Philosopher Problem
using Doste and Eden respectively, analyzing the
differences.

Second, showing how to link Doste to Eden GUI.

Finally, compared with the implementing process in
other advanced language, and show some
advantages and limitations about EM and its
languages.

2 Model specification

2.1 Layout Specification

As can be seen from Figure 1

Figure 1: Dining Philosopher Layout

There will be 4 philosophers sitting around a
dinning table, and their positions are: philosopher A
at Northeast (NE), philosopher B at Southeast (SE),
philosopher C at Southwest (SW), philosopher D at
Northwest (NW).

There will be 4 chopsticks, each is on the table
between each 2 philosophers, and their positions
are: chopstick 1 at North, 2 at East, 3 at South, 4 at
West.

There will be 4 chopstick machines; positions are
the same as the chopsticks, but outside the table.
There will be a door and it is an indicator which can
tell whether all the 4 philosophers have the same
status.

2.2 Functional Specification and Assumption:

Each philosopher has 3 statuses: “eating”, “waiting”
and “thinking”. And the 3 statuses will be
represented by 3 colours respectively: “green”,
“red”, and “yellow”

The precondition for the philosopher’s success in
eating is that there has to be 2 chopsticks at his left
and right hand sides, as well as eating action has
been taken at the same time.

Each philosopher shall be in the “waiting” status
autonomously if there are less than 2 chopsticks
from his left and right hand sides.

Each philosopher shall be in the “thinking” status
autonomously if there are 2 chopsticks from his left
and right hand sides, but no eating action has been
taken.

Eating action can only be taken when the current
status is “thinking”. When eating action has been
taken, the philosopher’s status will be “eating” and
the 2 chopsticks will disappear from the table
correspondingly.

Stopping action can only be taken when the current
status is “eating”. When stopping action has been
taken, the 2 chopsticks will be put back to the table
by the philosopher correspondingly.

Each chopstick machine can provide 1 chopstick
when there is no corresponding chopstick on the
table and requesting action has been taken.

Each chopstick machine will keep the chopstick
number at most 1 at one corresponding position on
the table by collecting the extra one autonomously.

The door shall be closed if and only if the 4
philosophers are in the same status.

3 Modelling

3.1 Architecture
As can be seen from Figure2, the correlated
experiments and observations are involving
Construal and Referent [2]. Chapter 2 can be
regarded as the domain referent specification. To get
the expected output, a system to make sense of the
input is required. Figure3 shows the architectures in
Doste Version and in Eden Version. Apart from
sharing the same layout file, they are different

systems. Chapter 3.3 and chapter 3.5 will give
more details.

Figure2: Construal and Referent [2]

Figure 3: Architectures in Doste and Eden

3.2 Modelling using Doste
The Modelling process using Doste is quite
straight forward, in this model, there are agents
like: philosopher A B C D, chopstick 1,2,3,4,
chopstickMachine1,2,3,4 and door. Each agent has
its own observables, and the basic idea by using
Doste is just like most of the declarative language,
express it, tell the system “what is it”, rather than
“how to do it” in Eden.

The keyword “is” in Doste is understood as
“become”, telling what the state of the observable
is going to be in the next instant. This is a
powerful feature, as all the observables can
autonomously change it state depends on other
observables’ states.

However, when there are a large amount of
observables, the dependency logic can be quite
complicated, as there are no functions in Doste.

Unlike the procedures or functions in Eden or
other languages which can change more than one
observables at one execution. Take the
observables chop1, chop2 in the Eden Version for
instance: as can be seen from below, if the
procedure has been invoked, the values of
observables chop1, chop2 can be changed
together.

While In Doste, the value changing of the
observable is not on “triggered procedure” but on
the dynamic binding among observables, which is
mainly expressed in the form of

“a is {if (true) b else c}”
As can be seen from below, in the Doste_Version,
modelling the chop1 is totally different: it depends
on other observables. When there are a large
number of observables, this modelling process can
be quite complicated. Additionally, chop2 can’t
change value together with chop1 just like in the
above Eden_Version, it has to be modelled again.

3.3 Linking Doste and Eden
Doste is quite a good prototype language, but in
some situations, using functions can be a better
choice. The lack of function restricts its strength
under some cases. However, now Doste can link
with Eden, which can offer good functions and
flexible GUI by using Scout and Donald. It also
gives an alternative for the Doste visualization.
A linking dependency can be made to link them
together, in this project, as can be seen from below:

The actionTry_A is a observable in Eden, and there
is a dependency between it and the clickTry_A in
Doste, in this project, actionTry_A represents the
mouse action, and through the above dependency,
the input from the Eden GUI can be parsed to Doste
Unit, which will compute the logic in this project.

After computing the logic, the result will be parsed
back to Eden GUI through such dependency as
above, so the result can be shown.
In this way, the Doste Unit can have all the inputs
from Eden GUI, and after computing, it will output
the states of all the observables to Eden GUI. See
Figure 3.

3.4 Problems in tkeden 2.10 in supporting Doste
There will be some failed loading messages if open
the .dasm file directly when the lines of code are too
long. To solve this problem, thanks to Nick Pope,
we have to enter a command line to load the dasm
file:

3.5 Modelling using Eden
Modelling this problem in Eden is quite easy to
implement, after getting the dependency between
the observables and the scenarios from
Doste_Version, (which implies that Doste can be
used as a good prototype language from this point of
view), using procedures and triggers instead of “is”
in Doste to express the dependency in this model.

Compared with Doste, the procedures, to some
extent, can be helpful, however, as “is” in Eden is
not as powerful as in Doste, there going to be a large
amount of procedures and triggers to support the
dependency in this case. Details can be found from
the source code.

4. about the model

Generally, the model turns out well, and illustrates
the dependency clearly by using Doste and Eden
respectively. Additionally, this model could help
people to understand the concept of “critical
section” and “mutual exclusion”, which typically
exists in the concurrent system by using the
classical philosopher dining problem.

4.1 Implementing in JAVA
Since there is no dependency syntax in JAVA
language, it can model this philosopher dining
problem using synchronization of JAVA threads
concept, which typically solve the concurrent
system mutual exclusion problem.
Each philosopher can be modelled as a thread, and
JAVA can monitor the critical section by using the
keyword “synchronize”, so that only one thread can
enter the critical section one time (the eating
philosopher will lock the two chopsticks in this
case), after that thread finishes running (philosopher
stops eating), the lock will be released (chopsticks
will be put back), and other threads will be notified
to enter (other philosophers can be ready to get the
chopsticks to eat).

4.2 Compared with JAVA
Compared with the synchronization of JAVA
threads concept, EM language is more
straightforward in expressing and modelling.
Additionally, it is easy to model through experiment
and observation, as the EM not just allow the user
free to intervene the model on the fly, but also offers
strong mechanisms in querying the observables. E.g.
in Doste the“ %list” command can check all the
observables; while in Eden “?observable;” can
check the observable and dependency.

In JAVA , the type checking is quite strict, although
this may lose the flexibility to some extent, it is
precise in syntax. However in Doste and Eden, the
lack of type checking sometime can give rise to
some problems.

5 About EM

The dependency and agent-orient feature of EM is
useful in some cases; however, it still has some
limitations. For instance, the differences of the
languages make it less convenient in linking
together, e.g. keyword “is” has the different
meanings in Doste and Eden; there is no Boolean
types in Eden so sometimes translating is a must
before linking to Doste which has the Boolean
type…..apart from the language limitation, when it
comes to large and critical system, using experiment
and observation way may be not precise enough. At
this time, Formal Methods can be a good alternative
state-based modelling language for its mathematics-
based nature.
However, all these above aren’t to say EM is not
good, although it requires further developments, EM
has its own advantages:
EM is good if using as a prototype language as it
can easily capture the requirements, and produce
corresponding models;
EM is easy in building model by experiment and
observation, so it is more suitable in education
whenever requires experiment and observation.

6. Conclusion

This paper reviews how to build an EM model in
Philosopher Dining Problem using Doste and using
Eden respectively, as well as argues the features of
each languages and shows the way to link them
together. Finally, this paper compares the EM
languages with JAVA language in term of
implementing this specific model, and some
advantages and limitations of EM have also been
given.

Acknowledgements
This paper would not have been possible without the
time and effort of Meurig Beynon in explaining the
Concept of EM and linking Doste and Eden.
Also I would like to thank Nick Pope for his work
on Doste and Lin-Feng Lee for her bright ideas.

References
[1]:
http://en.wikipedia.org/wiki/Dining_philosophers_p
roblem

[2] Lecture notes
http://www2.warwick.ac.uk/fac/sci/dcs/research/em/
teaching/cs405/defnmodesdosteeden.pdf

http://en.wikipedia.org/wiki/Dining_philosophers_problem
http://en.wikipedia.org/wiki/Dining_philosophers_problem
http://www2.warwick.ac.uk/fac/sci/dcs/research/em/teaching/cs405/defnmodesdosteeden.pdf
http://www2.warwick.ac.uk/fac/sci/dcs/research/em/teaching/cs405/defnmodesdosteeden.pdf

