

Pelican Crossing-Car Model

0960372

Abstract

This paper will try to bring out similarities and dissimilarities between two very similar yet very

dissimilar types of modelling paradigms. Empirical modelling and Windows Presentation Founda-

tion (WPF) have many basic principles in common such as dependencies. As we go in depth in the

following sections and subsections we will conclude with a simple fact that both Empirical model-

ling and WPF have been made for different purposes altogether.WPF being more procedure ori-

ented language, where everything has been described beforehand in form of procedures. Empirical

modelling on the other hand tends to be more dynamic, introducing dependencies on run time which

is not the case with WPF. There is another aspect of programming in EDEN or DOSTE which this

paper will be discussing which will be integrating another module which is the person module with

this module i.e. how easy the integration process was.(In this paper Silverlight and WPF might have

been used interchangeably)

1 Introduction

We start this paper by describing what the model

is supposed to and what are learning experiences

which one goes through when developing a real life

model. Let’s begin by describing the three main

principles of m which are 1) Observable-Which can

be said to be the variable whose values keep on

changing in the modelling, 2) Dependency- it is a

kind of relationship between one or more observ-

able, so that if value of one observable changes the

value of the other observable is also affected.3)

Agent- the agent can be the user which gives the

values to the observables on the fly. This model is a

procedure driven model. In this model we try to

model the behaviour of a car at a pelican crossing.

We try to acquire knowledge about what processes

the car can control and which processes are com-

pletely out of control of the car but still taking place.

This model tries to model the way in which the per-

son sitting in the car react to few of the situations

presented in front of him/her. The observables (vari-

ables) in this case are the position of the car, speed

of the car, position of man on the road, the traffic

signal status. As we proceed further we will describe

what the dependencies are and in the end talk about

the agency. Throughout this process this paper will

try to bring to the readers notice difference between

the WPF technologies such as Microsoft Silverlight

and our Empirical modelling languages such as

DOSTE and EDEN.

2 Building the Model

As stated earlier this model has been developed us-

ing Microsoft Silverlight and EM languages such as

EDEN and DOSTE. In this section we describe how

the model was made in these two languages.

2.1 DO�ALD

In Donald notation the overall layout of the model

has been defined. Donald makes it easy for drawing

objects. Many types of objects such as that of open-

shape have been used extensively. The basic layout

of this model consists of the road, car, pathway for

man and the traffic signal for the car. There is an

observable ‘x’ having an initial value of 0 being

constantly being incremented and being subtracted

from the co-ordinates of the car, which in turn

makes the car appear to move from right hand side

to the left hand side of the screen.

2.2 EDE�

The eden part of the model describes many proce-

dures and observables which help the external agent

control the model. The DONALD observable ‘x’ is

declared as an eden observable using the ‘is’ state-

ment present in eden. There are many procedures

like ‘checkForMan’ defined in eden which keeps on

updating the value of the observable ‘manOnRoad’

to either ‘true’ or ‘false’ depending upon the posi-

tion of the man on the path. We have used the ‘set-

edenclock’ function to poll the current position of

the man.

2.3 DOSTE

Using DOSTE in this model we have defined a rela-

tionship or dependency between the eden variable

‘carPos’ and ‘step’. This dependency will be the

deciding factor for whether the car should or should

not be moving. Along with these dependencies we

have defined a DOSTE observable called

‘car_speed’ which controls the speed of the car.

2.4 Microsoft Silverlight

In a Silverlight application we use a XML based

language called XAML to design the layout of the

model. XAML gives very strong features for anima-

tion and making a better graphical interface. Silver-

light uses the .Net libraries and hence is able to pro-

vide variety of options for the user. The code for the

model is written using the .cs file. In the XAML file

we have made use of elements such as story boards

to run the car animation. Here the name of the ele-

ment becomes the observable which we access in

the code behind .cs file. In the code behind file we

can either change this observable or make it de-

pendent on another observable. In the Silverlight

model we call the processes as events. After the

completion of one event we can trigger another

event very easily, and the whole process can be con-

trolled very easily. Silverlight also provides us with

debugging facilities so debugging the code becomes

very easy and saves a lot of time. One thing which

should be kept in mind though is that all the Silver-

light code is compiled first and then ran, hence the

debugging and error checking becomes easy.

3 Working Of the Model

In both the model built using Silverlight and

DOSTE, EDEN, the basic functionality of the car

remains the same i.e. by default we have made the

traffic signal as green and the car moves along the

road with a specified speed.

3.1 Working of the Model using EM languages

The layout defined using DONALD gives us all the

observables which are required for the motion of the

car. The observable which is responsible for the

motion of the car has been declared as an int type

variable called ‘x’. We establish a dependency in the

eden part with this variable linking it to an eden

variable. We change the value of this eden observ-

able in DOSTE. The motion of the car is dependent

on basically three observables in this models which

are 1) The position of the man on the road 2) The

traffic signal 3) Speed of the car. The observable

which defines the speed of the car is declared in the

DOSTE part of the code. When the car approaches

the pelican crossing and if there is a person at that

instant on the road then whatever the traffic signal

may i.e. either red or green, the car will stop and

wait for the man to cross the street. The car has been

designed such that under normal circumstances a car

can never run over a man. The second condition

which will make the car to stop will be the signal

turning to red. The model has been designed in such

a way that the car under normal circumstances will

not run over the man. The modelling is a procedure

based modelling i.e. procedures have been written to

move cars, move man, for the traffic signal. To

change the behaviour of the car for example making

it move backwards will involve writing a procedure.

But on the other hand if we want to change the posi-

tion on the fly we can do it by setting the variable

‘carPos’ which is an eden observable. In DOSTE we

establish a dependency between the eden observable

‘carPos’ and the eden observable ‘step’ and another

DOSTE observable called ‘car_speed’. ‘car_speed’

is responsible for the speed of the car and can be

initialised to 0 to make the car stop at any position

on the road. Linking DONALD, EDEN and DOSTE

we establish a dependency which makes the car to

move. There are many advantages of introducing

dependency which can be seen here, one of them

being that we are able to use the design features

available in DONALD and modify them in eden and

doste. Hence we are able to use the features of both

eden and doste.

The above figure shows the only car model. If the

agent wants to introduce some type of dependency

in the above standalone car model it will need to set

the observable ‘manOnRoad’ to either true or false.

The above figure shows that the car will not be able

to cross the road if the man s on the path, even if the

traffic signal is green.

The above figure shows that if the car crosses a par-

ticular point which in this case is the ‘rightSideOf-

Path’ observable then it becomes the responsibility

of the man to not cross the road.

3.2 Working of the Model in WPF

The model’s behaviour remains the same in Silver-

light as in EDEN and DOSTE. The traffic signal is

green by default and the car moves along with a

constant speed. The motion of the car is again de-

pendent on two observables mainly one the position

of the man and the traffic signal light. The car polls

at regular interval to check for the position of the

man. ‘AreAnyMenInFront’ observale is used in

the code behind file to check for the postion of the

man. From the right handside towards the first

intersection of the path and the road, this is the point

where the person in the car checks for man on the

road and the traffic signal. After this point it has

been asumed that it be the responsibility of the man

to chaeck for the car infront of him if he wants to

cross the road. The ‘CarGoAhead’ observable tells

the car about the traffic signal status. Only one

language i.e c# was used to write the whole model

so there were no problems like remebering syntaxes

of diiferernt noations like in DOSTE and EDEN.

4 Collaboration

Two models displaying the same characteristics

were developed in Silverlight and then in DOSTE

and EDEN. Making the model in silverlight gave us

insights as in what are the dependencies are going to

be. For example before building the EDEN and

DOSTE model we already knew that the motion of

the car should be dependent upon the position of the

man on the path and the traffic signal light. So the

time taken to start with the DOSTE and EDEN

model was very less. Both the models are fairly

procedure driven models i.e. most of the actions

which we observe on the screen have been defined

inside a procedure and are meant to happen that

way. We can try and change few of the parameters

but this will result in anomalous behaviour of the

model . For example by changing the position of the

man the whole procedure named ‘checkForMan’

will give erroneous result and as a result the man

might be run over by the car. We can say in a way

that the dependency helped us to learn the model

better and make it more robust in a way. Before the

the rocedures were written for both the models,

there was just simple man and car motion and by

initial testing of the model we actually learnt what

kind of dependencies are necessary to make this

model appear real or logical.

In Silverlight model by using subversion tools

availbale on the web we were able to write our

separate code in the same file without much hassle.

In the DOSTE and EDEN model we did not follow

the same procedure. With the help of the silverlight

mdel we already ascertained which were the

depencies for the moving car. Before the integration

in the EDEN and DOSTE model the agent used to

specify the value for the observables . The

integration of the code in DOSTE and EDEN was

the easiest part of model making, just by making

few x and y axis changes we were able to overlap

one model over the other.

Before the dependency between the various observ-

ables was established the car used to traverse along

the path without stopping, but after the introduction

of the man module in the model we learnt that the

car has to check the position and the traffic signal

before it approaches the signal and not after it has

passed the signal. If the car had to stop it would do

so before it crosses the signal and not after it has

crossed the signal. So it was decided that the car

should check certain observables before it reaches

the traffic signal and make the decision of continu-

ing to move or to stop at that position only.

5 Limitations

5.1 Limitations of WPF

Silverlight which is a subset of WPF does establish

the dependency principle between the observables.

The limitation which we realised after running the

Silverlight model was bringing the dependency at

the run time. Silverlight code is a compiled code i.e.

it runs after compilation and we have to compile the

code every time before we try and run the code. The

agent in Silverlight cannot provide input on the fly

unless or until there is a procedure written which

deals with the change of that observable. Due to this

reason the agent will not be able to change the speed

of the car on the fly in the Silverlight model. Same

case is with the position of man or the car which

cannot be changed by the agent on the fly.

In DOSTE and EDEN the dependency can be gen-

erated on the fly between the observables by the

agent. They do not need the compilation of the

whole code again to show the changes.

5.2 Limitations of EDE� and DOSTE

EDEN and DOSTE do support few things which are

not quite achievable in Silverlight. But the major

hurdle which one faces in developing a model in

EDEN or DOSTE notation is the use of different

syntaxes. Different syntaxes often cause problems

when dealing with building models with a mix of

different notations.

It would be hard for a novice user to make a com-

plete working model on DOSTE due to the lack of

the documentation present. There is no debugging

facility available so the finding where one has gone

wrong is a cumbersome process.

We can access the EDEN observables from DOSTE

but the same is not true from DOSTE to EDEN.

There is only one type of dependency present which

is of the form a=b+c, where as in WPF we bring out

more than one type of binding [1].

6 Future scope

In the future we can try and bring in more

dynamicty to the model. For example change the

postion of the man and the car still reacts in the

same way as it does now. In the silverlight model

we can introduce speed of the car observable so that

the agent can change the speed on the fly.

In the fututre one might try to build this project

more state based rather than procedure based which

is how it has been implemented now.

The graphical interface can be improved using

DOSTE.

This model can be extended to encapsulate multiple

cars coming from both the directions, which make

the model more realistic. This model can also be

made to show the environment in which the car

might be moving in i.e. day or night.

7 Conclusions

Both EM and Silverlight (WPF) are related in way

through dependency. They bring in dependency

among observables, and by changing the value one

observable the other observables also get affected.

Having established the aforesaid facts, both are

made yet for completely different purposes. WPF

being more procedure based in which all the actions

are predefined and the model will behave the in way

it is supposed to.

EM on the hand tries to bring in dependency at run

time which is not suitable in WPF. EM can be used

to bring in more dynamicity. It can be used to study

a model more in depth by actually learning from the

failures of the model which might be some condi-

tion or dependency brought in by the agent at ran-

dom. For example one might give the speed of the

car as an inverse relation to the distance between the

car and the traffic signal i.e. the car will move faster

while it is nearer to the signal. In this way one might

want to observer what happens to the man on the

road.

Acknowledgements

To Meurig Beynon and Steve Russ for their support

in the creation of this paper and in organising the

‘Introduction to Empirical Modelling’ module.

References

[1] Antony Harfield, Dependency in action (lecture

22
nd
 October 2009).slide number-20

