Creating an Abstract Definitive Machine Plugin for JS-EDEN

1037559

Abstract

The Abstract Definitive Machine (ADM) is a method of modelling and simulating concurrent systems
using states and transitions within a definitive environment. Entities are defined and instantiated with
collections of variable definitions and guarded actions which depend on and redefine the system state.
These describe the state changing privileges of the entity. At each computational step a selection of
actions with true guards is processed. This paper describes an attempt to develop a prototype ADM
plugin for JS-EDEN, taking a unique human perspective with the modeller at the centre, and illustrates
some uses of the plugin through example models. The paper will then discuss the results of the attempt,

including possible future work and extensions.

1 Introduction

The concept of the ADM was one of the main themes
during the early work of the Empirical Modelling
(EM) Project. The motivation for this was to cre-
ate a “machine model with which to express context-
sensitive parallel redefinition” (Beynon, 1990), and to
give a more complete picture of a concurrent system
than previously used approaches. This style attempts
to avoid the problems of state consistency encoun-
tered with more traditional methods through explic-
itly defined state and dependency. With this the han-
dling of side-effects from redefinitions is automatic.

The computational body of the ADM consists of
a collection of instantiated entities, which are defined
statically. Each entity consists of a list of variable def-
initions and a collection of guarded action sequences
depending on system state. Each action in a sequence
may redefine variables within the system or instanti-
ate and delete other entities. Within this framework
entities represent groups of definitions and actions
which share a “common extent in time” (Beynon
et al., 1988), similar to objects in object oriented lan-
guages. At each “step” of computation, the guards of
all actions are evaluated and actions with true guards
are executed simultaneously in parallel. Execution
terminates when none of the guards evaluate to true.
The ADM represents a state-transition model, where
the state, originally defined by the entity definitions,
is evaluated and redefined at each step. The pattern
of state transitions defines the behaviour of the sys-
tem being modelled.

Actions being executed concurrently may cause
conflicts if both try to redefine the same state vari-
able in different ways or through circular dependen-
cies. There are various ways to solve these conflicts.

One method is to execute until a conflict arises and
then prompt the user as to how to resolve the conflict.
Another method is to introduce a human as the central
“agent”, who selects a set of (non-conflicting) actions
to execute at each step. This human perspective gives
the human user complete control over system state
and allows empirical modelling and experimentation
to take place more freely. It also improves the ease
of arbitrary intervention as the user has control over
the speed of the computation, as actions are being ex-
ecuted at their command.

There have been three uses defined for ADMs.
The first of these is directly through a computational
model. This allows the modelling of deterministic
automated behaviour similar to that of a traditional
computer, as detailed in Beynon et al. (1988). The
second use is to model concurrent systems using Em-
pirical Modelling, for example the Clayton Tunnel
model where many agents act within the system con-
currently!. The third is as the use of EDEN - all EM
models should be expressible in ADM form.

2 Previous Work

A key motivation for the ADM is as an animator for
LSD accounts. LSD accounts describe the roles of a
collection of state changing agents within an environ-
ment, where each agent’s perceptions and capabili-
ties are explicitly defined (Beynon et al., 1990). LSD
is an aid to designing concurrent systems, and takes
into account the belief that the designer conceives the
behaviour of the system as interactions between dif-
ferent agents. Each of these agents is privileged to

Ihttp://empublic.dcs.warwick.ac.uk/
projects/claytontunnelChanHarfield2005/



carry out different actions under given circumstances,
as described by its protocol. The consequences of
an agent’s actions are redefinitions of state within the
system.

Multiple attempts have been made at implement-
ing versions of the ADM in the past. The first of
these was developed by Slade (1990) as an attempt
to animate LSD accounts. The animation of LSD
is important in linking the theory of the components
and behaviour of the system to the actual results of
the agents in the system acting together. However
there are a few key differences between LSD ac-
counts and ADM models. One of these is that agents
within LSD accounts act sequentially, whereas en-
tities within the ADM are allowed to interleave se-
quences asynchronously with other available actions.
Another is that the varying speeds of entity reactions
and actions is additionally open to interpretation in
LSD accounts, whereas in the ADM this must be well
defined in order for the entity to be implementable. In
these ways the “spirit” of agents in LSD and entities
in the ADM differs slightly.

Since the initial work by Slade a number of trans-
lators from “ADM” languages to EDEN have been
created. Notably the ADM was linked to EDEN no-
tation for the purposes of graphical animation by Si-
mon Yung. However there were a number of flaws
with these translators and they have become out of
date with modern computers and EM tools.

One example model that was created using these
translators is the five-a-side football model developed
by Turner?. This model was originally defined using
LSD notation and then implemented in an ADM lan-
guage, with each football player as an entity within
the system. However entities could not be instantiated
using parameterised templates so Turner had to resort
to a lot of repetition defining each football player en-
tity.

3 Aims of the Prototype Develop-
ment

The main aim of developing the prototype was to
bring the ADM up-to-date with modern EM tools.
Currently the a large proportion of EM development
is done using JS-EDEN, a tool created by Tim Monks
for his MSc project that allows the creation of models
using EDEN notation through web browsers®. Fol-
lowing the work of previous ADM interpreters the

’http://empublic.dcs.warwick.ac.uk/
projects/footballTurner2000/
3http://jseden.dcs.warwick.ac.uk/master/

prototype also aims to add slightly different function-
ality and allow more experimentation with different
flavours of the ADM.

3.1 Human Perspective

The current state of the ADM defines which actions
instantiated entities are privileged to act given the cur-
rent system state. It is not necessary that all these
actions be performed, as the behaviour being mod-
elled may not be deterministic. In particular LSD ac-
counts do not enforce that all actions be carried out
and rather that the choice between commands with
true guards is nondeterministic (Beynon et al., 1990).
For these reasons it was decided to incorporate a hu-
man perspective into the prototype. Within this at
each step the human user is presented with a list of
available actions for each instantiated entity given the
current state and they may make a selection of what
is to be performed in the current step. In this view
the user can be seen as a “prototypical agent” who
chooses the state transitions at each stage (Beynon,
1990). It is also useful empirically to step through
the state transitions in this way, as it becomes clear
how the choices of each agent affect the state of the
system.

3.2 Parameterised Templates

A second aim of the prototype was to allow the user
to specify generic template entities and then instan-
tiate these using parameters. This was inspired by
Turner’s football example, which required the cre-
ation of many very similar entities with slightly dif-
ferent definitions. This also allows the prototype to
more easily support a wider range of models, as it
is fairly common for a system to incorporate a large
number of similar agents. A further example is the
systolic array as described in Beynon et al. (1988),
where each processor is a separate parameterised en-
tity.

4 Discussion

The design and implementation of the prototype are
discussed in detail in the attached model documenta-
tion, and will be described here briefly. Views ex-
ist for creating generic templates and instantiating
these with parameters described above, or alterna-
tively templates and entities can be created through a
view to input code using a custom ADM language. A
list of currently instantiated entities along with their
definitions and guarded actions is available. Through



ADM Human Perspective [view_4]

Actions for processor
Actions for userl

a_i(job(50,10)) as userl_jobl
a_i(job(10, 50)) as userl_job2
Actions for user2

o_i(job(10,10)) as user2_job0

o_i(job(10, 50)) as user2_job2
Actions for sysadmin
Actions for userl_job0

Actions for user2 jobl
user2_jobl_scheduled =1

Refresh actions Step

/A‘

Figure 1: Human perspective view, showing actions
selected for execution.

the JS-EDEN symbol viewer the status of all agent
definitions and guards can be seen (guards are cre-
ated as EDEN variables with a dependency on their
boolean definition). The human perspective view
presents the user with currently allowed actions for
each entity given the current state and multiple ac-
tions can be selected at each computational step. The
existence of additional actions in a sequence is shown
visually. EDEN animations through definition can
be interleaved and included within the ADM as both
share the same definition store.

The prototype ADM gives a new human perspec-
tive on the ADM which hasn’t previously been exper-
imented with. Within it entities can be created with
nondeterministic behaviour, as controlled by the ex-
perimenter or modeller. This allows a wider range of
models to be created that were not possible in pre-
vious ADM implementations (without some degree
of pseudo randomness), and allows the exploration of
a much greater range of concurrent multi-agent sys-
tems. Within the prototype the user is able to act as
a kind of super entity with control over all the ob-
servables in the system. This is possible as all the
protocols for the instantiated entities depend on ob-
servables in the JS-EDEN environment. By chang-
ing these the user is able to “dynamically impose ap-
propriate scenarios for action and interaction upon
agents” or entities (Beynon, 1994), as well as hav-
ing full choice over the currently privileged actions
of all entities. The user may also instantiate or delete
entities at any time using the interface provided by
the prototype ADM, and redefine the guards of any
actions.

4.1 Example Models

To illustrate the functionality of the prototype exam-
ple models were created. These are described in the
paragraphs below.

Firstly an initial model was constructed to exper-
iment with the prototype and test the functionality.
Within this model entities representing users within
a system can submit jobs to be processed. These
jobs are instantiated as new entities with parame-
terised requirements, and remove themselves after
they have successfully scheduled and used their re-
quired resources. If too many jobs are submitted si-
multaneously the processor can break and require re-
placement through the actions of a sysadmin entity.
This model illustrates the usefulness of entities be-
ing able to instantiate and remove other entities and
gave an insight into the thought processes needed to
define an ADM model. Initially the design required
thinking of possible ways in which each entity within
the model could change the state of the system, and
then developing these iteratively through experiment-
ing with the model and finding appropriate actions at
each stage in the process.

To illustrate the expressiveness of the human per-
spective an LSD account for a cat flap was animated
using the ADM prototype as described by Bridge®.
The creation of this model also showed the ease of
converting simple LSD accounts, as only minimal
changes were required to convert the notation. In
particular the protocol is directly translatable into ac-
tions with the state and derivates forming the defini-
tions belonging to the entity, using dependency for
the derivates. However the oracles and handles, re-
lating to observables that are visible and changeable
by the entity, are not translatable, although systems
should still be functional without this encapsulation.
Bridge’s cat flap account includes a cat agent whose
behaviour is nondeterministic, for example the cat
may intend to travel through the cat flap and then
change his mind halfway through. Using the human
perspective it is possible to model this and explore the
consequences of different decisions of the cat. Al-
though this is a very simple model it illustrates the
power of the human perspective on less deterministic
situations. This idea is extendible - a specific example
of this is that in creating models of famous railway
accidents a number of situations could be explored.
By choosing various combinations of actions for all
entities involved many possible consequences can be
experienced.

Yhttp://www2.warwick.ac.uk/fac/sci/dcs/
research/em/teaching/cs405-0708/concsys/
concsyslectured/lsdexamples/catflapiblsd



The prototype is also capable of modelling more
machine like behaviour. In this paradigm, as the clas-
sical ADM, all actions with true guards are executed
at each step. This is equivalent to selecting all ac-
tions in the human perspective, so the current proto-
type could easily be extended to incorporate this be-
haviour. However conflicts between actions would
not be recognised. It is arguable that this is similar
to the way machines act in the real world, where af-
ter the program has been created any conflicts may
cause undefined behaviour. This idea was illustrated
through the creation of a systolic array model, as de-
scribed in Beynon et al. (1988). A hexagonal array
of processors which perform matrix multiplication is
represented by instantiating an entity for each pro-
cessor, with time modelled by a time entity. At each
computational step a number of processors work in
parallel to multiply the elements of two input arrays
and adapt an element in the output array. The hu-
man perspective also aids understanding this compu-
tational model, as the modeller is exactly aware of the
actions carried out at each step. This allows experi-
mentation, for example through observing the conse-
quences of a single processor failing.

4.2 1Issues

Implementing the human perspective aspect of the
plugin using JavaScript caused some issues. In the
current prototype the refreshment of available actions
relies on a step being executed. If the definitions are
then changed within the JS-EDEN input window and
the value of guards is changed by dependency this
won’t automatically propagate to relevant changes in
the lists of available actions. To alleviate this prob-
lem a refresh button was created to recheck the state
of all guards. This is not a problem when using solely
ADM input as the only redefinitions that occur will be
through steps, although it is likely users experiment-
ing with models in the ADM will also input their own
redefinitions, as a type of superuser within the sys-
tem.

The use of JavaScript also made certain aspects of
the UI more difficult to implement. A key example
of this is the illustration that actions are part of a se-
quence and there are more actions to follow. If the
human perspective was implemented using JS-EDEN
the following actions could more easily dynamically
appear as computation progressed.

5 Future Work and Extensions

As well as generally improving the UI of the various
views and providing more input validation and useful
error messages there are a variety of extensions and
improvements that could be made to the prototype.
Ideas for these future developments will be discussed
in this section.

Currently existing entities are not redefinable, and
template refinements and instantiation of these would
be required. This functionality is probably fairly
key to using the ADM as a way of empirically cre-
ating a multi-agent model, as through experimenta-
tion the user may notice relevant actions and wish to
redefine existing entities to incorporate these. This
is supported by EM teaching literature, which sug-
gests that “complex specifications for systems cannot
be constructed without building and experimenting
on components™. Adding the ability to edit entities
would give a greater scope for system development
through systematic refinement of the model in an at-
tempt to identify important behaviour defining factors
(Beynon, 1994). Methods for redefining entities have
already been created so this work would just consist
of modifying the Ul in such a way to allow this and
ensuring all edit changes are propagated.

As discussed above available actions in the hu-
man perspective should react automatically to any re-
definitions that affect the guards. Sequences of ac-
tions could also be displayed to the user more effec-
tively, for example as a horizontal list. This would
give the user a greater understanding of the conse-
quences following their action selection in the future.
To these ends future work could be suggested to reim-
plement the human perspective view using JS-EDEN
code rather than JavaScript code. In this way the ac-
tions being displayed could depend on the state of the
guards and update with this dynamically.

It could be suggested that if an action is part of a se-
quence the next action should only be available if the
state allowing the original action to occur still causes
the guard to be true. Alternatively a step could consist
of multiple actions within the same sequence. How-
ever this doesn’t seem to correspond to the idea of a
single atomic step of computation. These possibili-
ties would need to be explored and the best solution
may depend on the application so it may be best to
make a number available.

The implications of deleting an entity within the
ADM are currently unclear and need further explo-

Shttp://www2.warwick.ac.uk/fac/sci/dcs/
research/em/teaching/cs405-0809/concsys/
concsyslectured/



ration. When deleting an entity, should all guards
and actions which refer to the definitions of that en-
tity within other entities also be deleted? This makes
sense when thinking of an entity as “associat[ing]
variables and actions sharing a common extent in
time” (Beynon et al., 1988), as when an entity is re-
moved from the ADM its associated variables can
also be inferred to be no longer relevant. However
it might be the case that the entity is re-instantiated
in the future, in which case physically deleting re-
lated actions and definitions would be incorrect. Pos-
sibly the best course of action would be to disable
these definitions in some way. They could be rede-
fined as undefined, however any action changing
these would still function. All corresponding actions
could also be disabled in some way, however they
may also be part of a sequence of actions where some
of which are still valid. The current prototype simply
removes the entity instantiation and leaves its defini-
tions within the definition store as their final value.
This represents possible intended behaviour, for ex-
ample where an agent is instantiated just to bring a
certain definition into the system.

The ADM model for parallel computation creates
a multi-agent environment where actions may be ex-
ecuted simultaneously and “atomically” in parallel.
However currently it is only the single human user of
the system who decides which actions are executed
at each step. This could be extended to a more dis-
tributed model where different users take “control”
over different entities and decide their actions at each
step without knowledge of the actions being taken by
other entities in the system outside their control. This
takes into account the idea of oracles as defined in
LSD, where the environment is not fully-observable
to all entities. Steps would still take place in paral-
lel, where each user makes a decision before the ac-
tions of any entity are evaluated. In this way conflicts
would occur that were not foreseen by users, and po-
tentially a “superuser” would have to also be defined
to resolve any conflicts that arise. A weaker version
of this multi-agent environment is already possible,
as users could just decide amongst themselves which
entity to make decisions for, although they would be
aware of the actions of other entities and the conse-
quences of these. This would be an ambitious exten-
sion as it would require using the JS-EDEN tool in
a distributed way where multiple users work on the
same environment using separate browsers.

When developing example models to implement
within the prototype ADM plugin it was realised that
a lot of applications have an autonomous component
as well as components that require a user to make de-

cisions for their actions. An example of this is the
Cat Flap example, where it would make sense for
deterministic entities such as the cat flap to act au-
tonomously. The current ADM plugin could be ex-
tended such that when creating or instantiating tem-
plates it is possible to define whether these will be
autonomous or human controlled. At each step au-
tonomous guards will also be evaluated and any that
evaluate to true automatically processed alongside
any actions selected by the modeller. Any conflicts
that arise due to autonomous actions would have to
be resolved by the human user. However it is use-
ful experimentally for these autonomous changes to
still be visible to the user, so possibly these could just
be autoselected within the human perspective. This
would also retain the possibility of the user modelling
the failure of one of these autonomous components.

6 Conclusion

Creating an ADM prototype for JS-EDEN has asked
many design questions and provides the possibility of
a wide range of models, both with deterministic and
nondeterministic entities. It is hoped that the proto-
type can be further developed in future to improve the
plugin and introduce more modellers to the ADM.
Lessons that have been learnt when developing this
plugin can be used to inform the design of any fu-
ture work and have brought to light a great number of
possible extensions.

The creation of this prototype has made it possible
to experiment with a human perspective of a parallel
multi-agent system and hopefully models will be cre-
ated to take advantage of this. The creation of these
models is likely to reveal further work and ask fur-
ther questions about the design of the ADM, allowing
it to be developed iteratively through experience in a
similar way to EM models themselves. The creation
of and interaction with these models will hopefully
give the human user a deeper empirical understanding
of the system being modelled and the ways in which
multiple entities interact and the consequences of this
on system state. It also allows experimentation with
the consequences of the choice of actions of nonde-
terministic agents, as was not previously possible.

Acknowledgements

I would like to thank Meurig Beynon for his sup-
port and guidance throughout the development of the
project, as well as for all his enthusiasm and sugges-
tions.



References

WM Beynon. Parallelism in a definitive program-
ming framework. Proc Parallel Computing, 89,
1990.

WM Beynon. Agent-oriented modelling and the ex-
planation of behaviour. In Proc. International
Workshop Shape Modelling Parallelism, Interac-
tivity and Applications, 1994.

WM Beynon, MT Norris, and MD Slade. Parallel
computation in definitive models. 1988.

WM Beynon, MT Norris, RA Orr, and MD Slade.
Definitive specification of concurrent systems. In
UK IT 1990 Conference, pages 52-57. IET, 1990.

M Slade. Definitive Parallel Programming. PhD the-
sis, MSc Thesis, Department of Computer Science,
University of Warwick, 1990.



