

Exploring Instruments for Online Empirical

Modelling

by

Joe Butler

Project Report

Submitted to the University of Warwick

for a decent mark in

CS310

Department of Computer Science

May 2014

1

This page was intentionally left blank.

2

Keywords

Javascript - an object-oriented computer programming language commonly used to

create interactive effects within web browsers.

JQuery - a multi-browser Javascript library designed to “simplify” the client-side

scripting of HTML.

Backend - denoting a part of a computer program unaccessible by the user, eg the

server side code part of an online application.

EM - Empirical Modelling (See section 1.1)

EDEN - Engine/Evaluator for definitive notations (See section 1.1)

CS405 - A 4th Year Taught Module in the Department of Computer Science at The

University of Warwick.

(see http://www2.warwick.ac.uk/fac/sci/dcs/teaching/modules/cs405/)

JS-EDEN - A Javascript online environment for Empirical Modelling

(see http://www2.warwick.ac.uk/fac/sci/dcs/research/em/software/js-eden/)

TK-EDEN - A low level implementation of the EDEN environment for Linux, Mac and

Windows.

SCOUT - A notation for screen layout developed by the Empirical Modelling Research

Group at The University of Warwick.

(see http://www2.warwick.ac.uk/fac/sci/dcs/research/em/notations/scout/)

DONALD - A notation for 2d line drawing developed by the Empirical Modelling

Research Group at The University of Warwick.

(see http://www2.warwick.ac.uk/fac/sci/dcs/research/em/notations/donald/)

EDDI - A notation for database interpretation developed by the Empirical Modelling

Research Group at The University of Warwick.

(see http://www2.warwick.ac.uk/fac/sci/dcs/research/em/notations/eddi/)

3

http://www.google.com/url?q=http%3A%2F%2Fwww2.warwick.ac.uk%2Ffac%2Fsci%2Fdcs%2Fteaching%2Fmodules%2Fcs405%2F&sa=D&sntz=1&usg=AFQjCNFKoxRRbNFKcX-3R3ZuRxDO1B_XNg
http://www.google.com/url?q=http%3A%2F%2Fwww2.warwick.ac.uk%2Ffac%2Fsci%2Fdcs%2Fresearch%2Fem%2Fsoftware%2Fjs-eden%2F&sa=D&sntz=1&usg=AFQjCNG8-ka471oOGF75187gpNKiJ4hPHQ
http://www.google.com/url?q=http%3A%2F%2Fwww2.warwick.ac.uk%2Ffac%2Fsci%2Fdcs%2Fresearch%2Fem%2Fnotations%2Fscout%2F&sa=D&sntz=1&usg=AFQjCNFYTDwA031RaIOW591RWEPmo2CZAw
http://www.google.com/url?q=http%3A%2F%2Fwww2.warwick.ac.uk%2Ffac%2Fsci%2Fdcs%2Fresearch%2Fem%2Fnotations%2Fdonald%2F&sa=D&sntz=1&usg=AFQjCNHlk8LV0LOjsRr78GOJAHOsVTICJw
http://www.google.com/url?q=http%3A%2F%2Fwww2.warwick.ac.uk%2Ffac%2Fsci%2Fdcs%2Fresearch%2Fem%2Fnotations%2Feddi%2F&sa=D&sntz=1&usg=AFQjCNH8eN_oKb_0jYsZfCX6UpCT435rbw

HTML - Hypertext Markup Language, a standardised notation for structuring webpage.

CSS - Cascading Style Sheets, a standardised notation for describing the presentation

semantics of a document written in HTML.

API - Application Programming Interface, a specification for how software components

should interact with each other.

DOM - Document Object Model, A Javascript accessible API for HTML.

CaS - Computing at School, An institutional scheme for promoting the teaching of

Computer Science at School.

MOOC - Massively Open Online Course

4

Acknowledgements

Above all others I would like to thank my supervisor Meurig Beynon for his guidance

and encouragement throughout this project, without whom this endeavour would have

been very lonely and probably have strayed far from the realms of Empirical Modelling.

I would also like to thank Jonny Foss for his technical insight and rigorous problem

solving passion for web technologies and Jane Sinclair for her invaluable advice and

interminable positive demeanor.

5

Abstract

JS-EDEN possesses vast potential as an open online instrument to enable

constructivist computing. Though the current state of the environment is less than

ideal, investigation into how the platform can be re-engineered and extended to attract

the enthusiasm of modellers the world over, is undertaken and explored. Three

significant developments and many minor improvements have been demonstrated to

support the modeller in their activities. The project will lead to further development of

the tool as a result of interest from third parties.

6

Contents

1. Introduction

1.0 Overview (9)

1.1 Empirical Modelling & EDEN (9)

1.2 Current Issues & Motivations for Development (11)

2. Project Proposal

2.0 Overview (12)

2.1 Objective 0 - Environment Investigations (13)

2.2 Objective 1 - The State Description Maintainer (14)

2.3 Objective 2 - The Dependency Map (14)

2.4 Objective 3 - The State Timeline (15)

2.5 Continuous Objective - Miscellaneous Engineering (16)

2.6 Demonstration (16)

2.7 Project Management (16)

3. Development Summary

3.0 Overview (19)

3.1 Objective 0 - Environment Investigations (19)

3.2 Objective 1 - The State Description Maintainer (21)

3.3 Objective 2 - The Dependency Map (27)

3.4 Objective 3 - The State Timeline (31)

3.5 Continuous Objective - Miscellaneous Engineering (32)

3.6 Demonstration (38)

3.6.0 Overview

3.6.1 The Ratio Model - Demonstrating SLT

3.6.2 The Jugs Model - Demonstrating ST, DM

3.7 Project Management (44)

7

4. Further Considerations & Overview

4.0 Overview (47)

4.1 Project Conclusions (47)

4.2 Toward the Future (49)

4.3 Plans in motion (52)

4.4 Overall (55)

5. References (56)

6. Legal Considerations (58)

8

1. Introduction

1.0 Overview

This report details the proposals and outcomes of a Computer Science third year

project entitled: Exploring Instruments for Online Empirical Modelling. A demonstration

of the tools developed and the power they lend to modellers is exhibited. A summary of

the direction that the tools to support Empirical Modelling may take as a result of the

work carried out is also detailed.

1.1 Empirical Modelling & EDEN

Empirical Modelling (EM) is a novel approach to computer-based modelling that

developed from research initiated in the early 1980s by Dr Meurig Beynon [1] from the

Department of Computer Science at the University of Warwick. It encourages an open

and experiential approach to programming that better accounts for the way that

humans naturally experience the world. Where procedural code may be more easily

optimised than an object orientated language, or functional approaches may make it

easier to deal with problems inherent to machine paradigms such as infinite data; EM

concerns itself with issues deeply rooted in areas such as software engineering, agent

based approaches, specification, etc. in which the fundamental way of programming /

modelling should be reconsidered as to avoid major issues that may occur throughout

development e.g. a procedural program once written is incredibly difficult - if not

impossible to join to another or integrate with a larger system unless careful

consideration is taken long before development has started. An EM approach in

contrast could easily allow for multiple models to be seamlessly linked to one and

other without any such pre-consideration whatsoever. This consequently provides a

potential platform for collaboration and experiential investigation in a way that

9

traditional approaches to programming do not, many applications in education of

computing arise as a result.

Early activity within the EM research group led to the development of a new language

called EDEN - an “Engine/Evaluator for DEfinitive Notations.” The first implementation

of EDEN was by Edward Yung [2] in 1987 and a number of contributors have been

leading the development of this tool ever since, most recently JS-EDEN - a Javascript

implementation by Timothy Monks [3] in 2011. JS-EDEN (commonly referred to as

EDEN) is the current flagship of the tools constructed to support EM. JS-EDEN has very

recently been extended to support the use of plugins in a move to what is referred to as

the “master version” by Dr Nicholas Pope [4]. This environment utilises context boxes

on a webpage to simulate a graphical user environment much like in Microsoft

Windows ©. JS-EDEN is currently an open source development project.

The primary motivation for EDEN as a programming language is to support the

conceptual framework of Observables, Dependency and Agency. Observables are

variables that represent what the modeller observes from the referent/domain.

Dependency is the functional connection between observables. External agents may

also exist and have power to change the state of the system or redefine observables.

The EDEN language allows for observables to be “defined” in terms of others, that is

their state maintained and their value updated automatically by their definition e.g. ‘a is

b + c’ would mean that as the value of ‘b’ or ‘c’ are altered in some way, ‘a’ would be

changed to meet the mathematical definition of ‘b+c’. The power of the language is

best realised through visualisation, for example the modeller could define a line in

terms of the current position of a mouse over a canvas, to which various other

observable constructs may functionally depend. The JS-EDEN canvas is designed

specifically to exploit this functionality.

10

1.2 Current Issues & Motivations for Development

Through many decades of research, EM has made significant progress towards

developing tools to fundamentally change the way that many computer oriented

activities are approached. Although primarily aimed at relieving the traditional issues in

software engineering, the methodologies give rise to many educational applications.

Educational tools however, must be robust if they are to be taken-up in great number

across wide expanses such as the recent MOOC movement [5] made by many

universities. The current state of JS-EDEN is significantly less than what would be

reasonably required to consider it a robust tool. Many aspects of the environment will

need to be improved and in some cases completely re-engineered in order to achieve

a satisfactory tool for stable modelling.

As the tool is currently only a prototype, it contains many bugs - some of which are

fundamental flaws in design. The tool has also migrated over many versions of

JS-EDEN ie: original, emile, master. Due to this, it is most likely that the application

backend contains a significant proportion of redundant code. It is difficult for anyone to

extend the tool without the source code presented in a way that different programmers

can understand ie: code that adheres to high standards in programming practice.

11

2. Project Proposal

2.0 Overview

The development requirements of JS-EDEN have been received as a suggestion for a

suitable third year computer science project. Under the supervision of Dr Meurig

Beynon & Dr Jane Sinclair [13]. The uptaking student will aim to enhance the tool in a

variety of ways.

As it will be difficult to quantise the amount of work required to advance the tool to an

ideal state given the currently unknown condition of the code, as well as the fact that

the tool could be potentially infinitely extended; a finite goal of three development

extensions to the current master version of JS-EDEN has been agreed as adequate in

terms of scope for a third year project. Parallel to these three extensions of the tool -

routine maintenance with the potential requirement to completely re-engineer certain

subsections of the application are necessary.

The current master version of JS-EDEN which will be used as a platform for

development will incidentally be used as part of CS405 - Introduction to Empirical

Modelling. The students registered on the module will be required to undergo a

modelling study as part of their coursework. The students may or may not choose to

use the current Master version of JS-EDEN for their coursework, although should they

choose to do so it may be appropriate to take guidance from their feedback of using

the tool, and if possible or necessary re-factor the application in such a way to assist

them.

This section outlines the development plans for the project, it also clarifies

development issues such as project management methodologies and requirements for

12

demonstration.

2.1 Objective 0 - Environment Investigations

Prior to development of the three finite objectives, it is necessary to evaluate the state

of JS-EDEN. Focusing on the quality of the source code and the feasibility of

conceptually sound extension and refactorisation, the investigation of some key areas

of interest before any design or development work is carried out will likely result in

efficiency savings throughout the project.

Some questions to consider are:

● How does the application work? Is it possible to map out the subsystems in a

UML like fashion?

● To what extent does the code adhere to high standards of practice in

programming? Is it easy to see what files in the backend refer to and contain

code for? Is code well commented and appropriately named/structured?

● Has each contributor to the tool approached development in a similar way or are

there obvious differences in programming styles? Have a range of different

languages been utilised for different, or the same systems within the

application?

● Are there significant levels of bugs in the application? What bugs exist? Are they

easily addressable? Will they significantly hinder efforts for development in this

project?

● Has the environment been constructed and extended in a conceptually sound

way, or have workarounds been necessary? Do separate systems within the

application communicate well with each other? Is the environment extensible?

The three development extensions require that an internal representation of the state

13

and ideally some sort of application programmer interface (API) for the tool is found or if

necessary sufficiently constructed. Without this, development for the tool is likely to

require much more time and result in redundancy.

2.2 Objective 1 - The State Description Maintainer

The first development objective is to achieve a tool that will better represent to the user

the effective state of the modelling environment. Currently the symbol list fails to

represent much about the internal state of the system such as what symbols are

contributing to the definition of other symbols or even what the definition of symbols

are - if they are defined. It is very useful for debugging purposes as well as conceptual

sanity checks for the modeller to have access to this information.

The tool should give rise to the functionality of being able to export a succinct

description of the model. If this is achieved it will enable the user access to a script

that will return the environment to the exact state at the time of export. This will

consequently provide a basis for recording the internal state of the system in a

conceptually sound way - providing it does not already exist.

2.3 Objective 2 - The Dependency Map

The second development objective is to implement a modelling assistance tool which

has been previously implemented in various legacy versions of EDEN. The tool in

question has been commonly referred to as a “Dependency Modelling Tool.” The tool

is to be a directed graph which visually represents the internal functional dependency

between observables. For example suppose the modelling state comprised three

observables ‘a’, ‘b’, and ‘c’ of which ‘a’ and ‘b’ were assigned to be the values 5 and 6

respectively and ‘c’ was defined to be ‘a + b’: the representing graph of the state would

14

display three nodes labelled ‘a’, ‘b’ and ‘c’ with two directed edges: one from ‘a’ to ‘c’

and the other from ‘b’ to ‘c’. These edges represent that “c is dependent on the values

of both a and b,” or from a conceptually alternative standpoint, that “a and b both

contribute to the value of c.”

Previous incarnations of this tool have allowed users to rearrange the layout of the

individual nodes as they please. This feature is often considered paramount to the

functionality of the tool as automatic layout algorithms do not take into account what

the user wants to investigate by using it. Also in many models the complexity of the

connections between the nodes is far too great to usefully interpret without

rearrangement. This suggests that functionality to remove groups of nodes from the

displayed selection may also be useful.

2.4 Objective 3 - The State Timeline

The third development objective emerges from the aspirations of Objective 1: to

construct the facility to enable the modeller to reverse the state of the environment to a

previously specified configuration. This may help the user to explore various routes of

investigation independently without a great deal of manual respecification. For

example: in the game ‘Sudoku’ the player must sometimes make a guess from a

subset of states as to which direction to take. If they were able to save the state and

recall it, it would alleviate having to undo sequences of changes such as previous

moves, manually. If the model is somehow broken, the user would be able to make use

of the tool to reverse to a previously functioning state. Providing enough records were

made, this tool could significantly help identify bugs or conceptual misunderstandings.

In addition, if this tool could be harnessed in some automatic way, it may provide some

variation of short term version control functionality to the modeller.

15

2.5 Continuous Objective - Miscellaneous Engineering

A less well defined objective of the project is to complete general maintenance and

re-engineer minor miscellaneous subcomponents within the application environment

that do not function in a correct or ideal way. The motivations of this objective are to

enhance JS-EDEN for the benefit of its users and future users, so that they are able

develop within the environment efficiently and utilise the tools available without

encountering errors.

There is no formal state of completion for an objective of this nature, however there

should be sufficient evidence that changes made to the application better support

users in their modelling efforts.

2.6 Demonstration

With the exception of Objective 0: the objectives outlined in this section are required to

be demonstrated individually through already available models or models constructed

specifically to outline the effectiveness of the respective tool. In the case of the

Continuous Objective, there should be reasonable evidence presented that the

changes made are beneficial to modellers or future developers of the environment,

although this is not necessary of every individual change made.

2.7 Project Management

2.7.0 Overview

The following section outlines what management methodologies should be used to

16

guide the approach to the project.

2.7.1 Approach

(Figure 1 - Gantt Chart outlining estimated project deadlines)

The three development objectives for this project will be sequentially completed. Initial

investigations have been allocated approximately 2 weeks prior to the development of

the first tool - the State Description Maintainer. Following these initial investigations

the development strategy for the first objective may be altered to take into account

issues discovered. As the first experiences of development for the environment

commence it is anticipated that further timetable altering discoveries may be made,

setbacks in the condition of the code or lack of required skill to develop may be

experienced. If necessary the allocated period of 3 weeks for this first development

activity may be extended up to 1 week. The second development objective may

commence without completion of the first, should time run short. The overflow period

between term 1 and term 2 is to be used to finish any incomplete tasks and bring the

first development objective up to a high standard with the extra experience gained

from completion of the second objective. As the second term commences, the final

development objective should build on the outcomes of the first objective, and draw on

experiences gained from development and exploration from all objectives (including

the miscellaneous development for the CS405 students) to produce a tool of high

17

quality.

In general, the guideline timetable should only be used as measure of expected

progress as it cannot possibly take into account unexpected discoveries throughout

development.

2.7.2 Code Management

Although there is no requirement of version control technology for the source code,

intermediate versions will be zipped and uploaded to the department servers for use by

the CS405 students and for periodic feedback from the project supervisor. Should

anything major happen to the code during development, it will be possible to recall the

code from the server. While developments are being made to independent files, copies

of the old files should be kept in a nearby directory for reference or reversion if

something is discovered to be broken.

2.7.3 Periodic Consultation

The developer should consult with the project supervisor(s) on at least a weekly basis

in order to adapt to feedback and if necessary explore paths of miscellaneous

development suggested by the project supervisor or CS405 students indirectly.

18

3. Development Summary

3.0 Overview

An account of the development for each of the proposals outlined in the previous

section are detailed individually below. Issues with development including how they

were dealt with are explored where applicable and wider issues such as the suitability

to the application of including certain functionality are also noted.

3.1 Objective 0 - Environment Investigations

However sound in conceptual design the protocol which maintains the observable

update mechanics of the environment are, they are not well implemented. It is very

difficult for an onlooking programmer to understand how this subsystem works.

Variable names are well chosen and accurately reflect their functionality in most

cases, however comments are minimal if existent. There also appears to be many

workarounds which are undocumented. The combination of these practices mean that

it will be difficult to make alterations to the application through difficulty of

understanding, and satisfy the requirement to minimise unintended side effects.

There are considerable quantities of code which appear to be redundant, sometimes

relating to legacy functionality which has been replaced entirely. Large blocks of code

are commented out, sometime alongside useful comments such as: “//this doesn’t

work.” There also appears to be a fair amount of code in an unfinished state: A section

relating to the serialisation of state for record and recall was evidently an ambition

unrealised.

19

The server contains many files which are not linked to the application. It also contains

many files that are linked, but do not make any contribution to functionality. It also

contains files which are related, but exist in different directories. The organisation of

the backend requires improvement and refactoring but it is noted that due to the nature

of the application, this is not a priority.

The user interface (UI) for the context boxes (The primary extension from original

JS-EDEN to the master version) have utilised an imported library which heavily relies

on JQuery. As with most imported libraries; heavy redundancy is also acquired - A

particular issue for extension and refactorisation. CSS which has been imported in bulk

introduces chaos with regards to maintaining conceptual integrity when alterations are

desired. The imported library of JQuery CSS is also obfuscated. Individual changes to

the user interface, which include the need to remove bugs is therefore infeasible.

Another side effect of utilising JQuery is the conflict it causes with Javascript. From a

Javascript perspective: JQuery can be considered a hack. Similarly vice versa. By

mixing these approaches an effective situation akin to two autonomous agents

attempting to simultaneously maintain an environment using different languages

arises. All is fine while the environment is stable and there are no plans to extend the

application, but as soon as said extensions are desired, the implementing programmer

is posed with a confounding problem: having to make sense of what is going on. Such

approaches should surely be actively discouraged in the case of software being “open

and experiential” such as this.

Investigations have however proven fruitful in successfully locating a method of

accessing and manipulating the database of symbols in the environment - a

fundamental requirement for development. The ability to query observable properties

through the use of Javascript function ‘root.lookup’ was identified. This will return the

Symbol that the Javascript environment uses to maintain the properties and state of

20

the observable within the system. A curious side effect of using this method to query

observable symbols however is that if symbol in questions does not exist, it will be

created by invocation of this lookup method - notoriously unanticipated functionality

which has resulted in many hours of confusion. If this seemingly innocent function is

used to check to see whether if a symbol exists, the programmer will be bewildered

until they discover this rogue functionality.

In conclusion: the internal state of the application is detrimental to all efforts of

extension and outside understanding. It may be considerably difficult for anyone else

to make some of the changes proposed in this project as a result. If the changes are

standalone additions however, the bulk of these issues may be not be applicable as

there will not be significant interaction with existing code. Bug fixing on the other hand

will require copious amounts of said interaction - and by extension difficulty.

3.2 Objective 1 - The State Description Maintainer

The first mandatory development objective was to achieve a tool that will better

represent to the user the effective state of the modelling environment, with ambition to

be able to export a script which succinctly represents that state to be reinterpreted at

the whim of the user.

The user interface for this tool was to be modelled on the symbol list. The symbol list

displays the name of all symbols alongside their current value. As the symbols change

value in the eden environment, their updates are automatically propagated to the

display of this tool. There was originally intended functionality of being able to edit the

value / definition of the observable through this symbol list, however it was not realised.

Indeed there is no way using this tool to even inspect the definition of symbols.

There has been discussion as to whether the automatic update of the symbols is

21

desirable functionality. It is sometimes the case that modellers wish to observe

state-to-state updates of particular symbols, even with a manual refresh however, the

modeller will only be able to observe a start to finish jump in state, discarding any

intermediate values. As it is already possible to use EDEN functions to slow the

interpreter to achieve this functionality it has been concluded that it is best for the

symbol list to update as quickly as possible. The new tool will be presented as a

database rather than a list of key value pairs.

(Figure 2 - The root.lookup() function in a chrome console)

Through the use of the root.lookup function, the programmer has access to all of the

information stored through the internal representation of the symbol. Instead of just

extracting the name and the value of each symbol as the symbol list does, the new

maintainer should take the remainder of the information also, this includes the

‘observees’ and ‘observers’ - which symbols are contributing to the definition of, and

which are being defined in terms of the symbol in question. This information is useful to

the modeller in many ways, specifically for the motivations behind the next tool.

With the above design objectives in mind, the tool’s implementation was the next

target. It was at this point that in-depth understanding of how plugins worked was

necessary. This task was non-trivial. The knowledge required to build and integrate a

plugin would ideally be taken from a readme prepared by the implementing

programmer or drawn upon from observed technique taken from existing plugins. With

22

the absence of any such documentation, and a confounding scramble of

JQuery-Javascript implementation, this approach was infeasible. Instead a trial and

error approach with basic understanding of HTML, CSS and Javascript was taken.

Conveniently, the implementing programmer included a basic-HTML plugin that

provided considerable insight into how the plugin would be assimilated by the

environment, without obscuring opportunity for fundamental understanding of

functionality with feature dependent code - there is reason to believe this plugin was

included specifically for this purpose.

From a blank plugin to something with database like functionality and look, was a

journey void of conceptual cohesion; a pure hacking adventure - but one necessary to

understand the environment. The first prototype of this tool was unsatisfactory in many

aspects, for now the tool had basic desired functionality, however many aspects

needed attention. The update required manual intervention, the layout was far less

efficient than the original symbol list, the ability to filter observables, actions, functions

etc was sufficiently confusing from a user interface point of view etc. Power was added

to the overall tool however. One could check the definitions of symbols using a

graphical approach instead of hacking the internals, and more understanding of the

mechanics of the environment was acquired. Refactoring this tool in the future would

be significantly easier with the skills I had gained.

The advent of this plugin - as anticipated - gave rise to the ability to export a complete

state script. With some simple logical transformations the code to output this database

could be altered to output a script that could be reinterpreted using the input window.

23

(Figure 3 - Script Exporter Viewer generating a script for Jugs)

In order to achieve this functionality, the state of each symbol was recorded, the

symbols were then separated into those which existed immediately as the application

was launched: the environment symbols, and those which were specified as part of a

user oriented modelling activity: the user specified symbols. The environment symbols

did not need to be recorded as they would exist on refresh of the application anyway.

The state of them however, would be forgotten. This is desirable as the tool has not

designed to reproduce the exact layout of the windows etc and other features of the

user interface associated with environment symbols, just the information related to the

construction undertaken by the modeller. This way, environment dependent bugs such

as screen size dependent layout will not occur as a result of the tool. eg: If the tool

recorded the position and size of the windows (environment symbols), and the

application called the exported script on a machine with a smaller/larger screen the

layout would appear cluttered / overstretched. In some cases the windows may be

unrecoverable. There are various other reasons as to why the record of environment

symbols are undesirable. After identifying the user defined symbols, it was necessary

24

to organise them into groups of: Observable (with definition), Observable (without

definition ie. state only), Function and Procedure. It was important to separate

Observables (with state only) from all of the other groups. Once the state only

Observables were identified, for each: an interpretable string was generated of the

form: “observableName = associatedState;” The Observable symbols which were

defined could then be utilised in the same way: “observableName is

associatedDefinition;” ignoring the state, as it was unnecessary. The Function and

Procedure definitions could be immediately identified and included in the export script

in a similar fashion. A visually appealing script could then be generated by arranging

these interpretable strings with appropriate explanatory comments where necessary.

This procedure could be undertaken at every state the user desired. Automation would

be possible, but space requirements are a likely subject of concern before planned

implementation.

25

(Figure 4 - The State Description Maintainer and Script Exporter as a Single Plugin)

All of the aforementioned functionally including the database of symbol details was

packaged as a single plugin. Although the power of this functionality was to be realised

to a much greater extent later with the final development objective, it alone meant that

the user no longer needs to worry about maintaining a separate text document with the

code to continually resubmit in. It is now stored internally and only has to be recalled.

After gaining extensive experience with the environment and with Javascript through

miscellaneous developments under the continuous objective, this tool was refactored

into two separate, cleaner tools: The symbol lookup table consisting of the database of

symbols, and the script exporter. The newer version of each of these plugins supports

multiple independent views, meaning that multiple symbol lookup tables each

displaying a separate set of observables may be open and functional separately and

simultaneously.

26

(Figure 5 - Multiple views of the Symbol Lookup Table functioning concurrently)

3.3 Objective 2 - The Dependency Map

The goal of this development objective was to realise a JS-EDEN master version of the

dependency modelling tool (DMT) - a directed graph which displayed the internal

associations between symbols in the EDEN environment.

There have been many previous incarnations of this tool, each with slightly different

issues. One version had issues with automatic layout of nodes, others were standalone

visualisation packages designed for EDEN, but functionally separate. Due to the nature

of the master version, it would be appropriate to include this tool as a plugin with direct

access to the observables, therefore would have a dynamically linked nature. The

issue of graph layout however will still need to be addressed.

27

In a model with 100+ observable definitions each with multiple connections to other, it

is extremely difficult for the user or even the system to present them in a visually

satisfying way. One version of this tool used in CS405 labs would present the user with

a graph on a blank canvas, each node representing an observable, somehow

equidistantly distributed, and leave the user to manually rearrange them to their

satisfaction. There is merit in this - each user may wish to use the graph to investigate

different things, thus their respective layout requirements differ; adjusting the layout of

nodes to how they internally construe their model is useful to each modeller

individually. To initially throw a mess at the modeller however, could be improved.

Another version of this tool [6] presented the user with multiple layout methods. This

may be considered beyond the scope of this development objective. To utilise an

algorithm to draw the graph in some optimal fashion to begin with and then add

functionality to allow the user to rearrange how they saw fit, would be enough to

achieve a good balance of effective interpretation and user control.

It was appropriate to investigate what graph layout algorithms existed. A particular

algorithm was quickly discovered; ‘Force Directed’ graph drawing was described by

wikipedia as a class of algorithms for drawing graphs in an aesthetically pleasing ways.

After much deliberation and investigation of various other solutions, the most

appropriate method was deemed to be this ‘Force Directed Layout’. In the midst of

researching examples of equations for that would emulate such functionality, a public

Javascript library for exactly that was discovered: Springey.js. All that was required

now, was to link this library to JS-EDEN in such a way that the internal representation

of state (conveniently discovered in previous requirements of this project) could be

directly represented in the graph. This has been achieved with fantastic results. The

smaller forests are pushed to the edge of the graph due to their connections having a

smaller combined weight than the larger more complex forest. Leaf nodes are pushed

28

toward the edge of the complex forest for the same reason. Functionality has been

manually added in order to be able to move the nodes from their stable state to a user

defined position, once the node has been moved, it will not respond to the force

directed mechanics which define the initial layout, thus there is initial Force Directed

Layout to which the system will eventually rest, then after user defined redirected

layout of specific nodes, automatic adjustment to which the system will again rest. If

all nodes have been individually respecified following the initial layout, force directed

adjustment will no longer take place until the graph changes, which will reset the

system.

Manually defining the mechanics of the force directed layout would have removed

dependency on an external library, however would likely have resulted in an

implementation of lower quality. The code for the library is completely un-obfuscated,

well commented and partially rewritable if necessary, It was designed specifically for

this purpose and the author has published basic tutorials detailing how to customise

the library to suit various applications’ individual requirements.

A regular expression (regex) search box has been included in order to allow the

modeller to restrict the display to exactly the connections that they are interested in.

With nothing in the search box, no graph will appear, as the user begins to type, the

graph is updated with a different graph with every keystroke - as long as a change to

the structure of the graph is made. This ensures responsiveness from the application.

Only the symbols captured by the regex or those which have direct connection via an

inward or outward edge will be displayed on the canvas.

In addition to the force layout, visual customisation has been added to the graph as to

distinguish the separate symbol types to the user. The blue correspond to the

observables, red to the agent procedures, and green to the functions. Also each symbol

captured by the regex search functionality is highlighted with a box.

29

(Figure 6 - Dependency Map)

In the example above we can see the buttons but1, but2 etc each call Button() in their

definition, so an edge is directed from the button observables to the function Button.

The regex used to display this graph is: picture|(but.*) meaning: picture or any word

beginning with “but”. As we can see with the boxes around certain nodes “but1” has

been captured by the regex, but “valid1” one has been displayed because it has a

direct edge to “but1”. Although “but1clicked” and ”but1agent” have both been

captured by the regex, there are no edges aside from the one between them, as no

functional relations in the application aside from this single edge exist.

This plugin has overall been an incredible success. It has some minor non-ideal

30

features such as the refresh of the visualisation requiring a “mouse-over” the canvas,

but overall a result of a historically significant feature of EDEN implemented to a high

standard in the master version of JS-EDEN.

Both the Symbol Lookup Table and the Dependency Map failed to meet their

requirement for dynamic update. For this to be achieved, it is necessary to include a

call to update deep within the application at a suitable location where changes to the

state of the environment can be detected and verified. The lack of recognisable

structure within the code prevented this. It would be possible to initiate the update of

the plugin from within each plugin as the canvas currently does. This solution however

is unscalable from a performance aspect.

3.4 Objective 3 - The State Timeline

The goal of this development objective was to build on the aspirations of the first

objectives outcomes. The first objective lead to the creation of a script-exporting

plugin that allowed to user to extract a succinct representation of the internal model for

resubmission. Now that this is possible, an extra level of automation can be added to

enrich the functionality from the point of view of the user.

The plugin developed for this objective is named “The State Timeline”. It not only

allows the users to record the state of the model at the touch of a button and restore

the state recorded at the touch of another, but maintains a list of the states recorded

allowing the modeller to jump between any of them at their whim.

The tool utilises a minimal HTML context and appends a list item to the context each

time the modeller records a state. The list item contains a restore and delete button

allowing the user to recall the state of the modelling environment stored by that entry

and delete the entry from the list respectively.

31

With the additional functionality of multiple plugin support, the modeller is able to

make separate timelines over multiple views of this tool. If the modeller was exploring

which states the model was broken for, they may want to record it to inspect later, or, if

they have broken something without realising they may need to compare the state of

the environment with a working state in order to locate the problem - it may be

convenient to separate these into different views. For similar reasons the ability to

name the states upon recording was included. This allows the modeller to clearly

distinguish which state is which, and assure themselves of the reasons that recorded it

in the first place.

Having gained so much experience from the continuous development objective and

the previous plugins, there were very few technical issues encountered during the

development of this tool, those that were encountered were minor indeed and very

briefly overcome.

3.5 Continuous Objective - Miscellaneous Engineering

The application uses a combination of HTML5 canvas primitives such as circle,

rectangle, line etc. and native HTML elements such as button, text etc. to draw items

to the canvas. While it is true that many of the HTML elements could be implemented

using the draw methods of canvas, it was seen as a ‘shortcut’ to simply make use the

functionality that already existed in browsers, indeed to implement button using

rectangles and touch events is not as trivial as appending an HTML button to the div

containing the canvas. Unfortunately, there are a great many unforeseen issues that

arise and plague the development of the application when any such shortcuts are

prefered to conceptually sound approaches.

The first issue with appending HTML elements to a canvas, is that HTML elements by

32

nature are not ‘drawn’ in the same way that canvas primitives are, they are appended.

The technique to draw primitives is to call a draw function on the object representation

of said primitive which will utilise the internal coordinates stored in the object: ie if I

adjusted my rectangle using EDEN by submitting: “myRectangX1 = 15;” each time the

draw method is called it will find this value and draw the rectangle with the updated

coordinates. HTML elements however are appended to the div, and not continually

redrawn, so a separate process entirely is required to maintain these constructs -

check that they are updated and if not, delete the element and create a new one with

the updated parameters then re append. By adopting this approach we have added a

layer of complexity to our application and created twice as much work in order to

maintain both render loops, more so for a unfamiliar developer such as myself to then

attempt to understand. Many users have required / desired functionality that the

application does not yet implement such as an input box. Due to the level of

understanding required of the HTML render loop, rather than implement the construct

in Javascript, it has been common practice for users to hack into HTML and write it

themselves. Even developers who contribute to the application - competent in HTML,

struggle to understand the methods for maintaining programmed constructs using this

loop.

With respect to the original implementer, it is not trivial to solve the problems

highlighted above, and due to the time constraints of the project, reimplementation of

all constructs using primitives and events is not within the scope of this project. Further

discussion regarding steps to resolve this issue in the future is detailed in section 4.2.

For now, implementing many of the widely “hacked” constructs such as input box,

radio buttons etc using the appending approach would have to suffice.

Most of the HTML elements were found to be suffering from the picture removal bug:

after specifying an observable which uses an HTML element ie: “myButton is

Button(“hello”, 100, 100, true)” and adding the observable to the picture ie: “picture is

33

[myButton];” the element did not reappear when resubmitted following removal ie:

“picture is []; picture is [myButton]”. This was identified and solved by correcting a line

of code that appended the element to the canvas.

(Figure 7 - Combobox on a canvas)

Many of the HTML elements were also found to be suffering from a different bug where

the state of the element is lost following a resize of the canvas. Resizing the canvas

forces a redraw, as the elements state is destroyed with the element, and re-drawing

elements requires that they be destroyed and recreated, they were re-appended as

new elements with a default state. ie: if a combobox’s final option was selected, then

the canvas resized, it would be redrawn with its default option selected. Fortunately the

state selected was remembered by the observable representing its state, so the

element merely had to be forced back into the correct state following a redraw.

(Figure 8 - A 1998 version of the Beynon Bubblesort in tkeden)

34

The Bubble-Sort model by Meurig Beynon (2007) [7], when ported to the master version

of JS-EDEN (originally written in traditional EDEN) highlighted some functional bugs by

demonstrating some interesting and non-intended behaviour. The particular problem of

skipping an element in the list when starting the next iteration (pass through the list it

was bubble sorting) was highlighted. The solution was found following rigorous

inspection of the Div Element drawing code, which was seen to be assigning a value to

an observable two times unnecessarily, triggering an agent procedure twice instead of

the intended once. The simple removal of the duplicated line solved the problem.

The user interface for the master version of JS-EDEN has been identified as causing a

wide range of undesirable functionality. eg: the windows that are draggable around the

screen cannot be partially dragged off of any edge including the top and bottom,

meaning that if the user had more than a few windows open, any marginally larger

window would prove obstructive to the smaller windows, this has on many occasions

lead to the input window being lost behind the canvas, requiring either a close and

open, or a resize and a re-resize once the hiding window had been recovered. The

windows are also unable to be closed. Once you are finished with a view, you are

unable to remove it from the application without hacking the Javascript. You are able

to minimise windows, but this functionality is much more like closing them. ie: if you

were to click the [x] in the top right corner of the window, the window would be

minimised, but to the menu where you originally created it from - removing it from ease

of recall and sufficiently confusing the modeller into believing that they had removed it

entirely, as is often the observed consequence that a new view is created to replace a

mistakenly minimised one.

The ambition to resolve these issues was entirely quashed upon discovering

obfuscated JQuery and JQuery generated CSS. Altering parts of the CSS which

appeared to be responsible for various undesirable features often resulted in no

change at all as multiple class assignments to each element overwrote single

35

redefinitions multiple times, it was concluded therefore infeasible to alter altogether.

The user interface imported from this JQuery library became a particularly serious

issue when attempt to implement an EDEN function to target elements within the user

interface was made. The “showObservables” function is used to make a particular

regular expression appear in the search box of various windows, this is useful to the

modeller in guiding another user to a particular feature. Although this function was

successfully implemented, a similar feature for the input window was desired by a

“copyToInput” function. The input window in particular makes use of JQuery input

methods which appear to contradict any attempt to penetrate using traditional

programming methods such as that made by the DOM. The behaviour exhibited by the

input window appeared to be destroying and recreating some part of the input field with

each keystroke. When targeted using standard DOM methods to inject a string into the

field ie: element.value = mytext, the function appeared to work, but then reverted as

soon as other user intervention such as the mouse clicking on a section of the copied

text was made. This behaviour could not be reasonably attributed to any known

standard programming behaviour. It was attributed therefore to unknown JQuery

methods.

(Figure 9 - The Old Input Window (Left) vs the New Input Window (Right))

Approaches were taken to redesign the input window in the same way that the

development objectives made plugins from blank plugin templates. Without making

use of the imported JQuery and CSS libraries. The input window was redesigned from

36

scratch using standard HTML and CSS approaches. The result was a conceptually

sound input window that was able to be manipulated using standard approaches

enabled by the Document Object Model (DOM) such as element.value = mytext. This

time the function worked exactly as intended, although the window itself still suffered

from the same user interface issues as all of the other containing context boxes as it

still had to utilise the imported libraries for the basic plugin outline. This development

was to highlight the importance of standard approaches to programming over JQuery

methods - Quick controls were added to the input window for the users benefit:

Ctrl+Enter for submit, Ctrl+left arrow for previous entry etc.

On inspection of the code which is responsible for drawing to the canvas, it was noted

that the “set interval” approach was being utilised - setInterval is a general method in

Javascript for recalling a function after a specified amount of time has passed. The

code in this case was calling the render method for canvas every so many

milliseconds. This approach to canvas drawing has long since been deprecated and

replaced by requestAnimationFrame(). Reasons for this include that each machine will

take different amounts of time to draw items to the canvas depending on its graphics

rendering capabilities, if the amount of time specified is fixed then some browsers will

render “jumpy” frames and others will call the render again before the previous call has

been completed. requestAnimationFrame ensures that each browser calls the method

synchronously as fast as it possibly can without causing garbage. In order to ensure

that JS-EDEN functions smoothly this dependency on setInterval should be removed.

After refactoring the canvas code to achieve this, the speedup was so significant the

HTML elements were rendered unusable. It was impossible to interact with them as the

code to redraw / check whether they should be removed or updated was locking the

mouse input quicker than any reasonable interaction could be made. Thus due to the

HTML elements this advance is not possible.

A number of other minor contributions have been made to the application. Pixel has

37

been implemented at the request of one of the CS405 students, textarea has also been

implemented at the request of another. Radio buttons have been implemented at the

request of Meurig, Sliders have been reimplemented using standard HTML instead of

JQuery UI. Numerous alterations to the symbol list including text highlighting

depending on whether an observable is defined or assigned have also been made.

HTML interpretation has been suppressed in the symbol list, symbol lookup table and

interpreter history, this was to prevent tables, buttons and input fields etc appearing

where simply the text should have appeared eg: <input>...etc. The input box was

implemented with the assistance of Hui Zhu [8], who had a previous implementation

with some bugs. The bugs were mostly due to failings copied from other HTML

element implementations.

3.6 Demonstration

3.6.0 Overview

This section will demonstrate how the changes made by this project have improved the

state of the JS-EDEN environment.

3.6.1 The Ratio Model - Demonstrating the Symbol Lookup Table

The first model to consider is the ratio model. The ratio model was designed by myself

during term 1 as part of an educational module. It facilitates the exploration, using

some sliders and input boxes, how fractions, percentages and ratio are linked.

Particular development / re-engineering pertaining to or inspired by individual models

has been included.

38

(Figure 10 - The Ratio Model)

The user is directed to shift two slider bars which control the value of the numerator

and denominator. By default, the values that the slider bars range over are both 0 to

100 in steps of 1, although the user can change this to further experiment with the

model via the input boxes respectively labelled min, max, step, for each numerator and

denominator. As the user adjusts the values using the slider bars, the value illustrated

by the larger text alters appropriately, as does the calculated percentage. A number

line also exists at the bottom, which illustrates the overall value of the fraction, the user

will hopefully refer to this in order to understand the connection between fractions and

overall values through experimentation with the slider bars.

The slider bars, as part of the reimplementation by this project, now conform to the

39

HTML standard. The previous slider bars were implemented using JQuery UI which

meant that they were visually larger and inflexible to the programmer. They also

suffered from the bugs highlighted in an earlier section on miscellaneous development.

As they were not implemented using standard Javascript, the discovery of a JQuery

solution to a problem that was solved in other cases using Javascript was required.

Instead of attempting to patch what I considered to be an already hacked solution, I

decided to implement the sliders using standard Javascript. As a result of this change,

we have acquired historical functionality from standard HTML elements, and eased the

maintenance task for future generations.

The text boxes have been re-engineered to exist separately of the residing text eg.

previously “min” would sit to the left of its respective input box inflexible to alteration or

otherwise specification. In order to place the text above the box as displayed in this

model, the modeller would have had to hack the HTML generated by the EDEN code,

this would have a number of side effects detrimental to the motivations of the

environment. Properties that text contains such as font, colour, size, etc. were also

previously unspecifiable. Thus separating the text from the box altogether has enabled

greater flexibility, and removed redundancy. The same would ideally be true of the

slider bars, alas this functionality has not yet been implemented.

Text has been given a ‘size’ argument, which has historically confounded developers

such as Matt Cranham who failed to produce an explanation as to why it did not work,

despite being such rudimentary functionality. In order to alter the size of text drawn to

the canvas, a font family name must be provided. This discovery was made only

recently. A change has now been made to allow the desired size of the font to be

specified by the modeller without requirement of a font family, by appending a

permanent font family. The text which denotes the numerator and denominator, as well

as the calculated percentage in the model constitutes demonstration of this alteration.

40

The modeller may observe that the precision of the percentage output is less than

desirable. In fact it is misleading to a learner. 10 / 21 is not 48% - a decimal place

needs to be included to re-assure any learners that this is indeed incorrect. In order to

edit the text, the modeller first requires the name of the the observable symbol that

represents the displayed text on the canvas. They may wish to go about this in any

number of ways. If the model contained reasonably few symbols such as this one, a

quick skim down the symbol list would reveal ‘percentageText = Text(230, 160, ‘=

48%’, “black”)’ - although not immediately obvious, this is indeed the symbol which

requires alteration. Now that we know the symbol which must be altered, we must find

its definition. This is impossible in the symbol list, so the use of either the Symbol

Lookup Table, or the Script Generator (both products of the first development task) is

necessary. Either tool will provide the modeller with the following effective definition:

percentageText is Text(“= ”+str(roundPrecision(percentage, 0))+”%”, 230, 160,

“black”); The function call roundPrecision will be the culprit. A similar lookup, or

intuitive guess will point you to replacing the 0 in the call to the amount of decimal

places you want to round the percentage to. Job done. Without a user friendly way of

accessing the definition of symbols, this redefinition would not have been feasible.

Paramount functionality to the environment has been added with the development of

this tool.

3.6.2 The Jugs Model - Demonstrating the State Timeline and the Dependency Map

The second model to consider is Jugs. Jugs has presence as a demonstration model in

practically every EDEN implementation. The model provides the user with a series of

buttons. The user may negotiate applicable buttons to fill, empty and pour water

between jugs in aide of achieving the target volume in either of the jugs, specified to

the right of the jugs - the default is 1.

The task of achieving the correct volume in either jug is obvious. The modeller may

41

wish to map out the different routes to the solution by testing exhaustively - A tool

which would be great use to the modeller in this situation is the State Timeline. (The

3rd development objective)

The State Timeline allows the modeller to record snapshots of the state of the model

and label them as they see fit. By labelling each state with the volume of jugA and jugB

the modeller can more easily inspect and skip between previously recorded states.

(Figure 11 - Jugs Model with State Timeline Plugin)

If the modeller wished to develop from state 06; that is to say the state in which left jug

has volume 0 and the right jug has volume 6, they need only click ‘restore’ beside the

label ‘06’ - they can then go on to record further states after exploring various paths of

exchange, or return to the state that they came from - provided they recorded it. This

constitutes demonstration of the State Timeline.

The modeller may wish to inspect the structure of the model. They may desire in the

42

case of jugs, to understand the construction of the model surrounding the liquid. They

could use the Symbol Lookup Table to individually inspect the dependencies of each

observable symbol, but that would be tedious and difficult to visualise; they would have

to manually search for keywords that they know are related to the liquid and follow a

string of dependencies. A tool that would greatly aid their struggle is the Dependency

Map.

The dependency map facilitates the visualisation of functional dependency, and

therefore structure within the model. A good place to start is to instruct the map to

display all of the observables associated with what is drawn to the picture. This can be

achieved by simple typing “picture” into the regex box at the top of the dependency

map tool. The picture observable symbol will appear as a boxed node in the graph, and

all nodes functionally dependent on or to it, will appear as unboxed nodes with directed

edges. From the nodes that have appeared, the modeller will be able to see two

particular nodes labelled “jugA_water” and “jugB_water” they may then extend the

regular expression to enlarge capture to those observables in order to reveal their

dependent parts. The new regular expression will be “picture|jug._water”

43

(Figure 12 - Dependency Map illustrating JUGS)

The nodes can then be arranged manually to make better sense of the structure within

the model such as in the picture above. The modeller is able to clearly see that both

jugs’ liquid representation are made structurally identically, they each rely on

Rectangle, they each have a linewidth, jugwidth, base and scale; contentA and

contentB are obviously very similar, as are left and right, though it is not clear what

these observables represent from the diagram. This information and its conclusions,

along with further potential for exploration would not be easy without this tool. This

constitutes the demonstration of the Dependency map.

3.7 Project Management

44

This section outlines the results of project management activities.

Development within an environment that was completely under my own control was

possible due to Vagrant [9] and VirtualBox [12]. The program installed a virtual server on

a private machine that allowed a shared location on the harddrive to be broadcast on a

specified port. The location was selected to be within a dropbox directory, thus

allowing development to be made from a remote location, this functionality was

especially useful during the CS405 labs, when the assistance of others with superior

knowledge and experience with web technologies were available for assistance with

some of the more confounding problems.

The initial investigations did not take as long as anticipated. After approximately 3 days

it was concluded that the bulk of the environmental familiarity would come with

development, thus, after locating the the functions that would allow the vital extraction

of information from the database of observables, development of the first objective

was started.

The first development objective took the longest to complete. With lack of

environmental awareness and inexperience with JQuery, HTML, CSS etc. The simplest

design activities took far longer than they would have by the end of the project. After

4-5 weeks of development and incidental investigation the first tool was in a functional

but undesirable state. The aesthetics would have to wait for the overflow period

between terms 1 and 2.

The second development objective was achieved in roughly 3 weeks, less than

forecast. During this time significant miscellaneous development also took place. The

swiftness of this was due to the discovery of the Springy Javascript library which

removed the need to implement a force directed algorithm from scratch.

45

During the overflow period the refactoring of the first tool into two separate plugins,

along with the promised advances in aesthetics were completed. In addition, the third

development objective was also completed, all in a period of 4 weeks.

During the interval that the final tool was set to be completed in, further refinements

were made, and possible opportunities for further extension were discussed with the

project supervisor.

Multiple submissions of the tool as a work in progress were submitted. The

improvements made to the UI and the interpreter were evident from the outset, and

useful to the CS405 students using the environment as part of their coursework.

Meeting with the project supervisor was routine, averaging roughly 3-4 hours per week.

Subjects of discussion most often featured miscellaneous development tasks,

although when a submission was ready to be made, feedback and constructive

criticism was often received on demonstration and addressed before submission to the

department servers. A particular submission which rendered a significant proportion of

the tool useless was identified and addressed within minutes of discovery.

46

4 Further Considerations & Overview

4.0 Overview

This section concludes the project. The outcomes are summarised, and a detailed

recommendation of future directions to take are discussed.

4.1 Project Conclusions

The project has improved the state of the environment in a variety of ways. Many

improvements have been made. Four high level plugins have been developed to assist

the user in their modelling endeavours. Each provide the functionality of system state

customisation and recall, which can enable the modeller to explore many paths of

configuration previously tedious to manually attempt. They provide insight into the

structure of models, this can be of great use to any modeller attempting to understand

the structure of their, or anyone elses model. They also provide more information about

the system environment to the user, without which technical reassurance in times of

confusion may be difficult if not impossible to obtain without hacking.

Many existing structures have been improved, some entirely re-written to support the

philosophies of Empirical Modelling - the input window in particular. These

improvements will ultimately mean that future developments require less effort in

these particular areas that have been re-engineered. Compatibility issues with other

plugins are also easier as a result of the JQuery removal, which has been replaced with

pure Javascript wherever possible.

Many minor aesthetic changes have been made to the tool for the benefit of the user.

47

Text highlighting to display to the user which symbols are defined for example. These

changes increase the level of feedback that the user receives, which is key to any

integrated development environment. The higher frequency the feedback presented to

the modeller, the less work they have to do to solve problems. With high quality

feedback the gap between the modeler's understanding and their implementation is

ever stronger bridged.

A plethora of existing HTML drawable components have been bug fixed, their code has

been greatly simplified in some cases and a number of new drawables have been

added. Improvements suggested by the CS405 students were immediately addressed,

this included the implementation of many new drawables such as Pixel and Textarea.

Bugs have for a long time plagued the use of this tool, and that is now significantly

eased as a result of the efforts from this project. Elusive errors such as HTML

interpretation in code submission have been suppressed. The environment now

produces relatively few terminal errors on submission of code. The removal of

roadblocks such as these will undoubtedly have a great effect on those using the tool.

It will help to prevent detracting people who are interested in the ideas of Empirical

Modelling, but frustrated by practical inadequacies.

A variety of skills have been gained as a result of the tasks carried out in this project.

Starting out with only a basic understanding of HTML, CSS, and a more developed

understanding of Javascript, the knowledge required to bridge these three technologies

have been acquired. Critical evaluation of the use of JQuery and its relation to the

conventional approach to web based programming using the Document Object Model

(DOM) with Javascript has been exercised and the use of alternative notations in

language design have been explored.

An invaluable experience with software development in practice has been obtained,

particularly with reference to development across generations by multiple developers.

48

Critical evaluation of approaches including recommendations for improvements have

been central to the project. System design skills have also been honed, and knowledge

of the philosophies relating to Empirical Modelling have been strengthened.

4.2 Toward The Future

As a consequence of investigations and development with JS-EDEN, sufficient insight

into the direction the tool should take as a result of future development has been

made. A critical recommendation as to how the environment should evolve is an

appropriate way to conclude the project.

As highlighted throughout the report, the use of HTML constructs as a shortcut to

achieve interactive elements that the user can manipulate to guide the construction

and exploration of their model, should be entirely deprecated. These constructs would

afford the user far more control over their display and functionality if they were to be

implemented directly within the canvas. The modeller would also be able to specify

such constraints much easier within EDEN rather than the minimal control HTML

provides. The already deprecated ‘setInterval’ method to refresh the canvas would also

be able to be replaced by the entirely more appropriate requestNextAnimationFrame as

encouraged by the online community [10]. This is currently not possible as the

elements lock up when the canvas refreshes too quickly, it would refresh much quicker

providing the user with a smoother update feel with the recommended function due to

the efficiencies afforded. The backend of the code would also be significantly easier to

maintain, as developers would no longer have to concern themselves with maintaining

multiple render loops. The constructs would actually all be drawables, rather than

drawables and appendables. This alteration will take time to implement from scratch

but the efficiency, maintainability, extensibility and integrity afforded are in the legacy

and future interest of Empirical Modelling.

49

The removal of JQuery and other heavy imported libraries are paramount to the

malleability of the application environment. As experienced throughout development,

JQuery methods pervert the standard Javascript approaches to programming. In some

cases overwriting pure implemented code when one least expects it. The two

approaches cannot be used together with conceptual stability, thus one must go. Since

JQuery is essentially an extension of Javascript, written in Javascript: it is weaker than

Javascript. Eventually, a developer will have to revert to Javascript in order to achieve

something that they cannot in JQuery, since JQuery is designed for popular operations

to do with webpage layout configuration or information retrieval, a highly complex

experimental modelling environment such as JS-EDEN will inevitably command

approaches that JQuery will be unable to satisfy. Indeed this is why a mix of

Javascript-JQuery is observed throughout the backend. All of the JQuery that this

application relies on in the future should be removed and replaced with pure

Javascript.

The imported libraries such as the ever outdated JQuery library that must be

downloaded in order to make use of the functional shortcuts afforded by the language,

is always heavily obfuscated. Obfuscation deliberately skews the code so that

developers cannot easily alter it. The removal of non-ideal features within user

interfaces such as some unhelpful configurations within CSS, become infeasible as a

result of this practice. Unless it is absolutely necessary, obfuscated libraries should not

be present anywhere within the application. The existing JQuery UI with CSS needs to

be removed, and alternative CSS specification should be made.

Standards of practice for development need to greatly improve in both the front and

back end. Code should be well commented wherever it is not completely obvious what

the implementer has done. A preamble for each section should explain to the reader

what the code for the section does, and how it fits within the overall application. The

user, upon loading the environment should have the option for more information about

50

how to use the application, including basic tutorials and examples.

There should be an ability to consolidate symbols into groups. Currently if two models

were to be loaded into the application, the symbols contained in the models would be

forever inseparable without individual manual respecification. Additionally there is no

way of replicating or extending constructs without first considering them as a whole.

This is a huge limitation to an environment that is founded on constructionism. We are

forever forced to consider a brick as sand, clay and water. Effort has been made to

address this issue by adopting various object oriented approaches such as the dot

notation in a recent WEB-EM submission: “ODIN: A conceptual framework for an

Object Extended EDEN.” Without addressing grouping of symbols in one way or

another there is no hope of merging models using distributed modelling techniques

without serious conflicts.

The EDEN language from the perspective of the application environment JS-EDEN

should be simplified. First conceived in 1987, the language contains non standard

programming notation commonly referred to as “a dogs dinner” by Prof. Stephen Jarvis

[11]. Symbolic notation that would not be familiar to a programmer with experience of

other well known programming languages and does not fulfill some language specific

function, or, notation that is not a widely accepted shortcut of a traditionally known

function such as ‘++’ should be deprecated. Traditional EDEN makes use several such

functions e.g. ‘//’ for list concatenation or ‘#name’ for list magnitude/cardinality. To an

unknowing onlooker, the functionality of such notation will be completely unknown,

whereas ‘name.length’ or ‘size(name)’ would be available to programmers of a variety

of backgrounds without the need for extraneous reference. It would also reinforce the

ability of learners who go on to use other languages. For legacy reasons it may be

desirable to maintain these features. But in order to improve the tool for the benefit of

the masses who do not immediately share the passion for Empirical Modelling, it

needs to be made as accessible as possible.

51

As with the input window, the JS-EDEN environment should be clearly accessible from

within the interface. EDEN like notations, however many may exist within the tool in the

future should be able to manipulate both the surrounding environment and the internal

symbols using a clean, consistent and well documented API. Functions that retrieve a

Javascript copy of an internal symbol, while simultaneously creating it if it doesn't exist

such as the ‘root.lookup’ currently implemented, does not constitute a clean,

consistent and well documented API. This will help to facilitate future notation

development within the environment, or legacy invented notations such as SCOUT,

DONALD, EDDI etc.

Due to the current condition of the backend, reengineering separate sections of the

application individually is infeasible. A developer would not be able to tackle the user

interface without removing the JQuery and CSS. This would cause other subsections of

the application to fail. In order for the application to realise its full potential, it needs to

be redesigned from scratch, preferably with each section individually and

incrementally added layer by layer.

4.3 Plans in motion

Application for funding during the summer of 2014 has been made to IATL (The

Institute of Advanced Teaching and Learning) in order to re-engineer JS-EDEN with the

alterations outlined above. Once completed, the environment will be tested with

Javascript proficient teachers via Dr Colin Price, (Head of Computing at the University

of Worcester) and Computer Science Master teachers working under the CaS

(Computing at School) scheme.

The first steps toward major re-engineering as an extension to this project have been

made. Completely reconstruction and design of the user interface dialogue has been

52

completed in its majority.

(Figure 13 - The new JS-EMPEROR interface)

53

Multiple issues with the interface as raised in this report are corrected in this

construction.

Firstly, the ‘minimise, maximise, close’ trio of buttons in the top right hand corner of a

standard dialogue box has been adopted to mirror a familiar interface in many popular

operating systems. Unlike the previous implementation, each respective button does

exactly what one would expect. A system tray has been included at the bottom of the

page to reinforce exactly which plugins are open, minimised and closed. Minimised

windows can be recalled by a simple click on the associated tab in the tray, again like

many familiar operating systems. It has been designed so that any one window can be

maximised at any one time, appearing behind all other windows. Excluding maximised

windows: a single click on any part of a dialogue box will bring it to the front of all

partially obstructing windows. Dialogue boxed can be dragged using the top bar and

their size can be changed by dragging from any corner or side excluding the top right.

Users will not experience any surprises or unhelpful/obstructive functionality from this

implementation of dialogue windows. A primary crux of the previous design.

Secondly, all CSS and other code relating to the styling and functionality of the

interface has been specified completely using standard Javascript. It is well structured

and commented. Any intermediate level programmer would be able to alter the

interface without issue.

A plan for how to proceed with migrating from the old JS-EDEN to the new interface

has been set out, once basic parsing has been redesigned to support more ambitious

live feedback plugins, the Observable, Dependency, Agency sub-environment will be

implemented and legacy functionality will be reinvented in the new environment. A

platform for distance collaboration will be established and the efforts to revitalise the

tool will be trialled.

54

4.4 Overall

Overall I consider the project to be a complete success, with a clear direction for the

future and means to achieve it, it is entirely appropriate to consider the instruments for

online Empirical Modelling explored.

55

5. References

[1] Meurig Beynon: Project Supervisor, Reader Emeritus, Department of Computer

Science, University of Warwick,

http://www2.warwick.ac.uk/fac/sci/dcs/people/Meurig_Beynon

[2] Edward Yung `EDEN: An Engine for Definitive Notations. MSc thesis, Department of

Computer Science, University of Warwick, UK (September 1989),

http://www2.warwick.ac.uk/fac/sci/dcs/research/em/publications/mscbyresearch/eyun

g/files/

[3] Timothy Monks `A Definitive System for the Browser. MSc dissertation, Department

of Computer Science, University of Warwick, UK (September 2011),

http://www2.warwick.ac.uk/fac/sci/dcs/research/em/publications/mscprojects/timmon

ks/trmonks_dissertation_report.pdf

[4] Nicolas Pope: Supporting the Migration from Construal to Program: Rethinking

Software Development. PhD thesis, Department of Computer Science, University of

Warwick, UK (December 2011),

http://www2.warwick.ac.uk/fac/sci/dcs/research/em/publications/phd/nick/files

[5] Its not a MOOC its a Movement, Inside HigherED, December 2013,

http://www.insidehighered.com/blogs/higher-ed-beta/its-not-mooc-its-movement

[6] Dependency Modelling Tool, Antony Harfield, Phd Thesis, 2006,

http://empublic.dcs.warwick.ac.uk/projects/dmtHarfield2006/

[7] Bubble Sort, Meurig Beynon, 1998,

http://empublic.dcs.warwick.ac.uk/projects/bubblesortBeynon1998/

[8] Hui Zhu, MSc Research Student, Department of Computer Science, University of

Warwick.

[9] Vagrant, Open Source Development Environment, MishiCorp,

http://www.vagrantup.com/

[10] setInterval for game draw loop not running consistently, Stack Overflow,

http://stackoverflow.com/questions/11268885/javascript-setinterval-for-game-draw-lo

56

http://www.google.com/url?q=http%3A%2F%2Fwww2.warwick.ac.uk%2Ffac%2Fsci%2Fdcs%2Fpeople%2FMeurig_Beynon&sa=D&sntz=1&usg=AFQjCNHyUB5bqzgVEmSiOhjA0VW4dUmhVg
http://www.google.com/url?q=http%3A%2F%2Fwww2.warwick.ac.uk%2Ffac%2Fsci%2Fdcs%2Fresearch%2Fem%2Fpublications%2Fmscbyresearch%2Feyung%2Ffiles%2F&sa=D&sntz=1&usg=AFQjCNH6NR-20C5YWY4oK29JT2Au3euRyw
http://www.google.com/url?q=http%3A%2F%2Fwww2.warwick.ac.uk%2Ffac%2Fsci%2Fdcs%2Fresearch%2Fem%2Fpublications%2Fmscbyresearch%2Feyung%2Ffiles%2F&sa=D&sntz=1&usg=AFQjCNH6NR-20C5YWY4oK29JT2Au3euRyw
http://www.google.com/url?q=http%3A%2F%2Fwww2.warwick.ac.uk%2Ffac%2Fsci%2Fdcs%2Fresearch%2Fem%2Fpublications%2Fmscprojects%2Ftimmonks%2Ftrmonks_dissertation_report.pdf&sa=D&sntz=1&usg=AFQjCNF3At6zk7rgF2uA_LB-NPJajWocpA
http://www.google.com/url?q=http%3A%2F%2Fwww2.warwick.ac.uk%2Ffac%2Fsci%2Fdcs%2Fresearch%2Fem%2Fpublications%2Fmscprojects%2Ftimmonks%2Ftrmonks_dissertation_report.pdf&sa=D&sntz=1&usg=AFQjCNF3At6zk7rgF2uA_LB-NPJajWocpA
http://www.google.com/url?q=http%3A%2F%2Fwww2.warwick.ac.uk%2Ffac%2Fsci%2Fdcs%2Fresearch%2Fem%2Fpublications%2Fphd%2Fnick%2Ffiles%2Fpope2011.pdf&sa=D&sntz=1&usg=AFQjCNEDun0Hnt9t0GE1LG6kgj9TQVOnVQ
http://www.google.com/url?q=http%3A%2F%2Fwww.insidehighered.com%2Fblogs%2Fhigher-ed-beta%2Fits-not-mooc-its-movement&sa=D&sntz=1&usg=AFQjCNE-SfcDoSIvvHOx0hE7fP6eUtaOxA
http://www.google.com/url?q=http%3A%2F%2Fempublic.dcs.warwick.ac.uk%2Fprojects%2FdmtHarfield2006%2F&sa=D&sntz=1&usg=AFQjCNG3q9ijRu_ZuBSVFgC7eHv2ELrmcQ
http://www.google.com/url?q=http%3A%2F%2Fempublic.dcs.warwick.ac.uk%2Fprojects%2FbubblesortBeynon1998%2F&sa=D&sntz=1&usg=AFQjCNGjrJ7I1qGWaKsaekft0KCMBNYuGQ
http://www.google.com/url?q=http%3A%2F%2Fwww.vagrantup.com%2F&sa=D&sntz=1&usg=AFQjCNGxfu7Iuf8icqlRcYwi3N2OnEHbhw
http://www.google.com/url?q=http%3A%2F%2Fstackoverflow.com%2Fquestions%2F11268885%2Fjavascript-setinterval-for-game-draw-loop-not-running-consistently&sa=D&sntz=1&usg=AFQjCNFCe-QPRBmA553Pz6fGTRt5wPSeSw

op-not-running-consistently

[11] Stephen Jarvis, Professor, Department of Computer Science, University of

Warwick.

http://www2.warwick.ac.uk/fac/sci/dcs/people/stephen_jarvis/

[12] VirtualBox, General Purpose Full Virtualiser, Oracle,

https://www.virtualbox.org/

[13] Jane Sinclair: Project Supervisor, Associate Professor, Department of Computer

Science, University of Warwick

http://www2.warwick.ac.uk/fac/sci/dcs/people/Jane_Sinclair

57

http://www.google.com/url?q=http%3A%2F%2Fstackoverflow.com%2Fquestions%2F11268885%2Fjavascript-setinterval-for-game-draw-loop-not-running-consistently&sa=D&sntz=1&usg=AFQjCNFCe-QPRBmA553Pz6fGTRt5wPSeSw
http://www.google.com/url?q=http%3A%2F%2Fwww2.warwick.ac.uk%2Ffac%2Fsci%2Fdcs%2Fpeople%2Fstephen_jarvis%2F&sa=D&sntz=1&usg=AFQjCNG-MHs8LUzTQg-6lSkTr1BZRQKuEQ
https://www.google.com/url?q=https%3A%2F%2Fwww.virtualbox.org%2F&sa=D&sntz=1&usg=AFQjCNEPuiz3WylENts_GDaCtsbf6aHtMQ
http://www.google.com/url?q=http%3A%2F%2Fwww2.warwick.ac.uk%2Ffac%2Fsci%2Fdcs%2Fpeople%2FJane_Sinclair&sa=D&sntz=1&usg=AFQjCNH9rWVpppUbjWg7Kgz3Nro96UmJvQ

6. Legal Considerations

The copyright of the original developers of the JS-EDEN source code and 3rd party

software must be respected and upheld.

Vagrant is released under the MIT License.

VirtualBox is released under GPL General Product License V2.

Springy.js is released under the MIT License.

58

