
Chapter 4

Cadence: A Prototype Tool

We have seen in chapter 2 how methodologies, languages and modelling tools are all

striving for increased flexibility and the ability to evolve software rather than engineer it.

All except a few toy environments require that programs, in some form, be developed

at the end. To take evolution and flexibility to its greatest possible extent it is clearly

necessary to move away from formal programs for some applications. What is hindering

this is the lack of an environment capable of supporting production quality software of

this informal kind. The main body of this thesis is to explore one possible environment,

methodology and conceptual framework that may go some way to allowing end-product

capable software without needing a conversion to a program. We call this environment

DOSTE and discuss technical aspects in this chapter with examples and development

techniques given in chapter 4 and the conceptual framework in chapter 5.

4.1 The DOSTE Idea

- prototype-based objects - dependency - temporal /dataflow style dependency - agents

The Definitive Object State Transition Engine (DOSTE) is the first prototype

developed specifically to investigate the question posed by this thesis. The best way to

think about DOSTE is as a form of operating system or general computing environment

19

upon which artifacts are developed and agents interact to produce an experience for the

user of the machine. The original objective was to produce an operating system that

could be explored, experimented with and customised in ways that current systems do

not come close to allowing. On a personal note: I wanted access to my machine without

needing to write a program to do it. I wanted to play.

There are 3 key concepts behind the DOSTE environment, all of which do exist

in some form in a variety of tools. The unique aspect of DOSTE is the way they have

been combined and are to be exploited. What is novel about this tool is the simplicity

and purity of the object model used, as well as the way in which this has been combined

with dynamic declarative definitions to create a hugely rich environment. Numerious

different programming paradigms are brought together in an elegant way. Even the

concept of computation itself is viewed differently, as graph navigation instead of sets

of instructions or mathematical functions. Bringing such an elegant system right down

to the machine level is important here. Users can directly manipulate the graph and

definitions which are closely mapped to hardware and allows for an large amount of

control over the machine, at least in principle. In fact DOSTE should be considered an

operating system in its own right and there is a version which will boot entirely on its

own. It manages processes, in the form of definition evalution scheduling and agents,

as well as dealing with all memory and storage concerns. It is a non-standard kind of

virtual machine.

4.1.1 Concrete Objects

The first concept is that of concrete objects as found in prototype or instance-based

languages such as Self [ref] or Javascript [ref]. It is important to not have classes and

to not attempt to classify objects into specific and restricted types. Properties can be

added, removed and changed in any concrete object at any time. This freedom to change

is what removes the need to specify and restrict the kinds of data that we are dealing

with. We are no longer restricted by the machine to produce formal structures for our

Draft of 9:24 am, Tuesday, November 23, 2010 21

formal programs to work with, so instead we can take a more informal semi-structed

view.

Semi-structured concepts have been around for a considerable time [ref] and

currently, usually, take the form of XML.

- could say stuff about Microsofts failed attempts at formalising this into rela-

tional databases. - can also connect with XML and the need for semi-structured data.

4.1.2 Dependency

4.1.3 Agency

4.2 Architecture

Whilst the actual implementation of DOSTE is complex and large, the architecture itself

is simple to understand. Over the course of developing DOSTE there have been many

variations on how it works, the most significant of which will be described here to justify

some of the design decissions. One of the biggest challenges was creating a system

that could be adapted easily since a great deal of experimentation was needed to get

the scheduling, definition evaluation and agent interaction correct. As a consequence

the architecture described here is flexible with almost everything being modular and

extendable. The rest of this section will give more detail about the architecture.

The architecture can be summarised as object databases connected together with

all communication with the objects being done through events. Definitions are about

generating a particular set of events to lookup the resulting object and agents are about

sending various read and write events into the system. All events go through the central

event processors which effectively acts as a router. The event router can send events

to one of many handlers that may even be on another machine. We will now describe

the events and event queues in more detail, as well as agents, event handlers and the

modular nature of the whole system. The GUI layout example introduced previously will

be used here to demonstrate the flow of events and evaluation of definitions.

Figure 4.1: DOSTE architecture diagram showing the core components.

4.2.1 Core: Events and Queues

Event-programming is common in operating systems because it is the most effective

way of dealing with asynchronous concurrent communication. It is especially useful for

user interfaces where actions can occur at any time in any part of the program but also

for inter-process communication (IPC). Microsoft Windows uses messages and X11 in

Linux utilises events for the same purpose. In the major operating systems, however,

events are effectively processed by the application polling the OS for them, although in

practice the process goes idle if there are no events. In this sense these applications

aren’t really event-driven and there is still the concept of process. Another possible

approach is to have event handlers that get called directly by the operating system. In

this model there is no concept of process as such. Linux does, to a limited extent, have

this sort of mechanism available in the form of signals.

For our purposes in DOSTE the second model is more appropriate because we

have no processes and giving the operating system complete control over event schedul-

ing is vitally important. It also increases the level of concurrency because individual

event handlers are more fine-grained than processes. Individual observables and defini-

tions could be thought of as tiny independent functional programs and as a result the

Draft of 9:24 am, Tuesday, November 23, 2010 23

amount of concurrency available is far beyond a traditional system. It is impractical

to think of each definition as a process which can poll for events so the system must

instead be more event-driven. Inter-definition communication must also utilise the event

system.

As a consequence of this the core of DOSTE is a massive event scheduler and

router with very little else. Events are represented in DOSTE as little packets of infor-

mation that have a standard structure. These structures are passed through the system

to be processed at the correct time in the correct place either synchronously or asyn-

chronously. Since the event mechanism is mostly asynchronous it is necessary to have

at least one event queue which stores the events before they get processed. In practice

however, more than one queue is required because different types of event need to be

processed at different times. There are two reasons for this: 1) by grouping all read-only

events and write-only events together you can remove the need for concurrency locks

and slightly improve performance. 2) more importantly though there is a need to syn-

chronise and get ordering correct in order for the correct behaviour to be observed when

dealing with self-referent definitions. If you fail to correctly order the events you can end

up with incorrect and almost random results or no result because some definition fails

to get triggered. An example might be if an Add-Dependency event was processed after

another Set event, in which case some definition might not get Notified of the change

that occured and incorrect values are the result.

Events have the following structure:

type The type of event determines how it is processed

destination The object to which this event is being sent

parameters(n) A number of parameters (max 4), each of which is an object identifier

result An optional result OID for some events

All events are some action to be performed to a particular object and therefore

events have a destination object. It is this destination that determines where the event

is sent for processing by a handler. Different objects get managed by different handlers

and this is determined by the Object IDentifier (OID). The type attribute determines

what action to perform on the destination object. Here are some of most significant

event types:

GET Return the value of an attribute within an object. This event is performed syn-

chronously and does not go into a queue for delayed processing. As a result, like

all ’get’ events, it should only be sent at the correct time, usually inside an agent

event handler or when evaluating definitions.

GETKEYS Return a list of all attributes in the object. This creates a new ’buffer’

object to store that list and returns the OID of the buffer. A buffer is some

temporary block of memory that can be accessed directly without going via the

event system itself.

SET Change the value of an attribute within an object to a value given as a parameter

to the event. All ’set’ events will get added to a queue to be performed asyn-

chronously since it would be dangerous to make that change synchronously in a

parallel system. It is also how definitions can evaluate on current values and the

changes they generate are not applied immediately.

DEFINE Change the definition of an attribute. Again the definition is given as a buffer

object that contains a form of definition byte code which is really just a list of

OIDs.

NOTIFY Notify an attribute that its definition is out-of-date and should be re-evaluated

at the appropriate time. Again, this event is added to its own queue.

ADDDEP Add a dependency on a given attribute. This will tell an attribute that if

it changes it should send a ’notify’ event to another objects attribute which is

specified in the events parameters.

Draft of 9:24 am, Tuesday, November 23, 2010 25

Agents generate events to observe and manipulate objects whilst the internal

dependency maintenance system uses them to add the dependencies and get notified

of changes. These events are then sent to be processed either synchronously or asyn-

chronously to the processor module. When they are sent they are added to one of

three queues depending on the type of event: write, notify or dependency. Each CPU

will go through one queue at a time and process each event. Read events are always

synchronous but should only happen during the notify queue cycle. Write events get

added to the first queue and when processed they may cause notification events to be

generated if there are other observables with dependencies on the one being changed.

Notify events are added to the next queue which is processed after all the SET events

have been processed. A notify event may cause a definition to be evaluated which can

generate read events and add-dependency events. The read events are performed im-

mediately so that the result of the definition can be worked out. Finally, a notify event

will generate a single SET event to actually perform the change, but this gets added

to the first queue and so will not be processed immediately. This is important because

it means all other definitions that still need to be processed can use the old values,

otherwise the results would be random. Add-dependency events get added to the next

queue after notify events so that they are all performed before any SET events. If this

was not the case then some SETs would occur before the dependencies are added and so

some definitions will not be correctly notified of a change that does affect them. Once

a complete cycle through the queues is complete the whole process starts again with

the first write queue. Each cycle is called an instant.

So now we will look at the button centering example by showing what events

take place when certain actions are performed. Figure 3.2 shows the flow of events that

is generated as a result of such a definition being made on the x-coordinate of a button.

The diagram also tells you which queue the events are added to and shows which queue

is currently being processed. It is easy to see that even a single definition event can

generate many other events and more complex definitions could generate dozens of

Figure 4.2: The flow of events after an agent makes a new definition.

ADDDEP events. The definition used here subtracts the width of the button divided

by 2 from the width of the window divided by 2. It therefore has 2 main dependencies,

button width and window width. The example has been simplified because there are

likely to be other dependencies such as those on the arithmetic operators.

So the core of DOSTE is a sophisticated and concurrent event processing ma-

chine. The next sections identify the modular parts that make use of this.

4.2.2 Handlers

A handler is an event handler that directly receives events for processing. Each handler

must be registered with the router by requesting to receive events for a particular range

of Object IDentifiers. It has been designed to be modular so that different parts of the

object graph can be managed by different handlers because some parts of the graph will

be virtual in nature. This enables the integers, for example, to be a part of the graph

and hence allows everything to be an object instead of requiring more primitives.

The integers and real numbers are represented by a specific set of OIDs which

Draft of 9:24 am, Tuesday, November 23, 2010 27

have all of their events processed by the Number handler. An integer is an object with

a specific set of attributes that includes the operators that can be performed on that

integer. The operators are also objects which get handled by the Number handler. In

this way there is no need to physically store the numerical relationships because this

special handler will calculate these operators on the fly and return the relevant objects.

To the user it just appears as another part of the object graph. This will become clearer

in later sections when we look at the notation.

Another handler is responsible for storing user created objects in memory. It

does this using a hash table which uses the objects OID and the attributes OID to find

an observable. It should be noted here that object attributes are labeled with OIDs so

that the value of an attribute may also be used to select another attribute. This feature

is explored further in later sections. Events are routed inside this handler to specific

observables which then make the required changes.

Handlers are also responsible for evaluating and storing definitions which are sim-

ilar to spreadsheet formula to give the value of an observable. They work by describing

potentially nested paths through the object graph to get to a result. In order to evaluate

a definition you need to generate a large number of read events to navigate through

the graph. Definitions are actually stored as objects and so are visible within the object

graph.

Handlers can be added and removed at any time whilst the program is running

and it is fairly simple to construct new ones with a C++ module. By having such a

flexible event processing mechanism as this there is huge potential for extensions to be

added in the future.

Here are a few examples of handlers found in our prototype:

Local A local set of objects stored in memory

Network Passes events to remote machines

Numbers Simulates the infinite number objects

IO Represents hardware IO ports

Files Maps the OS file system to objects

4.2.3 Agents

An agent is some entity which observes and interacts with the object graph. It may

do this by navigating the graph, changing values or definitions and by creating entirely

new objects. Often agents will communicate with the outside world such as displaying

something on the screen or taking user input from the mouse. In DOSTE an agent is

just a C++ object that can receive notifications from the object graph about changes

that occur and it can then navigate and modify the graph.

A large part of the power and flexibility of DOSTE is in the ability to have custom

agents added at any time. The developer can write a small agent for a particular task in

C++ and then at run-time load it as a module. DOSTE provides a clean and effective

API for accessing the object graph and specifying custom event handlers as will be seen

in a later section.

Agents are managed by an Agent Handler which is an ordinary handler as de-

scribed previously. Each C++ agent has a corresponding object in the object graph

whose events are handled by the Agent Handler. This allows the ordinary event mecha-

nism to be used for notifying agents of changes because the Agent Handler will, instead

of evaluting a definition, call the relevant C++ method when it receives NOTIFY events.

There is no reason why different agent handlers could be added to connect with other

languages such as Java or perhaps work as a virtual machine for some special agent

notation.

Examples of agents can be found in a later section about a game library that

uses DOSTE.

Draft of 9:24 am, Tuesday, November 23, 2010 29

4.2.4 Summary

4.3 Notation: DASM

A basic textual notation has been developed as a part of Cadence to enable a user to

interact with the underlying DOSTE graph. The notation is called DASM which is short

for DOSTE Assembly since it is best thought of as a form of assembly language with

the potential for higher-level languages to be placed above it. Originally it was compiled

into a form of byte-code to be loaded by the operating system version of Cadence,

but is now directly interpreted. At present it remains the only language with which to

interact with Cadence other than directly interfacing via C++. As a consequence all

models and examples are based upon DASM so a good understanding is important to

fully appreciate the work of subsequent chapters.

In this section the syntax and semantics of the DASM notation will be given.

How DASM relates to the DOSTE graph structure will be illustrated by showing the

corresponding graph structures generated when a script is interpreted.

4.3.1 Simple Statements

The most simple form of statement is a query that navigates the graph and returns the

node that is reached. This involves specifying a start node and then giving the edges to

follow. Nodes and edges are all labeled and these labels can be single words or numbers

but may also be more abstract identifiers. There is a special reserved word called ’this’

which is the root node in the current context. ’this’ may also be written as a dot. The

following example starts from the ’this’ node and navigates along the edges ’x’ then ’y’

then ’z’ to reach an unknown node. If the system has never been told what node should

be pointed to by these edges then it will always return the ’null’ node where every edge

that leaves the ’null’ node points back to the ’null’ node.

t h i s x y z

Figure 4.3:

Figure 4.4:

Following from this is the simplest form of assignment where the node an edge

points to can be changed. Again a statement must start with a node and one or

more edges, however, instead of returning an unknown node a new node is given and

the node the edge originates from is returned. Having the origin node returned allows

several assignments to be chained together as will be shown later.

t h i s x y z = 50

So now the first example would return the node ’50’ instead of ’null’. It is

important at this stage to think of ’50’ as being a representation of a node and not a

numeral that represents a number. It is simply being used as an identifier and for it to

be interpretated as representing a number requires other structures to be in place for

numerical operations. These structures and relationships to other numbers have not yet

been defined. Therefore it is simply a label with no other meaning as far as the system

is concerned.

We may wish to make the edge point to a node from another part of the graph

so to do that we put a path on the right-hand-side (rhs) of the equals. It is critically

important however that this be surrounded by brackets because otherwise the first iden-

tifier will be interpreted as the node it should point to instead of navigating the whole

path. The remainder of the path would then act as a query to be combined with the

left-hand-side (lhs) and will return a result.

Draft of 9:24 am, Tuesday, November 23, 2010 31

t h i s x y z = (t h i s z y x)

The following is probably incorrect but can be interpreted as suggested in the

subsequent example.

t h i s x y z = t h i s z y x

t h i s x y z = t h i s ;

t h i s x y z y x

With what has been shown here it is possible to build simple structures and make

queries by giving a path through the graph. We have been using the graph terminology

throughout but another interpretation is as an object hierarchy where nodes are objects

and edges are attributes within those objects. Using this object interpretation makes

it clearer how it relates to existing languages but the term object is burdened with

additional meaning that is not appropriate here.

Another useful feature worth introducing here are notation variables. These are

place holders for storing the result of some query for use elsewhere in the script which

saves having to perform that query everywhere. All notation variables begin with the

’@’ symbol as shown in the next example.

@xy = (t h i s x y) ;

@xy z = 50

The above is equivalent to the first assignment example but now every occurence

of ’this x y’ is replaced by ’@xy’. Another benefit of using notation variables is that if

the context changes, so that ’this’ is a different node, the node stored in the notation

variable does not change. In these cases a normal query would not work as expected

and these variables prove invaluable.

4.3.2 Numeric and Boolean Operators

In order for a numeral to really be considered a number it needs to be associated

with certain numerical operators such as addition and multiplication. These binary

operators describe a relationship between numbers that can be described as a graph. It

is therefore possible to represent all numerical operators as structures within the DOSTE

graph environment and no special cases are needed. In practice these parts of the graph

are massive or infinite and so are virtual rather than explicitely defined. However, for

purpose of demonstration we will show how these could be given explicitely using the

DASM notation.

Lets take addition as our first operator and implement it for the numbers 0, 1

and 2 only. It should be obvious from this to see how it can be expanded for all numbers.

0 + = (new) ;

0 + 0 = 0 ;

0 + 1 = 1 ;

0 + 2 = 2 ;

1 + = (new) ;

1 + 0 = 1 ;

1 + 1 = 2 ;

1 + 2 = 3 ;

2 + = (new) ;

2 + 0 = 2 ;

2 + 1 = 3 ;

2 + 2 = 4

We can clearly see that what we are doing is giving the computer all the relation-

ships between numbers. It is like stating what is true. Unfortunately it is not possible

(at present) to give such an example and for the environment to then figure out the

remaining relationships. A new piece of syntax has been introduced, the keyword ’new’.

All this does is returns a new unique node that has yet to be used for any particular

purpose (all edges from this new node point to the ’null’ node). Since we have not given

Draft of 9:24 am, Tuesday, November 23, 2010 33

Figure 4.5: A portion of the graph for integer addition.

every relationship the operation given above is not closed or even particularly useful. All

examples from this point assume that all operations have been fully defined as above.

Given these definitions it is now possible to perform arithmetic using a query on

the graph.

1 + 2 + 3 + 4 + 5

Any arithmetic can now be performed as simple graph navigation. There is no

computation in the traditional sense but instead the very simple act of following a given

path. The agent that does the following is doing the computation and that agent may

well be the human user as much as any other machine. In a sense we are going back

to the good old days with lookup tables instead of calculators, albeit a big, fast and

automated version.

5 ∗ (2 + 6) / (7 ∗ 8)

Here we see for the first time that it is possible to nest queries so that the result

of one of these subqueries can be used to select a path in the main query. For this to

work it must be made clear that nodes can be used as edge labels and vice-versa. So the

result of a query is a node that is then used to identify an edge from another node. This

is a rather unusual but critical feature that makes computation by navigation possible.

Figure 4.6: Complete graph showing boolean ’and’ operator in DOSTE

Much more will be said about the theory behind this in a later chapter. The

next, and possibly simpler, task is to define the boolean operators. This can be achieved

in exactly the same way and because it is small and finite it can easily be given explicitly

so is not a built-in virtual part of the graph. Below we give the ’and’ operator.

t rue and = (new) ;

t rue and t rue = t rue ;

t rue and f a l s e = f a l s e ;

f a l s e and = (new) ;

f a l s e and t rue = f a l s e ;

f a l s e and f a l s e = f a l s e

For a quick demonstration we give a simple boolean statement below using only

the and operator. Whilst you will be able to work it out in your head it might be fruitful

to use the graph to navigate to an answer if it isn’t already obvious how computation

by graph navigation works.

t rue and t rue and f a l s e and t rue

Draft of 9:24 am, Tuesday, November 23, 2010 35

4.3.3 Construction of Objects

Objects are graph nodes and we have seen how to make a new unique graph node.

There is not much more to it than that, however, there is additional syntactic sugar and

various techniques to help with object construction. This includes cloning, mixing and

notation contexts. We also show how large or infinite objects may be specified with a

few examples.

The assignment operation in DASM has a specific behaviour with regards to

context. It operates a bit like a stack where the immediate lhs, equals and rhs are

popped and the action performed. The rest of the left and right remain in place. As a

result of this it is possible to chain several assignment operations together without again

specifying the subject object. To make this clearer we have given two examples below,

the first is fully specified as seen previously and the second makes use of chaining.

t h i s x y a = 50 ;

t h i s x y b = 60 ;

t h i s x y c = 70

t h i s x y

a = 50

b = 60

c = 70

Both of the above do exactly the same thing. Any amount of white space can be

put between each identifier so for readability we used new lines and tabs in the second

example. Also note the use of semicolons which reset the context. This is needed in the

first example because the context is fully specified on each line whereas in the second

example the context does not change from one assignment to the next.

Although the above can be useful it is even more useful when combined with the

’new’ keyword as a means of constructing a new object. The following example makes

a new node (object) and proceeds to specify several edges from that node. The newly

constructed object is then pointed to by the ’button’ edge.

t h i s button = (new

x = 10

y = 50

width = 100

c ap t i o n = ” Pre s s Me”

)

The above demonstrates ex nihilo construction of an object but another approach

is to clone some existing object and then modify it accordingly. Instead of simply copying

the code as you would do in EDEN it is possible to use the keyword ’union’ to internally

perform the copy operation. When ’union’ is combined with ’new’ it has the effect

of making a copy. In the example below we make use of a notation variable called

’@prototypes’ which contains a collection of pre made objects.

t h i s button = (new

union (@p ro to type s button)

x = 100

y = 50

cap t i o n = ”Copy”

)

The ’union’ operator works as an infix operator and can be chained together to

merge several objects into a single object. The result of the ’union’ operation is the

same object as on the lhs.

t h i s mywindow = (new

union (@p ro to type s window)

union (@p ro to type s d r a g ab l e)

t i t l e = ”Test Window”

width = 200

h e i g h t = 100

)

Draft of 9:24 am, Tuesday, November 23, 2010 37

4.3.4 Simple Definitions

So far we have looked at building static structures to represent state but in addition to

that we can give declarative definitions to describe how these structures should change

in the presence of other changes caused by agent action. In this way we can give

dependency relationships to DOSTE which it can then automatically update. These

definitions are similar to spreadsheet formula.

The simplest definition acts as a shortcut so that a graph query is used to

determine where an edge points and if some agent changed the graph such that this

query gives a different result then this defined edge will also change to that new result.

. a = 5 ;

. b i s { . a }

so when queried ’b’ will give the node ’5’. If ’a’ was changed to ’6’ then ’b’ will

also be ’6’. The keyword ’is’ is used to mean definition and the definition itself must be

enclosed in braces. The definition can be any graph query so it can be any calculation.

The next example shows a simple calculation query used as a definition.

. c i s { . a ∗ (. b) + (. a) }

4.3.5 Conditional Statements

Any computer language will allow for conditional statements, DASM is no different.

However, in DASM there is no need for an explicit conditional construct because such

statements can be achieved using the graph.

. i f = (new

cond i s { @root a == 0 }
t rue i s { @root b }
f a l s e i s { @root c }
r e s u l t i s { . (. cond) }

)

The above example is an if statement built entirely from an object with defi-

nitions. The ’cond’ observable is some boolean used to select a result. The ’result’

observable contains the relevant selected value. This can be a little tedious to write so

there is syntactic sugar available:

. r e s u l t i s {
i f (@root a == 0) {

@root b

} e l s e {
@root c

}
}

Having this sugar makes it easier to combine multiple if-statements either in a

nested fashion or using ’else if’. Not only do we have ’if’ but also ’select’ which is similar

to ’switch’ in C. There are no type restrictions as such with a ’select’ statement, so it

is only different to an ’if’ in that it can be more than true or false.

. an ima l = ca t ;

. l a b e l i s {
s e l e c t (. an ima l) {
ca t : ”Cat”

dog : ”Dog”

r a b b i t : ” Rabb i t ”

: ”Unknown”

}
}

4.3.6 Iterative Definitions

The exact semantics of definitions in DOSTE can be shown by the following:

. a = 0

. a i s {0}

. a := {0}

Draft of 9:24 am, Tuesday, November 23, 2010 39

The first example will make ’a’ be 0 right now and, unless some other change is

made, it will stay as 0. The second form says that ’a’ will always be 0 regardless of any

assignments made to it. Only changing the definition can change the value. The third

example says that ’a’ will become 0 in the very next instant but right now it could be

anything. So doing .a = 1 would temporarily make ’a’ be 1 but in the very next instant

it would go back to 0 because of the definition. Each observable has both a current

value and a definition to say what that value will become.

Once you have given an observable a definition you can effectively remove that

definition by giving it a new definition which refers to itself. This means that it will

always be whatever it already is. Note, however, that you cannot do the same using ’is’

since that will produce a cyclic definition that cannot be evaluated.

. a := { . a}

Equally though it is possible to say that ’a’ is what it already is plus some-

thing. The following example implements a counter which counts as fast as the DOSTE

environment can and starts at 0.

. a = 0 ;

. a := { . a + 1}

4.4 C++ API

We will briefly discuss the C++ API constructed for DOSTE since this is a key part of

it’s flexibility and usefulness. The main focus for the API was to make the addition of

new agents as easy as possible so that new functionality could be added by anyone with

basic C++ knowledge. To fit with the always running interactive nature of DOSTE it

is also possible to add these new agents at any time while the environment is running.

C++ comes with a large number of features for customising the language. This

includes operator overriding and macros that are used extensively in the API. An agent

in DOSTE is an object in C++ which can respond to changes that occur in the object

graph. It does this by having event handlers which get called when specific observables

change. An agent is then able to observe and change the object graph using a simple

mechanism as well as use any other C++ libraries to, for example, draw graphics on the

screen.

4.4.1 Modules

A module is a dynamically loaded C++ library that can contain DOSTE agents or

handlers. Each module has three functions. One to initialise and register the agents

that the module contains. One which is called on a regular basis at a specified frequency.

This update method is used for those tasks which need to be performed independently

of DOSTE event handlers such a OpenGL 3D rendering. Finally there is a method to

cleanup when the module is unloaded.

Modules are actually loaded and managed by a built-in DOSTE agent that

watches for changes in an object and will load a module if a new module object is

added to it. Custom module loaders could be added by writing new agents to perform

that task. One such module loader might use Java class files as it’s source of new

agents.

4.4.2 Agents

An agent in the C++ library is an object in C++ that is an instance of a class that

inherits the Agent virtual class. An Agent object is mapped directly to a DOSTE

object so that this agent can directly access, modify and respond to events for that

object. A good example for this might be a button object in DOSTE which will have

an associated C++ Agent object to listen for changes to that button and update the

screen accordingly. Each button will have a different C++ object behind it but all from

the same class.

DOSTE provides a run-time type system which enables all these agents to be

Draft of 9:24 am, Tuesday, November 23, 2010 41

automatically constructed as required. To achieve this each agent class (or agent type)

is registered with DOSTE and given a label so that DOSTE can look at a DOSTE

object and determine what type it should be. When another agent requests an agent

object from a particular DOSTE object it will look at the type attribute and find the

appropriate class to use to make an instance of that object. In this way the programmer

does not need to know the class to use as the system will determine this at run-time. In

addition, if an instance for that object already exists then that is returned instead of a

new object being created. With this the programmer does not even need to worry about

constructing or deleting agent objects. A benefit of this approach of automatic run-time

typing and construction is that dependencies between modules can be removed since

one module does not need to be aware of another in that it does not need to know about

specific classes in other modules. This enables classes to freely communicate without

knowing anything about each other. Hence there is increased flexibility.

There are many libraries available for C++ which provide an event-based mech-

anism. Such libraries include GUI libraries such as Qt. Often the approach taken here

is to preprocess the C++ source files to convert special event syntax into real C++.

Alternatively complex use of macros and templates can be abused into a similar role.

DOSTE makes extensive use of macros and templates to provide a user friendly means

of creating agent event handlers. Each handler is a C++ procedure in an agent object

which is associated with some definition that selects which observable in DOSTE this

handler is observing.

4.4.3 Handlers

Similar to an agent, a handler also needs to be registered but for a particular range

of Object Identifiers. A handler is another class that can be specialised for a particular

purpose. It has a single virtual method which receives events from the processors. Whilst

the API is simple enough the custom classes must provide certain functionality. They

must process all events and return correct results. This may involve correctly processing

definitions and sending additional events. Exactly what is required will obviously depend

upon the nature of the handler.

4.4.4 OIDs and Definitions

