
Chapter 5

Cadence Models and Examples

The Cadence prototype described in the previous chapter is best illustrated and evaluated

by developing a variety of models within it. Over the course of this project many models

have been developed by several people and it is the purpose of this chapter to go through

a few of these. Each model is used to demonstrate some characteristic of Cadence that

is relevant to future discussions and to show how it relates back to the objectives of the

work. Further details of the models discussed here are given in Appendix ???. It should

be remembered that the main comparison is with existing EM tools although some

aspects demonstrated by these examples are novel in their own right and go beyond EM

concerns.

5.1 Stargate

There are an increasing number of approaches to composing programs in a flexible way,

usually involving XML to link certain components at run-time rather than embedding

these structural dependencies into the source code. This is known as dependency-

injection [ref]. Cadence can be used for this purpose and the best way to show this is to

look at how the previously introduced Warwick Game Design library is used in Cadence.

The game library consists of many different C++ classes to provide specific functionality

43

Figure 5.1: The Stargate model

such as loading textures into memory ready for drawing on the screen using OpenGL.

These classes have been kept as independent as possible from each other in code. As a

consequence they can be combined in interesting ways at run-time as part of a model.

Each component has properties that are visible to the Cadence environment and can

be given dependencies and values to link them into models. To illustrate this point a

model of the Stargate is used which makes extensive use of the game library and glues

a huge number of components together to produce all the visual effects.

The Stargate is an artefact from several films and a television series that gener-

ates a wormhole between planets for fast transportation [ref]. Originally the model was

developed to test out the graphics capabilities of the game library whilst also working

out the visual and animation details for a game a student member of the Warwick Game

Design society had wanted to make involving a Stargate.

To generate a model as visually complex as the Stargate involves many compo-

nents including textures, materials, geometry, pixel shaders, cameras, light sources and

a scene manager. In addition to this is the widget system that allows the whole scene

Draft of 9:24 am, Tuesday, November 23, 2010 45

Figure 5.2: Stargate model with the Cadence IDE showing a selection of the Stargate

observables

to be drawn within a moveable, resizable window along with any other models. The

structure that results from combining all of this has over 200 components just for the

Stargate alone. A diagram is given in figure ??? to show how these components relate.

The diagram only shows the most significant components and only the structural rela-

tionships, not the logical dependencies that may also exist. Note that nodes shown in

grey indicate that a C++ game library agent is associated with that object to generate

OpenGL commands or provide some other functionality based upon the properties of

the Cadence node. The highlighted region is expanded in figure ??? to give an idea

of the logical dependencies that also exist between components. Both diagrams could

conceivably be automatically generated from information contained within the model,

although in this case they have been drawn manually. In existing EM tools there is

support for the drawing of dependency diagrams [ref].

As an example of how Cadence is used as glue lets focus on the shaders that

are combined to produce a HDR (High-Dynamic Range) bloom effect [ref]. Figure ???

shows a more detailed view of this part of the model. The effect is achieved by first

drawing the whole scene into a buffer in memory and then using that as a texture for

another rendering. This process is repeated many times and each time the scene is

Figure 5.3: Graph structure of the Stargate model. Grey nodes indicate the existance

of a C++ game library agent attached to that object. The black node is the root node.

Figure 5.4: Stargate bloom component structural and logical dependencies

Draft of 9:24 am, Tuesday, November 23, 2010 47

rendered at a different resolution or with a different pixel shader. Cadence allows these

buffers, textures and shaders to be combined in custom ways and this can be changed

whilst the model is running to develop new effects. Properties of the components

are connected by dependencies, for example the size of one frame buffer needs to be

proportional to another one so a formula is written to describe this. The formula can be

written as follows and corresponds to one of the red dashed dependencies in figure ???:

width i s { @bloom 1 t e x t u r e width / 4 }

Ultimately the size goes back to the screen resolution being used so if this

changes then all buffers are updated automatically and atomically by Cadence. Such

dependencies exist all over the Stargate model but once written they can generally be

forgotten.

As well as the glue aspect of Cadence the Stargate model illustrates the use of

temporal dependencies for animation purposes, something not possible in any existing

EM tools. These temporal dependencies have been used to rotate the dialing wheel and

move the chevrons. This combined with additional dependencies describing the overall

state of the Stargate enables an animation sequence to be developed in what is hoped

to be an intuitive way. Such use of temporal dependency goes beyond simple animation

and infact becomes a fundamental part of the model itself since the logic of the dialing

sequence depends upon the rotation. Here is an example of a temporal dependency

being used to rotate the inner dialing wheel of the stargate:

r o t a t i o n = 0 .0

r o t a t i o n := {
i f (. d i a l and (. match not or (. l o c k ed)) and (. r eady not)) {

. . r o t a t i o n + (. . r o t s p e e d ∗ (@root i t im e))

} e l s e {
. . r o t a t i o n

}
}

As can be seen, the definition makes use of various other observables in the

condition to decide whether or not it should be rotating. One such observable is match

and is itself defined as follows:

match i s { . r o t a t i o n < (. symrot + 0 . 1) and

(. r o t a t i o n > (. symrot − 0 . 1)) and (. d i a l) }

This match definition shows how the logic of the model depends upon the ro-

tation, in this case to check if the dial wheel is lined up with the symbol it is trying to

dial.

Besides showing the graphics capabilities, testing how well the glue like system

worked in that role and the use of temporal dependencies it also gave us an opportunity

to work on a real Empirical Modelling style project where the resulting model is not well

known. The development of the model was experimental and exploratory in nature so

gradually evolved as the modeller grew to understand the relationships present in the

model. At first the modeller constructed the visual artefacts and located them correctly

in the virtual world. Following this they attempted to get the Stargate moving and the

puddle displaying, although these were controlled by the user at this point. After some

experimentation to get this right the whole process was gradually automated by adding

in more relationships until eventually the user could control the Stargate by dialling an

address instead of manually rotating things. During this time the modeller gained a

greater understanding of the whole Stargate mechanism as they identified problems and

found the correct relationships. Although this is a toy example the same techniques

can be applied to more genuine real world problems and as a consequence Empirical

Modelling is very useful in an educational setting.

Summary: Such modularity and flexibility to link into more traditional software

components is missing in the existing Empirical Modelling tools and is also an example of

how EM thinking may actually be applied more widely to make these sorts of problems

easier to manage. The use of dependency with a graph structure as a glue between

software components is novel and as can been seen with this example is a powerful

Draft of 9:24 am, Tuesday, November 23, 2010 49

and useful concept. This applies beyond just the OpenGL game library components,

although that is all that is demonstrated here. Also note that this model has been used

for teaching EM with Cadence [ref], something that will be explored further in a later

chapter.

5.2 Hardware Device Drivers

A few example models have been developed which explore concepts that potentially

relate to operating systems and computer hardware. Considering how EM and their

concepts can be applied at a more fundamental system level was an early objective of

this work. An early version of Cadence was developed which could run independently

on a machine as its own operating system. The intention here was to develop device

drivers and all other parts of an operating system within a Cadence like environment with

prototype-based objects and dependencies being the fundamental concepts. There are

two examples worth including here, 1) a keyboard driver and 2) a terminal output driver.

Both illustrate the potential of such an approach as well as the associated problems.

The keyboard driver was successfully developed within the early operating system

version of Cadence. It involves reading and writing to IO ports, responding to interrupts

and then translating the key code into an ASCII character for further processing later

on. All of this was achieved via the dependency mechanism since the IO ports were

virtually mapped into the DOSTE graph space, as were the interrupts. For example,

when an interrupt occurred it would set a property to true in DOSTE and this would

cause other dependency formula to automatically update by checking the values of the

IO port properties. When the key code changes as a result of the interrupt it causes the

translation mechanism to also update via dependency to change the ASCII character.

A simple example but it manages to show how interrupts and dependency mechanisms

work well together. The Cadence code for this was originally written in an older syntax,

however, below is a small part of the driver updated to the new syntax. The example is

for reading the scancode and converting that to an ascii character.

. d e v i c e s ps2keyboa rd scancode i s {
i f (@root i n t e r r u p t s 33) {

@root i o 0x60

} e l s e {
0

}
}

. d e v i c e s ps2keyboa rd a s c i i i s {
i f (. scancode < 0x80) {

. a s c i imap (. scancode)

} e l s e {
’ \0 ’

}
}

A terminal output driver was also developed in the same system so that text

could be printed to the screen. This driver is considerably more complex than the above

keyboard driver due to the huge number of observables and definitions that would be

required if a pure declarative Cadence approach were to be taken. Such a pure approach

is in practice impossible as the whole system, including all models, would need to be

properly defined. Instead agents need to be used to link parts together since multiple

separate models could require output in what ultimately amounts to an unpredictable

way. For this reason the old code behind this driver exploited an undesirable feature

where definitions could have side-effects. In the most recent version of Cadence this

ability has been removed and replaced by an alternative agent mechanism.

5.3 Network Distribution for a Video Wall

Network distribution was another early route taken by the work that has been dropped

to focus on other aspects. The idea here was to have the underlying DOSTE graph

transparently shared between many machines so that hardware and software could be

Draft of 9:24 am, Tuesday, November 23, 2010 51

accessed as if it were local. The underlying architecture of Cadence supports extensions

in a way that enables parts of a graph to be virtual or remote. By sending all events

over a network instead of doing local processing it was possible to achieve the desired

network transparency at the lowest level. To demonstrate and develop this a video wall

was used. This video wall consisted of 15 screens and 8 machines to drive them, each

connected over an infiniband network. A 9th machine was used as the server to control

the others. Normally a software package called Chromium is used to distribute OpenGL

rendering across the machines but this has many limitations in that it only supported a

subset of OpenGL functionality at the time. It also sent polygon data over the network

rather than any higher-level information about what was being drawn. Cadence takes

a different approach. Each machine runs an instance of the Cadence environment but

with a slightly different address space for objects and is then connected to a master

instance on the master machine. At this point all machines can transparently observe

the DOSTE graph of the master machine so when a model is loaded each machine can

observe it. It was then a simple task to customise each machine to draw a specific

portion of the model from a particular view so that the result appears to be a single

view over 15 screens. This customisation could also be done from the master machine.

Performance was adequate despite the network code being poorly written. It

had advantages over Chromium in that it could support all OpenGL features available

on the graphics cards of the 15 machines. This included shaders. The model used to try

this out was the Stargate discussed previously. The Stargate model failed to run over

Chromium but worked without alteration in this version of Cadence with all of the visual

effects supported. Any model developed within Cadence could be adapted to run in this

way and the video wall is just one example for distributed visualisation. Unfortunately

the video wall was dismantled before any real data could be collected and analysed. The

network code is currently available in the XNet module and there are, at the time of

writing, plans to develop this further as an MSc project.

Figure 5.5: Google earth running on the same video wall used for the Cadence work.

Photo taken by Richard Cunningham

Draft of 9:24 am, Tuesday, November 23, 2010 53

5.4 Kinesin Biological Model

One aspect of Cadence to be explored is the use of temporal dependencies. There are

many models that make use of this concept, mostly for animation purposes, however

there is one model that demonstrates the process like nature of these dependencies

being applied for more than simply animation. The model is called Kinesin. Kinesin

is a motor protein operating within neurons as a means of axonal transport. They

move neurotransmitter along microtubule tracks from the cell body to the synapses.

The mechanism by which these motor proteins operate is not fully understood and so

PhD researcher Richard Wilson has been attempting to construct a discrete dynamical

system on a computer to learn about the process [ref]. His attempts have been using

the C programming language to experimentally try out different theories he develops.

We suggested that perhaps constructing such a model in our tools would provide him

with a better platform for such experiments and so such a model was constructed.

The modelling process involved first creating a representation of the motor pro-

tein, consisting of two ”heads” and a spring-like chain connecting them together. Once

the basics were in place some behavioural definitions were added to simulate brownian

motion of these ”heads”. The precise sequence and timing of events is complex but

important in understanding how it moves along the tubes. The process involves one

head binding to the tube and releasing its ADP with ATP then binding to it causing

the spring-like chain to partially attach to the top of the head. This encourages the

other head to attach to the tube infront of the already bound head and the process

repeats with this head. Meanwhile the first head hydrolyses ATP and ultimately this

results in it detaching. By repeating this process the head walks along the tube. As our

model progressed we were able to fine tune this sequence, based upon what is known

about these various molecules and what was observed in the model, until we successfully

and reliably got it walking. During the modelling process we did discover flaws in the

original theory and realised that additional processes were involved that had not been

considered.

It took considerably less time to reach this point using our tools than it had

taken Wilson with his C program. This was due to the ability to observe and modify

the process in intuitive ways as it was running, whereas with C it involved stopping

the program, changing the source, compiling and restarting. Our model was developed

to more closely match the domain by using observables and definitions that had direct

meaning rather than dealing with a more abstract machine based approach to state and

behaviour. It was the direct, concrete and interactive nature of our tools that proved so

beneficial in this kind of work.

5.5 Wii-fly Game

Wii-fly is a game developed for and with the Warwick Game Design society at the

University of Warwick. The main purpose was to make a game that used wii remotes.

Cadence and the associated game library provided a simple means of connecting wii

remote sensors to the controls of a ship. The original and simple version of this game

required only just over 100 lines of DASM script to create a world, ship and connect

it to the wii remote. From this it was extended, adding menus and several different

ships. Eventually some of the code was taken into a C++ agent but it still made use

of Cadence.

What this game shows is how a simple module, which uses bluetooth to get

Wii remote data, can be plugged into Cadence. This module provides a single agent

that sends events into Cadence many times a second to update certain observables

corresponding to buttons or accelerometer data. It also shows how Cadence can easily

be used to connect this with other observables via various formulas in the form of

definitions.

The player of the game controls a ship that flys over a landscape hunting down

other players also flying ships. The game can work with up to 4 wii-remotes. During

development there was a great deal of experimentation to get the ship behaviour correct

as well as the gradual addition of new features. All this was relatively easy because of

Draft of 9:24 am, Tuesday, November 23, 2010 55

the flexible Cadence system lying underneath it all that enabled these experiments to

take place without needing to recompile or even re-run the program.

5.6 User Interfaces

5.7 Usability

