
Discrete Fourier Transform (lecture notes)

Alexander Tiskin

1 Definitions

Given a natural number n ≥ 1, a complex number ω is called

• a root of unity of degree n, if ωn = 1

• in particular, a primitive root of unity of degree n, if ω, ω2, . . . , ωn−1 6= 1, and ωn = 1

All roots of unity of degree n are of the form1 e2πik/n, where k = 0, 1, . . . , n− 1. A root of
unity for a given k > 0 is primitive, if k is relatively prime with n. The principal root of
unity of degree n is the primitive root e2πi/n, corresponding to k = 1.

Let us fix a particular degree n and a primitive root of unity ω of degree n. The Discrete
Fourier Transform (DFT) problem is defined as the matrix-vector product Fω,n ·a = b over

complex numbers, where the matrix is the special n× n Fourier matrix Fω,n =
[
ωij
]n−1

i,j=0
,

the n-vector a is given as input, and the n-vector b is produced as output:


1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ωn−2

...
...

...
. . .

...
1 ωn−1 ωn−2 · · · ω

 ·


a0
a1
a2
...
an−1

 =


b0
b1
b2
...
bn−1


n−1∑
j=0

ωijaj = bi i, j = 0, . . . , n− 1

Direct computation of the DFT by the above definition requires O(n2) operations to
evaluate the matrix-vector product.

The Fourier matrix Fω,n is always nonsingular, therefore the output vector b uniquely
determines the input vector a. The inverse DFT problem is given vector b as input, and
asks to find the corresponding vector a. The inverse of the Fourier matrix is given by
(Fω,n)−1 = 1/n · Fω−1,n (this can be checked by direct multiplication). Therefore, the

1We use upright i for the imaginary unit, and italic i (alongside j, k, etc.) for an integer index.

1



inverse DFT corresponds to matrix-vector multiplication 1/n ·Fω−1,n · b = a, which is itself
a DFT problem, up to a change of the primitive of unity from ω to ω−1 and scaling by a
constant 1/n. Therefore, any algorithm for DFT also solves the inverse DFT.

The DFT is a fundamental concept in many engineering applications. In particular,
in digital signal processing it transforms a vector a of a signal’s amplitude over time to a
vector b of its frequency components. The DFT can also be used as an algorithmic tool for
fast multiplication of polynomials and long integers.

2 Fast Fourier Transform, the “four-step” version

The Fast Fourier Transform (FFT) algorithm computes the DFT by divide-and-conquer,
solving it on smaller subproblems, and then combining their solutions to a solution of the
original problem.

The four-step FFT is the most symmetric version of FFT. It decomposes a DFT in-
stance of degree n into 2n1/2 subproblems, each of which is a DFT instance of degree n1/2.
Assume that n = 4r, and let m = n1/2 = 2r. Let Au,v = amu+v, Bs,t = bms+t, where
s, t, u, v = 0, . . . ,m− 1. Matrices A, B are n-vectors a, b, written out as m×m matrices:

A =


a0 a1 . . . am−1

am am+1 . . . a2m−1
...

...
. . .

...
an−m an−m+1 . . . an−1

 B =


b0 b1 . . . bm−1

bm bm+1 . . . b2m−1
...

...
. . .

...
bn−m bn−m+1 . . . bn−1


We have

Bs,t =
∑
u,v

ω(ms+t)(mu+v)Au,v =
∑
u,v

ωmsv+tv+mtuAu,v =∑
v

(
(ωm)sv · ωtv ·

∑
u

(ωm)tuAu,v
)

where s, t, u, v = 0, . . . ,m− 1.
Define the twiddle-factor matrix Tω,m =

[
ωtv
]m−1

t,v=0
(note that it forms the top-left

corner m×m block in the n× n Fourier matrix Fω,m). We have obtained

B = Fωm,m · (Tω,m ◦ (Fωm,m ·A)T )

where

• symbol ‘·’ denotes standard matrix product: A ·B = C defined as
∑

j Ai,jBj,k = Ci,k
for all i, k

• symbol ‘◦’ denotes Hadamard (elementwise) matrix product: A ◦ B = C defined as
Ai,jBi,j = Ci,j for all i, j

2



a0

b0

a4

b4

a8

b8

a12

b12

a1

b1

a5

b5

a9

b9

a13

b13

a2

b2

a6

b6

a10

b10

a14

b14

a3

b3

a7

b7

a11

b11

a15

b15

FFT (n1/2)

FFT (n1/2)

FFT (n1/2)

FFT (n1/2)

FFT (n1/2)

FFT (n1/2)

FFT (n1/2)

FFT (n1/2)

Figure 1: The four-step FFT for n = 16 (divide-and-conquer)

• symbol ‘T ’ denotes matrix transposition: AT = B defined as Ai,j = Bj,i for all i, j

Observe that the m × m matrix-matrix product Fωm,m · A performs m independent
DFTs with primitive root of unity ωm of degree m on each column of matrix A. We thus
compute the DFT of degree n by divide-and-conquer in four steps:

• m independent DFTs of degree m (multiplication by Fωm,m)

• transposition and twiddle-factor scaling (Hadamard multiplication by Tω,m)

• m independent DFTs of degree m (multiplication by Fωm,m)

We have reduced the DFT of size n = 4r to 2m DFTs of size m = n1/2 = 2r, which are
combined by O(n) operations involved in matrix transposition and twiddle-factor scaling.

The base for the divide-and-conquer is provided by the DFT of degree 2:

F−1,2 · a =

[
1 1
1 −1

]
·
[
a0
a1

]
=

[
a0 + a1
a0 − a1

]
The divide-and-conquer procedure will go through log2 r = O(log log n) levels before reach-
ing its base. We have the following recurrence for the overall running time:

T (n) = O(n) + 2 · n1/2 · T (n1/2) =

O(1 · n · 1 + 2 · n1/2 · n1/2 + 4 · n3/4 · n1/4 + · · ·+ log n · n · 1) =

O(n + 2n + 4n + · · ·+ log n · n) = O(n log n)

The structure of the four-step FFT is shown in Figures 1, 2 (for n = 16). This structure
is traditionally called a butterfly.

3



a0

b0

a4

b4

a8

b8

a12

b12

a1

b1

a5

b5

a9

b9

a13

b13

a2

b2

a6

b6

a10

b10

a14

b14

a3

b3

a7

b7

a11

b11

a15

b15

Figure 2: The four-step FFT for n = 16 (fully expanded)

3 Fast Fourier Transform, traditional version

A more traditional version of FFT exists in two “complementary” variants: FFT with
decimation in time (FFT-DIT) and FFT with decimation in frequency (FFT-DIF). Both
decompose a DFT instance of degree n into two DFT subproblems of degree n/2 (solved
by divide-and-conquer), and n/2 further DFT subproblems of degree 2 (solved directly).
We describe FFT-DIT, and outline briefly the changes required to obtain FFT-DIF.

Both FFT-DIT and FFT-DIF only need to assume that n = 2r. For FFT-DIT, let
Au,v = a2u+v, Bs,t = bns/2+t, where t, u = 0, . . . , n/2 − 1, s, v = 0, 1. Matrices A, B are
n-vectors a, b, written out as an n/2× 2 and a 2× n/2 matrix, respectively:

A =


a0 a1
a2 a3
...

...
an−2 an−1

 B =

[
b0 b1 . . . bn/2−1

bn/2 bn/2+1 . . . bn−1

]

(FFT-DIF does the opposite, writing A, B as a 2×n/2 and an n/2×2 matrix, respectively.)
Similarly to the four-step FFT, we have

Bs,t =
∑
u,v

ω(ns/2+t)(2u+v)Au,v =
∑
u,v

ωnsv/2+tv+2tuAu,v =∑
v

(
(−1)sv · ωtv ·

∑
u

(ω2)tuAu,v
)

where t, u = 0, . . . , n/2− 1, s, v = 0, 1.

4



Denote the “even half” (v = 0) and the “odd half” (v = 1) of vector a by

aeven =


a0
a2
...
an−2

 aodd =


a1
a3
...
an−1


and the ”lower half” (s = 0) and the ”upper half” (s = 1) of vector b by

blower =
[
b0 b1 . . . bn/2−1

]
bupper =

[
bn/2 bn/2+1 . . . bn−1

]
We have

blower = (Fw2,n/2aeven)T +
[

1 ω ω2 . . . ωn/2
]
◦ (Fw2,n/2aodd )T

bupper = (Fw2,n/2aeven)T −
[

1 ω ω2 . . . ωn/2
]
◦ (Fw2,n/2aodd )T

We have reduced the DFT of size n = 2r to two DFTs of size n/2, which are combined by
O(n) operations, including a computation of n/2 DFTs of size 2.

The base for the divide-and-conquer is provided by defining the DFT of degree 1 as the
identity function F1,1a = a.

The divide-and-conquer procedure will go through log2 n levels before reaching its base.
We have the following recurrence for the overall running time:

T (n) = O(n) + 2T (n/2) = O(1 · n + 2 · n/2 + 4 · n/4 + . . . + n · 1) =

O(n + n + . . . + n) = O(n log n)

4 Polynomial multiplication by Fast Fourier Transform

We consider a polynomial of degree n − 1 to be given by a vector of its n coefficients.
Consider the polynomial multiplication problem: given two polynomials of degree n − 1
over real or complex numbers

a(x) =
n−1∑
i=0

aix
i b(x) =

n−1∑
i=0

bix
i

obtain their product, which is a polynomial of degree 2n− 2:

ab(x) = a(x) · b(x) =

2n−2∑
k=0

i∑
i=0

aibk−ix
k

5



Direct computation of the product’s coefficients by the above formula requires O(n2) op-
erations.

An alternative method for polynomial multiplication involves evaluation and interpola-
tion of polynomials for multiple arguments. Given a polynomial of degree n−1 represented
by a column vector a of its n coefficients, and n argument values x0, x1, . . . , xn−1, the
vector of polynomial’s values at the given arguments corresponds to matrix-vector product

1 x0 x20 · · · xn−1
0

1 x1 x21 · · · xn−1
1

1 x2 x22 · · · xn−1
2

...
...

...
. . .

...

1 xn−1 x2n−1 · · · xn−1
n−1

 ·


a0
a1
a2
...
an−1

 =


a(x0)
a(x1)
a(x2)
...
a(xn−1)


n−1∑
j=0

xjiaj = a(xi) i, j = 0, . . . , n− 1

If all arguments x0, x1, . . . , xn−1 are distinct, then the above matrix is nonsingular,
and therefore the polynomial’s n−1 coefficients are determined uniquely by its n−1 values.
Therefore, the polynomial multiplication problem can be solved as follows:

• pick N ≥ 2n− 1 distinct complex numbers x0, x1, . . . , xN−1

• evaluate each of the polynomials a, b on xi, obtaining a(xi), b(xi), for all i =
0, 1, . . . , N − 1

• obtain pairwise products ab(xi) = a(xi) · b(xi), which determine uniquely the coeffi-
cients of the polynomial ab

• interpolate the coefficients of the polynomial ab from its values

For arbitrarily chosen argument values xi, the described method does not give a com-
putational advantage over direct computation of the product’s coefficients. However, if
we choose N to be the smallest power of 2 no less than 2n − 1, and the arguments to be
xi = ωi = e2πii/N , i = 0, 1, . . . , N − 1, then the multiple evaluation step corresponds to the
DFT of degree N , and the interpolation step to the inverse DFT of degree N . Using the
FFT algorithm, we can perform both these steps, and therefore obtain the solution to the
polynomial multiplication problem, in O(n log n) operations.

6


