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Common Theme

* Objective
— Maximize Generalization

» Expected predictive quality over unseen/novel test data
* Minimize expected risk

e Structural Risk Minimization

— Loss function
* Limits training error
— Promotes learning from training data
— Regularization
* Doesn’t allow small (or unrelated) changes in input produce large changes in the output
* Controls complexity of the boundary of the classifier
* Capacity Control Term (Limits the possibility of memorization)

*  Strongly Recommended “Watch” Complete Statistical Theory of Learning by (Vladimir Vapnik)
https://www.youtube.com/watch?v=0w25mjFiSmg.
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https://www.youtube.com/watch?v=Ow25mjFjSmg

Representation: f(x; w,b) = wlx + b or kernelized f(x; a,b) = b + Z?’zl ajk(x, xj) via the Representer Theorem with Structural Risk Minimization under the general form
min AR(w) + E[error or loss over training examples]
w

R(w) is the regularization term and SRM provides a bound on generalization error. The goal is to minimize the expected error but under i.i.d. assumption E[loss] = %Z?’ﬂ I(f (%), i)

Name Evaluation (Optimization Problem)

Perceptron ul
P min,, Z max(0,1 — y;f (x; w))
=1

SVC (Linear) p) $
minwEwTw + Z max(0,1 — y;f (; w))

i=1

SVC (Kernelized) 7 1v ¥
ming, > Z aiajk(x;, x;) + ﬁz max< 0,1—y; | b+ Z ajk(x;, x;)
ij=1 i=1 =
Logistic 1 cv
in— 24 —V: .
P min = w2 + N;mg(exp( yif () + 1)
PCA min AwTw + (V — w'Cw)
w
oLS <
min " (W' x-yi)? = [1Xw = yI1
i=1
SVR (Linear) 1 Cv
min=wlw + —Z max (0, |f (x;) — y;| —€)
wb 2 N =

&

SVR (Kernelized) 1< Cv S
12'11)115 Z a;a; k(x;, x;) + NZ max| 0, Z k(xy,x;) +b—y;| —€
ij=1 i=1 Jj=1
Ridge Regression minallwll? + [ Xw — y||*
Lasso minalwlly + IXw —ylI?
. a 1 —

Elastic Net min apllwlly + % [lwll? + [ Xw — y|[?
Huber Regressor %(y _ f(x))z if ly—fGol <6

min alwll? + XL, lhuper (f (x5, yi) With Lyyper (f (i yi) = a
R S(ly — FCol —56) else

Coding Data Mining

Explanation

Uses hinge loss for classification

Regularized Perceptron

Kernelized SVC

Uses the logistic loss for classification.

Find (orthogonal) direction(s) by minimizing the loss in variance after projection

Find best linear regression fit under squared loss

Uses epsilon-insensitive loss for regression

Kernelized form of the above

OLS with regularization (squared norm)
Use 1-norm regularization (minimize sum of absolute values rather than their squares)
Uses both types of regularization

Used for robust regression as huber loss is less sensitive to outliers than squared loss

University of Warwick


https://scikit-learn.org/stable/modules/linear_model.html

Loss Functions: [(f (x;, y;

*  Quantify Error

Misclassification

Misregression

Misreconstruction

Misclustering, Misranking, Misretrieval, ....

* Theloss function determines the behaviour of the predictor

*  More importantly, it determines the type of ML problem being solved

*  Loss functions on the previous slide are all convex losses

Guaranteed single minima and convergence through gradient descent
Some even lead to closed form optimization which is great

However: LeCun, Yann. "Who is afraid of non-convex loss functions." NIPS Workshop on Efficient Machine Learning. 2007.

* Aloss function doesn’t even have to operate at a per-example level
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Epsilon insensitive loss

Data Mining
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Zero-one loss

— Hinge loss

Perceptron loss

- Log loss

squared hinge loss

= Modified Huber loss [

Decision function f(z)

Zero-one loss
Hinge loss
Logistic loss

1=
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https://videolectures.net/eml07_lecun_wia/

Regularization

Small changes in input should produce small changes in output
— Achieved by minimization of the norm of the weight vector
Rw) = wll3 = wf + w3 + -+ wg

In general
Iwll, = (wq [P + [wa [P + - + [wg|P)?P
Iwlly = [wyl| + [wa| + -+ [wyl
llwllg = number of non — zero vector elements

Enables generalization esp. when the number of data points is
quite small in comparison to the number of dimensions of each
data point: A cure to the Curse of dimensionality

— Given only training examples, optimizing empirical error over only a
small number of training examples can lead to models that do not
generalize to unseen examples effectively

The boundary which lies at the
The boundary which lies closer to maximum distance from data
data points has low margin for error: points of both classes gives
A small change in the input can better tolerance to noise and
change the prediction label better “generalization”*
X5 O O >0

o

'\ ®

Small weights limit “the butterfly effect”

* Let’s quantify how sensitive the model is to a
perturbation of its input

s f(x)=wlx+b

e flx+8x)=wl'(x+6x)+b=wix+b+wléx=
f(x) + wléx

c flx+6x)—f(x) =wléx

o If(x+6x) — fF()l = [|[wT8x| < lIwlll|&x]| (using
Cauchy-Schwarz inequality)

Il f(x+8x)—f (| < ”W”

*  Therefore, Tl <

Change in model output per unit additive change in input
is upper bounded by ||w||.

Consequently, minimizing the norm of the weight vector
(or its square) would lead to a regularization effect as it
would limit the effect of any change in the input on the
output.

Vapnik showed that minimizing “structural risk”
(combination of empirical error over training examples
and the norm of the weight vector) leads to minimization
of the upper bound on generalization error over unseen
examples effectively achieving a solution to the curse of
dimensionality.

1 1
R(W) < Remp(w) + .Q(N,m,d>



https://en.wikipedia.org/wiki/Curse_of_dimensionality

Understanding norm-based Regularization

* Remember, output is a weighted combination of
the input
f(x) =wlx

* Minimizing ||lw]|,

— p = 2: pulls the point towards the origin

* Reduces the length of the weight vector and prevents
them from growing larger
— p = 1: reduces the axes coordinates individually

* Reduce the magnitude of individual weights
— Smaller individual feature components

» Sparse solutions (i.e., fewer non-zero weights than with
p=2)
— Used for reducing or selecting features to only important
ones

— p = 0: reduces the number of non-zero components
* Reduce the number of “active” features
* Feature selection
 Difficulties in optimization

Data Mining

Assume a vector

w= [0%5]

Iwll,—, = VI+0.25 = 1.18
IWlly—y =14+05=15
Iwllp=0 = 2

1.18
0.5

University of Warwick



Regularization: Not limited to norm-based regularization

* Small changes in input should produce small changes in
output

* More accurately, what we want is

I”

— “Non-causal” changes in input should not change the output
e Changes that are not causally linked to label assignment

* For example:
— If our goal is to classify horses vs unicorns: A rotated horse is still a horse

— However, if a change to the horse makes it a unicorn, the ML model
prediction should change

* The ML model should be “Invariant” to such changes

* This idea forms the basis of a number of different type

of approaches that have a regularization effect

— Data augmentation

— Adversarial Training Perturbations
— Contrastive learning

— Drop-out

— Invariant Risk Minimization

— Learning using statistical Invariants

Data Mining University of Warwick




How to program any ML model?

* |f you can define a loss function
 And a regularizer

* The rest can be automated For
any ML problem™!
* Using Automatic Differentiation
Libraries
— Autograd
— PyTorch
— TensorFlow

— JAX
— Zygote.jl

Go through this exercise:

REO and SRM are all you need!

Representation
* How does the model produce its output given its input
« flxw) =wlx
Evaluation (SRM/Definition of Optimization Problem)
Define a loss function and a regularization strategy write the
optimization problem

* min,Pw;X,y) = %WTW + Z’i\':l max(0,1 —y;f(x;w))

Optimization

* Obtain gradient V,,P(w) = % through an automatic

differentiation method
Apply gradient descent (or other optimization) updates until
convergence

s wew—aV,P(w)
Successful optimization is necessary for generalization (but not
sufficient). Must check for successful optimization!

Automatic
differentiation

human

programmer

symbolic differentiation

(human/computer)

https://github.com/foxtrotmike/CS909/blob/master/barebones.ipynb

Data Mining

*Terms and conditions apply University of Warwick



https://en.wikipedia.org/wiki/Automatic_differentiation
https://github.com/foxtrotmike/CS909/blob/master/barebones.ipynb

An exercise into SRM

CLUSTERING

Data Mining University of Warwick



C I u Ste ri n g 6 | Orilginalll ur?cluslter;ed défa |

* Input o |
— Typically, a Data Matrix (X) 5l
— Unsupervised technique o2l
 Grouping objects such that: il
— Objects within the same group (cluster) are more similar to of
each other and different from objects in other groups |
* This is the underlying optimization problem of all clustering methods

e Metrics 7

— Using (unlabeled) training data itself . Clustered data _
« Davies-Bouldin Index | S
* Dunn’s Index R X
. . . i . e
* Silhouette Coefficient ) e
— Using external (test data) with cluster assignments by experts as L ,#‘I"fﬂ: '
c%l‘.: . ".:. -..

ground truth &
* Purity
* Jaccard Index
* Dice Index

Read: https://en.wikipedia.org/wiki/Cluster analysis

Data Mining University of Warwick



https://en.wikipedia.org/wiki/Cluster_analysis

Most commonly used algorithm
for clustering

Input: Data Matrix X

Hyper-parameter: Number of
clusters, Initial Cluster Centers

Output:
Assignment of each example
to a cluster center

k-means Clustering

Initialize m;.,i = 1,....,k, for example, to k£ random !
Repeat
For all &' ¢ X

b 1 if wa — m;|| = min; H:I:t — m,;
! 0 otherwise

For all ml r=1,...,

"_Z E}mf/z bt

Until m; converge

* blis 1 when the it" center is the one closest to x

Data Mining University of Warwick
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k-means Clustering

Data Mining

University of Warwick
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k-means Clustering

Data Mining

University of Warwick
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k-means Clustering

Data Mining

University of Warwick
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k-means Clustering

Data Mining

University of Warwick

15



REO for k-means

* Representation

— An example x is assigned a cluster based on its closest “centroid”
* The K centroids are denoted as: M = {my, ..., mg}

* The cluster assignment for an example based on a distance metric d(:,-) is
given by the nearest neighbor rule

c(x) = argminj_yy _d(x,m;),c(x) € {1..K}
* Evaluation

— We would like to determine the cluster centroids M = {m,, ..., m;}
and the assignments of training examples to clusters (non-
overlapping sets) § = {8y, ..., Sk} such that the within-cluster
distance from centroids is minimized.

1
— X
|Sj|ZxES]

* Optimization: This is an NP-Hard problem but the Previously
described approximate algorithm leads to a good local optimum
 Hidden Hyperparameters

— Distance metric: You can get different clustering based on the
distance you use

* Regularization?

— Cluster assignment of an example should not change within a short
distance: The choice of your distance metric controls regularization

Data Mining

min Y1 Xxes, d(x,m;) with m; =

Must read:

3.0

2.5

T
Q
™~

1.5
1.0 4

™~
x

https://en.wikipedia.org/wiki/K-means_clustering

University of Warwick
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Hierarchical Clustering

e Build a hierarchy of clusters
— Bottom up: Agglomerative Clustering
— Top down: Divisive clustering
* Allows us to represent the findings in a tree

* We can cutoff at any height to get different
number of clusters
 Hyperparameters
— Distance metric

— Linkage: How do we define a distance
between two sets of points

* Average, Min, Max, etc...
* Changes clustering

* Single Dimensional Example showing the
dendrogram

https://en.wikipedia.org/wiki/Hierarchical clustering

Data Mining

A “Phylogenetic” tree based on
genomic distance for SARSCov-2

SARS coronavirus MA15 - FJ882957.1, 25-Nov-2008 , USA: Tennessee
Severe acute respiratory syndrome-related coronavirus - NC_004718.3 , Canada: Toronto
Civet SARS CoV SZ16/2003 - AY304488.1 , Hong Kong
SARS coronavirus ZS-C - AY395003.1
Bal SARS-like coronavirus - KY417144,1 , 18-Sep-2012, China
Bat SARS CoV Rm1/2004 - DQ412043.1
Bat SARS-like coronavirus - MG772933.1, Feb.2017, China

Bat SARS.like coronavirus - MG772934.1 , Jul-2015, China

I | — Wuhan-Hu-1|China|2018-Dec - MNS08947 ]

| Middie East respiratory syndrome-related coronavirus - NC_019843.3 , 13-Jun-2012

l Betacoronavirus England 1 - NC_038294.1 , 11-Sep-2012, United Kingdom

Murine hepatitis virus - NC_001846.1

https://nextstrain.org/ncov/global

https://ncbiinsights.ncbi.nlm.nih.gov/2020/01/13/novel-coronavirus/

University of Warwick 17
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Linkage

* How do we define the distance between clusters
— Min
— Max
— Average

00000060

Data Mining University of Warwick 20




Linkage

booos

ity of Warwick



Support Vector Clustering

 Ben-Hur and Vapnik 2001
* No assumptions on the shape and number of clusters

* Enclose all examples in a kernel feature space in a tight sphere
centered at “a” with radius “R”

ming o R? + CY¥, max(0, || (x;) — all?> — R?)

* Two points belong to the same cluster if, for all points x in between
them [|p(x) — al|* < R? :

e Can be kernelized
* No need of specifying the number of clusters a priori

Ben-Hur, Asa, et al. "Support vector clustering.” Journal of machine learning research 2.Dec (2001): 125-137.

Data Mining University of Warwick 22



MiniBatchKMea®AéfinityPropagation MeanShift S

Many Other

Ward AgglomerativeClusterindDBSCAN OPTICS Birch GaussianMixture

pectralClustering

03s 1.61s .10s

.15s

08s

y pred = KMeans(n_clusters=3).fit predict(X)

https://scikit-learn.org/stable/auto _examples/cluster/plot_cluster comparison.html

DETCN

University of Warwick
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https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html

Method name
K-Means

Affinity
propagation

Mean-shift

Spectral
clustering

Ward hierarchical
clustering

Agglomerative
clustering

DBSCAN

OPTICS
Gaussian mixtures

Birch

Parameters
number of clusters

damping, sample
preference

bandwidth

number of clusters

number of clusters

or distance
threshold

number of clusters
or distance
threshold, linkage
type, distance

neighborhood size

minimum cluster
membership

many

branching factor,
threshold, optional
global clusterer.

Scalability

Very large n_samples,
medium n_clusters
with

MiniBatch code

Not scalable with
n_samples

Not scalable with
n_samples

Medium n_samples,
small n_clusters

Large n_samples and
n_clusters

Large n_samples and
n_clusters

Very large n_samples,
medium n_clusters

Very large n_samples,
large n_clusters

Not scalable

Large n_clusters and
n_samples

Usecase

General-purpose, even cluster
size, flat geometry, not too many
clusters

Many clusters, uneven cluster
size, non-flat geometry

Many clusters, uneven cluster
size, non-flat geometry

Few clusters, even cluster size,
non-flat geometry

Many clusters, possibly
connectivity constraints

Many clusters, possibly
connectivity constraints, non
Euclidean

distances

Non-flat geometry, uneven
cluster sizes

Non-flat geometry, uneven
cluster sizes, variable cluster
density

Flat geometry, good for density
estimation

Large dataset, outlier removal,
data reduction.

https://scikit-learn.org/stable/auto _examples/cluster/plot_cluster comparison.html

Data Mining

Geometry (metric used)
Distances between points

Graph distance (e.g.
nearest-neighbor graph)

Distances between points

Graph distance (e.g.
nearest-neighbor graph)

Distances between points

Any pairwise distance

Distances between nearest
points

Distances between points

Mahalanobis distances to
centers

Euclidean distance
between points

University of Warwick

24
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An exercise into SRM

ONE CLASS CLASSIFICATION

University of Warwick



One Class Classification

* Unary Classification
* Class Modelling MMW{&J\{
* Novelty Detection f f T !

 Examples for one class only (say normal)
* Identify those examples that differ from the given class

Concept

Py ®
Descriptor
® ® Boundary
f(x,w)=0
P
®

Data Mining University of Warwick 26




OCC: Support Vector Data Descriptors

* Finds a hyper-sphere with center at ‘a’ and radius R so that the target
class examples lie within the hyper-sphere

— Error function: Penalize training examples if they lie outside the hypersphere

» ming R? + <2, max(0, lx — all? — R?)

Data Mining University of Warwick
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One-Class SVM (Scholkopf 2001)

» Goal: Separate points of the target class (represented in the
kernel space) from the origin with maximum margin

* Representation
— Linear Separability Case f(x) = w/x + b

 All given (target) class examples should have f(x) = °
 Consider that the outliers are mapped to the origin f(0) =b < 0 ® 04 P
e Evaluation .‘.‘.’.
— Error when o ‘..‘
* A point of the target class produces f(x) <0 ®
* Orthe originis classified as target: f(0) =w/x+b = b > 0
— Loss function thus becomes: [(f (x; w,b) = max(0,—f(x)) + b —®

— Thus: (it can be kernelized)

min,, —w Tw+— Zmax O —(wT x+b))

https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html

University of Warwick 28


https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html

Abnormal Beat Detection in ECG

+  Abncemal boat
+  Nomal beat

* .
N R A
Al 33 Y S
.t ttq: Qe
% 4 '
:
» st TR ¢ o .
A T el
' oa b8 ?
* . ‘
- v -
s ¢ s
N

 ECG based automated detection of abnormal
beats has low generalization across

L O =

indiViduals 0.99
W 1c-SVM W SVDD g
 Solution: Use OCC to train on the normal beats for 0.985 T A T A
0.98 Record 105

each individual

0.975
— Do not have to give any abnormal beats in training g ., |
<

e Validation on 46 Records from MIT-BIH Database with 0.965 -

lead MLII 096 1 ;
0.955 - :
— 73,258 normal (~69.0%) and about 32,827 (~31%) abnormal i i 3
0_95 - Principal Componert 1
beats 50 100 200 400 100 400 Record 200
(b1) (D1) (D1) (P1) (D2) (D2) ‘ ,
Data ) RET

i ~
A Zerie A
V{ R i ifi i -1
g } Preprocessing Extraction Classification 1
T )
'! 3
HHHHH 4

Robust electrocardiogram (ECG) beat classification using discrete wavelet transform. Minhas, F. Recofd 222

and Arif, M. 5, 2008, Physiological Measurement, Vol. 29.

Data Mining University of Warwick 29



An exercise into SRM

TREES, FORESTS AND BOOSTING

University of Warwick
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Trees as classifiers

* Assume you have a classification problem

A 32 5
* 16 i
i *
L ks
VYV R Rl 8
---------------- ] O o SR b9
A *‘A‘i * ) ¢
ACA :A |
AgA |
£t
A
AfA

Data Mining

Can we learn a set of rules
of assignment of different
regions of the feature space
to different classes?

University of Warwick
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Picking a feature to split

Xiz Current Error Rate: 16/48 =1/3
A 32 g
* 16 |
%k, I
i ARA X%
Ad, B 'R 'S
................ Ahy TG XX
*ady X *
AAXAA
i s
ik
A
A‘A

At each step pick the feature and split that gives the most “information gain” or the most reduction in error

Data Mining

University of Warwick
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Check x,

X, Total points: 48
N | Current Error Rate: 16/48 =1/3
* 16 For a split along x, =0
: ) ¢ Total points in the top half = 19 out of 48
ok A:A * Error in the top half: 8/19
Ay, Kk . |
ﬁﬂﬁ_’T‘f_ X, Total points in the bottom half: 29
‘A‘ AAAAA * Error in the bottom half = 5/29
{A:A Total error: =2 4 222 = 13/48
Aga : 1948 = 2948
Reduction in error = 16/48-13/48 = 3/48

At each step pick the feature that gives the most “information gain”

Data Mining University of Warwick
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Check x,

A 32
* 16
A
Ad, LR R & §
............. Ay |7 ORI XX,
‘tﬁ"t‘ * *
Nl
b
A
ada

X, Gives the most improvement in error rate

Data Mining

Total points: 48

Current Error Rate: 16/48 =1/3

For a split along x, =0

Total points in the L half = 32 out of 48
Error in the L half: 4/32

Total points in the R half: 16
Error in the bottom half =4/16

432 . 416
Total error: —— + ——=8/48
3248 1648

Reduction in error = 16/48-8/48 = 8/48

University of Warwick
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Continuing: Depth =1

X5
o If x,<0
o ) ¢ yes no
*KX LA | .
AL X Assign Red Assign Blue
A, x4 X koK
............... Ay LT e TR
A *ﬂ' Afa| * *
Nl
i1,
A
AgA

Data Mining University of Warwick 35



Continuing: Depth =2

Xy
A 32 If x,<0
* 16 x Jes -
*k ‘:‘ * If x,<-1 Assign Blue
A, x4 X koK ves
--------------- e . Stk no
A‘A": AA A * Assign Red Assign Blue
Af) A
fiha
A
AgA

Data Mining University of Warwick 36



Continuing: Depth = 3

X3
A 32 If x,<0
* 16 x Jes .
A N *:;:;i If x,<-1 Assign Blue
YES no
............. Mae | % KAk
AA) A, Assign Red If x,<0.5
Ada A es
A Y no
Az .
AgA Assign Blue Assign Red

Data Mining University of Warwick



Continuing

Data Mining University of Warwick 38



Continuing

Data Mining University of Warwick 39



Continuing

Data Mining University of Warwick 40



Final

If x,<0

If x,<-1
Y€S no
Assign Red If x,<0.5
X1 yes no
Assign Blue Assign Red
Tree: T

Data Mining University of Warwick
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From Trees to Random Forests

 Combine the predictions from

multiple “weak” learners ,  Model . e j
— Uncorrelated errors in S| Asges f| sy i,
predictions - N s .
* Each learner makes errors on "Hﬂ“
different examples ’ ' Fearwe 15
 How to make different N
classifiers

-
[

— Different Data set partitioning
— Different Features
— Different parameters

— Learning errors from previously
trained methods
Reading

Polikar 2006: http://users.rowan.edu/~polikar/RESEARCH/PUBLICATIONS/csm06.pdf
Ensemble Machine Learning Methods and Applications (chapter 1), 2012
https://doc.lagout.org/science/Artificial%20Intelligence/Machine%20learning/Ensemble%20Machine%20Learning %20Methods%20and%20Applications%20%5BZhang%20%26%20Ma%202012-02-17%5D.pdf

Data Mining University of Warwick 42
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https://doc.lagout.org/science/Artificial%20Intelligence/Machine%20learning/Ensemble%20Machine%20Learning_%20Methods%20and%20Applications%20%5bZhang%20&%20Ma%202012-02-17%5d.pdf
https://doc.lagout.org/science/Artificial%20Intelligence/Machine%20learning/Ensemble%20Machine%20Learning_%20Methods%20and%20Applications%20%5bZhang%20&%20Ma%202012-02-17%5d.pdf
https://doc.lagout.org/science/Artificial%20Intelligence/Machine%20learning/Ensemble%20Machine%20Learning_%20Methods%20and%20Applications%20%5bZhang%20&%20Ma%202012-02-17%5d.pdf
https://doc.lagout.org/science/Artificial%20Intelligence/Machine%20learning/Ensemble%20Machine%20Learning_%20Methods%20and%20Applications%20%5bZhang%20&%20Ma%202012-02-17%5d.pdf

From Trees to XGBoost

* |nstead of “bagging” or boot-strap aggregating, i.e., combining
“simple” trees by averaging, we can also combine them in
series such that each tree “boosts” the decision of the previous
one

— Boosting involves incrementally building an ensemble by training
each new model instance to emphasize the training instances that
previous models mis-classified.

bagging _ boostlng

e

iteration
Data Mining University of Warwick 43



Bootstrap aggregating or
Bagging is a ensemble
meta-algorithm combining
predictions from multiﬁle-
decision trees through a
majority voting mechanism

Bagging

Decision
Trees

A graphical
representation of
possible solutions to
a decision based on
certain conditions

Bagging-based algorithm
where only a subset of
features are selected at
random to build a forest
or collection of decision

trees

XGBoost

Models are built sequentially
by minimizing the errors from
previous models while

Optimized Gradient Boosting
algorithm through parallel

: _ processing, tree-pruning,

. mcreasmﬁ‘(_or boosting) handlmF m%ssmg values and

influence of high-performing regularization to avoid

models overfitting/bias

B/ éa
Aieut

{ostin

Gradient Boostin

employs gradien
descent algorithm to

minimize errors in

sequential models

Data Mining

University of Warwick
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An REO/SRM View of Decision Trees

* Decision Trees, Random Forests, and Gradient Boosting A 32
Models T~
— Representation 1 *
* Qutput for a given input x is generated by following a tree
structure

— Can be modelled as: f(x; T) where x is an input and T is the
representation of a specific tree

— Evaluation

* For a given tree structure, T, the model f(x; T) will generate a loss
for each training example which can be minimized.

* We can further penalize based on the structure of the tree itself.
For example, if it is too complicated or if it uses too many features
etc.

min R(T) + A z L(f (xi;T),y:)

— Optimization
* Can be done through gradient based optimization (as in XGBoost)

* Or can go through an optimization process during the construction
of the tree structure itself (e.g., by reduction of entropy or variance :
in each leaf) If x,<-1

If x,<0

Tree: T

If x,<0.5
ye no
Assign Assign Red
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An exercise into SRM

LEARNING TO RANK
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Learning to Rank

* Assign a rank to an input example

Classification Apple grading
U.S. Extra Fancy " —— o e

Cancer Grading

Grade

°
Prognosis

— Assign into classes U.S. Fancy Grade 1 Grade 2 Grade 3
* Typically no semantic relationship US. No. 1
between classes (you cannot define U.S. No. 1 Hail
greater than or less than in apples U.S. Utility

VS. oranges)

. A
X ©O) XoXo)
* Regression
g Glandular/Tubular Differentiation: £ Glandular/Tubular Differentiation: Glandular/Tubular Differentiation:
PY Age . 2 1 i S g rea te r t h an 1 8 ( a >75% of tumor forms glands 10% to 75% of tumor forms glands <10% of tumor forms glands
H H H Nuclear Pleomorphism: Nuclear Pleomorphism: Nuclear Pleomorphism:
re | a t I 0 n S h I p ex I Sts ) Uniform cells with small nuclei Cells larger than normal with open Cells with vesicular nuclei,
similar in size to normal breast vesicular nuclei, visible nucleoli, prominent nucleoli, marked
H epithelial cells and moderate variability in size and variation in size and shape
i R a n kl n g shape
1 Mitotic Count: Mitotic Count:
. . . < T mitoses per 10 high power Mitotic Count: > 16 mitoses per 10 high power
- AS S I g n I n g ra n kS fields 8-15 mitoses per 10 high power fields
fields

* This is better or worse than that
— Also called “Ordinal Regression”
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Ranking in Information Retrieva

GO gle warwick y Q

Q Al Q Maps [ News [JImages [ Videos i More Settings  Tools

* For a given query, a page

[ ) [ ] About 138,000,000 results (0.95 seconds)
t 1at IS I I lO re O te I l C I C e WANACKECUR'Y. A
. . . 3
Welcome to the University of Warwick Hatton Prec)
. University of Warwick website. ... 5 years after graduating, Warwick graduates ranked within the B Gidbrooks o o Royal
UK top 10 for highest earnings in over 11 subjects. Leamington S
Results from vick.ac.uk Q
- Sherbourne Bishop's
° ) Postgraduate Study .
t f] a n t h e O n e t h a t I S n t Do you want to find a postgraduate Choosing to study at Warwick Wa rWle
taught course or a postgraduate means joining a world-leading Town in England
Undergraduate About
Courses for 2020 Entry - Information about the University of Warwick is a town on the River Avon, in England’s West Midlands
Accommodation - How to Apply Warwick. region. It's known for the medieval Warwick Castle, founded by
L William the Conqueror. The Collegiate Church of St. Mary has a
VISItIng us Research tower with city views and a Norman crypt. The timber-framed
Campus Maps - By train - Find out about research activity at buildings of 14th-century Lord Leycester Hospital cluster by the
Interactive Campus Map - By car the University of Warwick city's West Gate. The St. John's House Museum is housed in a
Jacobean mansion with gardens.
TOp thmgs to do in Warwick Weather: 9 °C, Wind W at 16 mph (26 km/h), 73% Humidity
- Shire county: Warwickshire
’ ' e : : Plan a trip
g ™ = 8 A 2 @  Warvick travel guide
Warwick Castle hord Le}/cester Cfollegl;\llate Church \7\} Nxc_hckwlas Park, [SM  3.star hotel averaging £78
Iconic clifftop ospita of St Mary,.. larwic
g fortress & dungeons Medieval buildings Landmark 11th- Parkland with m U
for tours & events century place of... diverse leisure peoming events
University: Warwickshire College, Trident Warwick
o Warwick travel guide
People also search for View 15+ more

N

Wa rWi c k en.wikipedia.org > wiki > Warwick v

Warwick - Wikipedia

Warwick is a market town and the county town of Warwickshire, England. It lies near the River . M
Warwick Royal Birmingh Bristol Nottingham

| GDDQ'E Search | | |II'T'I FEE“HQ Lucl{y | Avon, 11 miles (18 km) south of Coventry and just west of Leaming

History - Geography - Culture - Transport

More about Warwick

People also ask

eedback

m
@
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* Problem Formulation

Learning to Rank
— Input: Training samples as pairs such that one x; is to

be ranked higher than another x; by an amount r; N
+ S = {00, X071, ) Gy X i) f .
- e O Bo- -
* Goal: Learn a function Ranking function: f: X - R

* Representation: f(x; w) ;

e Evaluation |
— A misranking will occur if f(x;;w) — f(x';; w) <1y 0 > 0 ro=1
— Thus, the loss becomes:

LGeg, g, 733 £) = max (0,73 — (f () — f(x)))

— Optimization problem becomes: L, x5 f)

min,, R(w) + X; L(x;, x;,73; f)

= (fx) = f(x))
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Predicting anti-CRISPR proteins

* |dentify if a protein in a set of proteins is an Anti-
CRISPR protein

— Given: sets of sets of proteins (proteomes) in which at

least one protein is an anti-CRISPR protein . -JENNIFER DOUDNA &

+ Only 20 examples  SAMUEL STERNBERG

— Required: Rank the known anti-CRISPR protein higher
than non-anti-CRISPR proteins in the proteome

e Used ranking constraints with an XGBoost model

* Able to identify new anti-CRISPR proteins in new
species

Eitzinger, Simon, Amina Asif, Kyle E. Watters, Anthony T. lavarone, Gavin J. Knott, Jennifer A. Doudna, and Fayyaz ul Amir Afsar Minhas.
“Machine Learning Predicts New Anti-CRISPR Proteins.” Nucleic Acids Research. April 16, 2020. https://doi.org/10.1093/nar/gkaa219
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An exercise into SRM

RECOMMENDATION SYSTEMS
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Recommendation Systems

e Task
— Predict the rating or preference a user would give an item
* QGiven:

— Training data: Matrix of Items rated by users

 Other names
— Matrix Completion Problem
— Information Filtering Problem

Love at last

Romance Forever 5 ? ? 0
Youxoy = [Vmal Cute puppies of love ? 4 0 ?

Nonstop car chases O 0 5 4

Swords vs. Karate 0 0 5 ?

https://help.netflix.com/en/node/100639
https://en.wikipedia.org/wiki/Recommender system
Andrew Ng's lectures: https://www.youtube.com/playlist?list=PL_npY1DYXHPT-3dorG7Em6d18P4JRFDvH
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https://help.netflix.com/en/node/100639
https://en.wikipedia.org/wiki/Recommender_system
https://www.youtube.com/playlist?list=PL_npY1DYXHPT-3dorG7Em6d18P4JRFDvH

REO/SRM for Collaborative Filtering Recommendations

* Representation

— Represent each movie m by its features: x,,
* Note these features may not be known

— Represent the prediction score for this movie for user u as: wl, x,,
* Note that the weight vector w,, characterizes each user

— Whenever a user u rates a movie m, we set a flag s,,,,, to 1 otherwise 0
— The rating for the movie m by user u is y,,,,
* Evaluation 14X
— Prediction error for all labelled movies fz z w(W3, X — Yima)?

2
— We add regularization terms: —Zu w112, mZm x|

— The complete optlmlzatlon problem aims to find both user welghts and movie features

mln _zllwullz +— z ”xmllz 5 z z Smu(Wu Xm — Ymu)z

u=1m=

* Optimization
— Can alternate between finding user weights and movie features

Data Mining

University of Warwick
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What can we do with this?

 We can rank the movies that were not ranked by a user
* We can also identify similar movies

* Nearest neighbors over x!

e Or similar users

* Nearest neighbors over w/

* Or identify popular trends of movies

— Average movie ratings across all users
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An exercise into SRM

OTHER PROBLEMS
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ML Task ML Task

Classification (Binary and Multi-class: OVR, OVA, etc)
Regression

Dimensionality Reduction / Decomposition

Clustering

Biclustering

Recommender System, Basket (item co-occurrence analysis)
Learning to Rank (Ordinal Regression)

Generative Modelling: Conditional and Unconditional
Multi-task Prediction

Multi-Label Prediction

Survival Prediction (Churn Prediction or Failure Prediction)
Adaptive Prediction Sets & Conformal Prediction
Meta-Learning: Learning to learn and learning to optimize
Representation Learning

Open Set Recognition

Subset Discovery

Domain Specific tasks
CV: Object detection, localization, counting, instance segmentation,
I semantic segmentation, image to image regression

Out of Domain Detection

Novelty Detection/One-Class Classification
Retrieval / Vector Database Search

Prediction under domain shift or concept drift
Counterfactual prediction

Zero and Few Shot Prediction
Semi-Supervised Learning

Weakly-supervised and multiple instance learning
Causal Learning, Inference and Discovery
Active Learning

Meta Learning

Curriculum Learning

Transfer Learning

Contrastive and self-taught Learning

Online and Continuous Learning
Reinforcement learning

Structured Output Learning
Topic Modeling, Machine Translation, Counterfactual prediction
Community discovery, graph learning, time series forecasting, ... 56



“Nearly everything is really interesting if you go
into it deeply enough.”

(Feynman)
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