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Common Theme

• Objective
– Maximize Generalization

• Expected predictive quality over unseen/novel test data
• Minimize expected risk

• Structural Risk Minimization
– Loss function

• Limits training error
– Promotes learning from training data

– Regularization
• Doesn’t allow small (or unrelated) changes in input produce large changes in the output
• Controls complexity of the boundary of the classifier
• Capacity Control Term (Limits the possibility of memorization)

• Strongly Recommended “Watch” Complete Statistical Theory of Learning  by (Vladimir Vapnik) 
https://www.youtube.com/watch?v=Ow25mjFjSmg.
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Representation: 𝐟 𝐱; 𝐰, b = 𝒘𝑻𝒙 + b or kernelized 𝐟 𝐱; 𝜶, b = b + σ𝑗=1
𝑁 𝛼𝑗𝑘 𝒙, 𝒙𝑗 via the Representer Theorem with Structural Risk Minimization under the general form 

min
𝒘

𝜆𝑅(𝒘) + 𝐸[𝑒𝑟𝑟𝑜𝑟 𝑜𝑟 𝑙𝑜𝑠𝑠 𝑜𝑣𝑒𝑟 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠]

𝑅(𝒘) is the regularization term and SRM provides a bound on generalization error. The goal is to minimize the expected error but under i.i.d. assumption 𝐄 𝐥𝐨𝐬𝐬 =
1

𝑁
σ𝒊=𝟏

𝑵 𝑙(𝑓(𝒙𝒊), 𝑦𝒊)

Name Evaluation (Optimization Problem) Explanation

Perceptron
𝑚𝑖𝑛𝑤 

𝑖=1

𝑁

𝑚𝑎𝑥 0, 1 − 𝑦𝑖𝑓(𝒙; 𝒘)
Uses hinge loss for classification

SVC (Linear)
𝑚𝑖𝑛𝑤

𝜆

2
𝒘𝑻𝒘 + 

𝑖=1

𝑁

𝑚𝑎𝑥 0, 1 − 𝑦𝑖𝑓(𝒙; 𝒘)
Regularized Perceptron

SVC (Kernelized)
min𝜶,𝑏

𝜆

2


𝑖,𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑘 𝒙𝑖 , 𝒙𝑗 +
1

𝑁


𝑖=1

𝑁

max 0,1−𝑦𝑖 𝑏 + 

𝑗=1

𝑁

𝛼𝑗𝑘 𝒙𝒊, 𝒙𝑗

Kernelized SVC

Logistic
Regression

min
𝒘,𝑏

1

2
𝒘 2 +

𝐶

𝑵


𝒊=𝟏

𝑵

log exp −𝑦𝑖𝑓 𝑥𝑖 + 1
Uses the logistic loss for classification.

PCA min
𝒘

𝝀𝒘𝑻𝒘 + 𝑽 − 𝒘𝑻𝑪𝒘 Find (orthogonal) direction(s) by minimizing the loss in variance after projection

OLS
min

𝑤


𝑖=1

𝑁

(𝒘𝑻𝒙𝒊−𝑦𝑖)
2 = 𝑿𝒘 − 𝒚 𝟐

Find best linear regression fit under squared loss

SVR (Linear)
min
𝒘,𝑏

1

2
𝒘𝑻𝒘 +

𝐶

𝑵


𝒊=𝟏

𝑵

𝑚𝑎𝑥 0, 𝑓 𝒙𝒊 − 𝑦𝑖 −∈
Uses epsilon-insensitive loss for regression

SVR (Kernelized)
min
𝜶,𝑏

1

2


𝑖,𝑗=1

𝑁

𝛼𝑖𝛼𝑗 𝑘(𝒙𝒊, 𝒙𝒋) +
𝐶

𝑵


𝒊=𝟏

𝑵

𝒎𝒂𝒙 0, 

𝑗=1

𝑁

𝑘(𝒙𝒊, 𝒙𝑗) + 𝑏 − 𝑦𝑖 −∈
Kernelized form of the above

Ridge Regression min
𝒘,𝑏

𝛼 𝒘 2 + 𝑿𝒘 − 𝒚 𝟐 OLS with regularization (squared norm)

Lasso min
𝒘,𝑏

𝛼 𝒘 𝟏 + 𝑿𝒘 − 𝒚 𝟐 Use 1-norm regularization (minimize sum of absolute values rather than their squares)

Elastic Net min
𝒘,𝑏

𝛼𝜌 𝒘 𝟏 +
𝛼(1 − 𝜌)

2
𝒘 2 + 𝑿𝒘 − 𝒚 𝟐 Uses both types of regularization

Huber Regressor
𝑚𝑖𝑛
𝑤,𝑏

𝛼 𝒘 2 + σ𝑖=1
𝑁 𝑙ℎ𝑢𝑏𝑒𝑟(𝑓(𝑥𝑖 , 𝑦𝑖) with 𝑙ℎ𝑢𝑏𝑒𝑟(𝑓 𝑥𝑖 , 𝑦𝑖 = ൞

1

2
𝑦 − 𝑓 𝑥

2
𝑖𝑓 𝑦 − 𝑓 𝑥 < 𝛿

𝛿( 𝑦 − 𝑓 𝑥 −
1

2
𝛿) 𝑒𝑙𝑠𝑒

Used for robust regression as huber loss is less sensitive to outliers than squared loss

3Coding: https://scikit-learn.org/stable/modules/linear_model.html 

https://scikit-learn.org/stable/modules/linear_model.html
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Loss Functions: 𝑙(𝑓(𝑥𝑖 , 𝑦𝑖)
• Quantify Error

– Misclassification

– Misregression

– Misreconstruction

– Misclustering, Misranking, Misretrieval, ….

• The loss function determines the behaviour of the predictor

• More importantly, it determines the type of ML problem being solved

• Loss functions on the previous slide are all convex losses
– Guaranteed single minima and convergence through gradient descent

– Some even lead to closed form optimization which is great

– However: LeCun, Yann. "Who is afraid of non-convex loss functions." NIPS Workshop on Efficient Machine Learning. 2007.

• A loss function doesn’t even have to operate at a per-example level 

4

−∈ +∈

Squared Error/Loss

Epsilon insensitive loss

https://videolectures.net/eml07_lecun_wia/
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Regularization
• Small changes in input should produce small changes in output

– Achieved by minimization of the norm of the weight vector 

𝑅 𝒘 = 𝒘 2
2 = 𝑤1

2 + 𝑤2
2 + ⋯ + 𝑤𝑑

2

• In general
𝒘 𝑝 = 𝑤1

𝑝 + 𝑤2
𝑝 + ⋯ + 𝑤𝑑

𝑝 1/𝑝

𝒘 1 = 𝑤1 + 𝑤2 + ⋯ + 𝑤𝑑

𝒘 0 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 − 𝑧𝑒𝑟𝑜 𝑣𝑒𝑐𝑡𝑜𝑟 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

• Enables generalization esp. when the number of data points is 
quite small in comparison to the number of dimensions of each 
data point: A cure to the Curse of dimensionality

– Given only training examples, optimizing empirical error over only a 
small number of training examples can lead to models that do not 
generalize to unseen examples effectively

5

Small  weights limit “the butterfly effect”

• Let’s quantify how sensitive the model is to a 
perturbation of its input

• 𝒇 𝒙 = 𝒘𝑻𝒙 + 𝑏
• 𝒇 𝒙 + 𝜹𝒙 = 𝒘𝑻 𝒙 + 𝜹𝒙 + 𝒃 = 𝒘𝑻𝒙 + 𝒃 + 𝒘𝑻𝜹𝒙 =

𝒇 𝒙 + 𝒘𝑻𝜹𝒙
• 𝒇 𝒙 + 𝜹𝒙 − 𝒇 𝒙 = 𝒘𝑻𝜹𝒙

• 𝒇 𝒙 + 𝜹𝒙 − 𝒇 𝒙 = 𝒘𝑻𝜹𝒙 ≤ 𝒘 𝜹𝒙  (using 
Cauchy-Schwarz inequality)

• Therefore, 
𝒇 𝒙+𝜹𝒙 −𝒇 𝒙

𝜹𝒙
≤ 𝒘

Change in model output per unit additive change in input 
is upper bounded by 𝒘 . 

Consequently, minimizing the norm of the weight vector 
(or its square) would lead to a regularization effect as it 
would limit the effect of any change in the input on the 
output.

Vapnik showed that minimizing “structural risk” 
(combination of empirical error over training examples 
and the norm of the weight vector) leads to minimization 
of the upper bound on generalization error over unseen 
examples effectively achieving a solution to the curse of 
dimensionality. 

𝑅 𝒘 ≤ 𝑅𝑒𝑚𝑝 𝒘 + Ω
1

𝑁
,

1

𝒘
, 𝑑

https://en.wikipedia.org/wiki/Curse_of_dimensionality
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Understanding norm-based Regularization

• Remember, output is a weighted combination of 
the input

𝑓 𝒙 = 𝒘𝑇𝒙

• Minimizing 𝒘 𝑝

– p = 2: pulls the point towards the origin
• Reduces the length of the weight vector and prevents 

them from growing larger

– p = 1: reduces the axes coordinates individually
• Reduce the magnitude of individual weights

– Smaller individual feature components
» Sparse solutions (i.e., fewer non-zero weights than with 

p = 2)
– Used for reducing or selecting features to only important

ones

– p = 0: reduces the number of non-zero components
• Reduce the number of “active” features
• Feature selection
• Difficulties in optimization 

6

Assume a vector

𝒘 =
1

0.5
 

𝒘 𝑝=2 = 1 + 0.25 = 1.18 

𝒘 𝑝=1 = 1 + 0.5 = 1.5 

𝒘 𝑝=0 = 2 

1

0.5
1.18
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Regularization: Not limited to norm-based regularization

• Small changes in input should produce small changes in 
output

• More accurately, what we want is
– “Non-causal” changes in input should not change the output

• Changes that are not causally linked to label assignment

• For example: 
– If our goal is to classify horses vs unicorns: A rotated horse is still a horse

– However, if a change to the horse makes it a unicorn, the ML model 
prediction should change

• The ML model should be “Invariant” to such changes

• This idea forms the basis of a number of different type 
of approaches that have a regularization effect

– Data augmentation

– Adversarial Training Perturbations

– Contrastive learning

– Drop-out

– Invariant Risk Minimization

– Learning using statistical Invariants

7
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How to program any ML model?

• If you can define a loss function

• And a regularizer

• The rest can be automated For 
any ML problem*!

• Using Automatic Differentiation 
Libraries

– Autograd

– PyTorch

– TensorFlow

– JAX

– Zygote.jl

8*Terms and conditions apply

Go through this exercise:

https://github.com/foxtrotmike/CS909/blob/master/barebones.ipynb

REO and SRM are all you need!

• Representation
• How does the model produce its output given its input

• 𝒇 𝒙; 𝒘 = 𝒘𝑻𝒙
• Evaluation (SRM/Definition of Optimization Problem)

• Define a loss function and a regularization strategy write the 
optimization problem 

• 𝑚𝑖𝑛𝒘𝑃 𝒘; 𝑿, 𝒚 =
𝜆

2
𝒘𝑻𝒘 + σ𝑖=1

𝑁 𝑚𝑎𝑥 0, 1 − 𝑦𝑖𝑓(𝒙; 𝒘)

• Optimization

• Obtain gradient ∇𝑤𝑃(𝑤) =
𝜕𝑃(𝑤)

𝜕𝑥
 through an automatic 

differentiation method
• Apply gradient descent (or other optimization) updates until 

convergence
• 𝑤 ← 𝑤 − 𝛼∇𝑤𝑃(𝑤)

• Successful optimization is necessary for generalization (but not 
sufficient). Must check for successful optimization!

𝑃 𝒘

P(w) dP(w)

𝑃′ 𝒘

https://en.wikipedia.org/wiki/Automatic_differentiation
https://github.com/foxtrotmike/CS909/blob/master/barebones.ipynb
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CLUSTERING
An exercise into SRM

9
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Clustering
• Input

– Typically, a Data Matrix (X) 
– Unsupervised technique

• Grouping objects such that:
– Objects within the same group (cluster) are more similar to

each other and different from objects in other groups
• This is the underlying optimization problem of all clustering methods

• Metrics
– Using (unlabeled) training data itself

• Davies-Bouldin Index
• Dunn’s Index
• Silhouette Coefficient

– Using external (test data) with cluster assignments by experts as 
ground truth

• Purity
• Jaccard Index
• Dice Index

10

Read: https://en.wikipedia.org/wiki/Cluster_analysis 

https://en.wikipedia.org/wiki/Cluster_analysis
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k-means Clustering

• bi
t is 1 when the ith center is the one closest to xt

Most commonly used algorithm 
for clustering

Input: Data Matrix X

Hyper-parameter: Number of 
clusters, Initial Cluster Centers

Output: 
Assignment of each example 
to a cluster center
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k-means Clustering
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k-means Clustering
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k-means Clustering
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k-means Clustering
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REO for k-means
• Representation

– An example 𝒙 is assigned a cluster based on its closest “centroid”
• The 𝐾 centroids are denoted as: 𝑴 = {𝒎𝟏, … , 𝒎𝑲}
• The cluster assignment for an example based on a distance metric 𝑑 ∙,∙ is

given by the nearest neighbor rule 
𝑐 𝒙 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑗= 1…𝐾 𝑑 𝒙, 𝒎𝑗 , 𝑐 𝒙 ∈ {1 … 𝐾}

• Evaluation
– We would like to determine the cluster centroids 𝑴 = {𝒎𝟏, … , 𝒎𝒌}

and the assignments of training examples to clusters (non-
overlapping sets) 𝑺 = {𝑺𝟏, … , 𝑺𝑲} such that the within-cluster 
distance from centroids is minimized. 

min
𝑆

σ𝑗=1
𝐾 σ𝑥∈𝑆𝑗

𝑑(𝒙, 𝒎𝒋) with 𝒎𝒋 =
𝟏

|𝑺𝒋|
σ𝒙∈𝑺𝒋

𝒙

• Optimization: This is an NP-Hard problem but the  Previously 
described approximate algorithm leads to a good local optimum 

• Hidden Hyperparameters
– Distance metric: You can get different clustering based on the 

distance you use

• Regularization?
– Cluster assignment of an example should not change within a short 

distance: The choice of your distance metric controls regularization

16

Must read: 
https://en.wikipedia.org/wiki/K-means_clustering 

https://en.wikipedia.org/wiki/K-means_clustering
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Hierarchical Clustering
• Build a hierarchy of clusters

– Bottom up: Agglomerative Clustering
– Top down: Divisive clustering

• Allows us to represent the findings in a tree
• We can cutoff at any height to get different 

number of clusters
• Hyperparameters

– Distance metric
– Linkage: How do we define a distance 

between two sets of points
• Average, Min, Max, etc…
• Changes clustering

• Single Dimensional Example showing the 
dendrogram

17

https://en.wikipedia.org/wiki/Hierarchical_clustering 
https://ncbiinsights.ncbi.nlm.nih.gov/2020/01/13/novel-coronavirus/

https://nextstrain.org/ncov/global 

A “Phylogenetic” tree based on 
genomic distance for SARSCov-2

https://en.wikipedia.org/wiki/Hierarchical_clustering
https://ncbiinsights.ncbi.nlm.nih.gov/2020/01/13/novel-coronavirus/
https://nextstrain.org/ncov/global
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Linkage

• How do we define the distance between clusters

– Min

– Max

– Average

20

201 2 6 7.5 10 12 17
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Linkage

21

201 2 6 7.5 10 12 17
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Support Vector Clustering

• Ben-Hur and Vapnik 2001

• No assumptions on the shape and number of clusters

• Enclose all examples in a kernel feature space in a tight sphere 
centered at “𝒂” with radius “𝑅”

• Two points belong to the same cluster if, for all points 𝒙 in between 
them 𝜙 𝒙 − 𝒂 2 < 𝑅2

• Can be kernelized

• No need of specifying the number of clusters a priori

22

𝑚𝑖𝑛𝑅,𝒂 𝑅2 + C σ𝑖=1
𝑁 max(0, 𝜙 𝒙𝒊 − 𝒂 2 − 𝑅2 ) 

𝑅

𝒂

Ben-Hur, Asa, et al. "Support vector clustering." Journal of machine learning research 2.Dec (2001): 125-137. 
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Many Other

23

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html

y_pred = KMeans(n_clusters=3).fit_predict(X)

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
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https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
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ONE CLASS CLASSIFICATION
An exercise into SRM

25
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One Class Classification

• Unary Classification

• Class Modelling

• Novelty Detection

• Examples for one class only (say normal)

• Identify those examples that differ from the given class

26

Concept 

Descriptor 

Boundary 

f(x,w)=0
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OCC: Support Vector Data Descriptors

• Finds a hyper-sphere with center at ‘a’ and radius R so that the target 
class examples lie within the hyper-sphere

– Error function: Penalize training examples if they lie outside the hypersphere

• 𝒎𝒊𝒏𝒂,𝑅 𝑅2 +
𝐶

𝑁
σ𝑖=1

𝑁 𝑚𝑎𝑥 0, 𝒙 − 𝒂 2 − 𝑅2

27

R

a
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One-Class SVM (Scholkopf 2001)

• Goal: Separate points of the target class (represented in the 
kernel space) from the origin with maximum margin

• Representation
– Linear Separability Case 𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏

• All given (target) class examples should have 𝑓(𝑥) ≥ 0
• Consider that the outliers are mapped to the origin 𝑓(0) = 𝑏 < 0

• Evaluation
– Error when

• A point of the target class produces 𝑓 𝑥 ≤ 0
• Or the origin is classified as target:  𝑓(0) = 𝑤𝑇𝑥 + 𝑏 = 𝑏 > 0

– Loss function thus becomes: 𝑙(𝑓 𝒙; 𝒘, 𝑏 = max(0, −𝑓(𝑥)) + 𝑏
– Thus: (it can be kernelized)

𝒎𝒊𝒏𝒘,𝑏

1

2
𝒘𝑻𝒘 +

𝐶

𝑁


𝑖=1

𝑁

𝑚𝑎𝑥 0, − 𝒘𝑻𝒙 + 𝑏 + 𝑏

28

https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html 

https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
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Abnormal Beat Detection in ECG

• ECG based automated detection of abnormal 
beats has low generalization across 
individuals

• Solution: Use OCC to train on the normal beats for 
each individual

– Do not have to give any abnormal beats in training

• Validation on 46 Records from MIT-BIH Database with 
lead MLII

– 73,258 normal (~69.0%) and about 32,827 (~31%) abnormal 
beats

29

Preprocessing
Feature 

Extraction
Classification

Robust electrocardiogram (ECG) beat classification using discrete wavelet transform. Minhas, F. 
and Arif, M. 5, 2008, Physiological Measurement, Vol. 29.
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TREES, FORESTS AND BOOSTING
An exercise into SRM

30
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Trees as classifiers

Can we learn a set of rules 
of assignment of different 
regions of the feature space 
to different classes?

31

x1

32

16

x2

• Assume you have a classification problem
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Picking a feature to split

32

x1

x2
Current Error Rate: 16/48 = 1/3 

32

16

At each step pick the feature and split that gives the most “information gain” or the most reduction in error 



Data Mining University of Warwick

Check x2

33

x1

x2 Total points: 48
Current Error Rate: 16/48 = 1/3 

32

16
For a split along x2 = 0
Total points in the top half = 19 out of 48 
Error in the top half: 8/19 

Total points in the bottom half: 29
Error in the bottom half = 5/29

Total error: 
8

19

19

48
+

5

29

29

48
=  13/48

Reduction in error = 16/48-13/48 = 3/48

At each step pick the feature that gives the most “information gain”
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Check x1

34

x1

x2 Total points: 48
Current Error Rate: 16/48 = 1/3 

32

16
For a split along x1 = 0
Total points in the L half = 32 out of 48 
Error in the L half: 4/32 

Total points in the R half: 16
Error in the bottom half = 4/16

Total error: 
4

32

32

48
+

4

16

16

48
 = 8/48

Reduction in error = 16/48-8/48 = 8/48

x1 Gives the most improvement in error rate



Data Mining University of Warwick

Continuing: Depth = 1

35

x1

x2

32

16
If x1<0

yes no

Assign Red Assign Blue
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Continuing: Depth = 2

36

x1

x2

32

16
If x1<0

yes no

Assign BlueIf x2<-1

yes no

Assign Red Assign Blue
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Continuing: Depth = 3

37

x1

x2

32

16
If x1<0

yes no

Assign BlueIf x2<-1

yes no

Assign Red If x2<0.5

yes no

Assign Blue Assign Red
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Continuing

38

x1

x2

32

16
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Continuing

39

x1

x2

32

16
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Continuing

40

x1

x2

32

16



Data Mining University of Warwick

Final

41

x1

x2

32

16

If x1<0

yes no

If x2<-1

yes no

Assign Red If x2<0.5

yes no
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From Trees to Random Forests

• Combine the predictions from 
multiple “weak” learners
– Uncorrelated errors in 

predictions
• Each learner makes errors on 

different examples

• How to make different 
classifiers
– Different Data set partitioning
– Different Features
– Different parameters
– Learning errors from previously 

trained methods
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Reading
Polikar 2006: http://users.rowan.edu/~polikar/RESEARCH/PUBLICATIONS/csm06.pdf 
Ensemble Machine Learning Methods and Applications (chapter 1), 2012
https://doc.lagout.org/science/Artificial%20Intelligence/Machine%20learning/Ensemble%20Machine%20Learning_%20Methods%20and%20Applications%20%5BZhang%20%26%20Ma%202012-02-17%5D.pdf 

https://doc.lagout.org/science/Artificial%20Intelligence/Machine%20learning/Ensemble%20Machine%20Learning_%20Methods%20and%20Applications%20%5bZhang%20&%20Ma%202012-02-17%5d.pdf
https://doc.lagout.org/science/Artificial%20Intelligence/Machine%20learning/Ensemble%20Machine%20Learning_%20Methods%20and%20Applications%20%5bZhang%20&%20Ma%202012-02-17%5d.pdf
https://doc.lagout.org/science/Artificial%20Intelligence/Machine%20learning/Ensemble%20Machine%20Learning_%20Methods%20and%20Applications%20%5bZhang%20&%20Ma%202012-02-17%5d.pdf
https://doc.lagout.org/science/Artificial%20Intelligence/Machine%20learning/Ensemble%20Machine%20Learning_%20Methods%20and%20Applications%20%5bZhang%20&%20Ma%202012-02-17%5d.pdf
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From Trees to XGBoost

• Instead of “bagging” or boot-strap aggregating, i.e., combining 
“simple” trees by averaging, we can also combine them in 
series such that each tree “boosts” the decision of the previous 
one

– Boosting involves incrementally building an ensemble by training 
each new model instance to emphasize the training instances that 
previous models mis-classified.

43



Data Mining University of Warwick

XGBoost

44
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An REO/SRM View of Decision Trees
• Decision Trees, Random Forests, and Gradient Boosting 

Models
– Representation

• Output for a given input 𝒙 is generated by following a tree 
structure

– Can be modelled as: 𝑓 𝒙; 𝑇 where 𝒙 is an input and 𝑇 is the 
representation of a specific tree

– Evaluation 
• For a given tree structure, T, the model 𝑓 𝒙; 𝑇 will generate a loss 

for each training example which can be minimized. 
• We can further penalize based on the structure of the tree itself.

For example, if it is too complicated or if it uses too many features 
etc.

min
𝑇

𝑅 𝑇 + 𝜆 

𝑖

𝑙(𝑓 𝑥𝑖; 𝑇 , 𝑦𝑖)

– Optimization
• Can be done through gradient based optimization (as in XGBoost)
• Or can go through an optimization process during the construction 

of the tree structure itself (e.g., by reduction of entropy or variance
in each leaf)
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LEARNING TO RANK
An exercise into SRM
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Learning to Rank
• Assign a rank to an input example
• Classification

– Assign into classes
• Typically no semantic relationship 

between classes (you cannot define 
greater than or less than in apples 
vs. oranges)

• Regression
– Assign continuous variables

• Age: 21 is greater than 18 (a 
relationship exists)

• Ranking
– Assigning ranks

• This is better or worse than that

– Also called “Ordinal Regression”

47

Apple grading
U.S. Extra Fancy
U.S. Fancy
U.S. No. 1
U.S. No. 1 Hail
U.S. Utility

Cancer Grading
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Ranking in Information Retrieval

• For a given query, a page 
that is more often clicked 
should be ranked higher 
than the one that isn’t

48
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Learning to Rank
• Problem Formulation

– Input: Training samples as pairs such that one 𝒙𝒊 is to 
be ranked higher than another 𝒙𝒊

′ by an amount 𝑟𝑖

• 𝑆 = 𝒙𝟏, 𝒙𝟏
′ , 𝑟1 , … , 𝒙𝒎, 𝒙𝒎

′ , 𝑟𝑚
– Pairs of examples 𝒙𝒊, 𝒙𝒊

′

– Rank difference 𝑟𝑖 > 0

• Goal: Learn a function Ranking function: 𝑓: 𝑋 → 𝑅

• Representation: 𝑓 𝒙; 𝒘
• Evaluation

– A misranking will occur if 𝑓 𝒙𝒊; 𝒘 − 𝑓 𝒙′
𝒊; 𝒘 < 𝑟𝑖

– Thus, the loss becomes: 

𝑙 𝑥𝑖 , 𝑥𝑖
′, 𝑟𝑖; 𝑓 = max 0, 𝑟𝑖 − 𝑓 𝒙𝒊 − 𝑓 𝒙𝒊

′

– Optimization problem becomes:

min𝑤 𝑅 𝒘 + σ𝑖 𝑙 𝑥𝑖 , 𝑥𝑖
′, 𝑟𝑖; 𝑓
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𝑟𝑖 − 𝑓 𝑥𝑖 − 𝑓 𝑥𝑖
′

𝑙 𝑥𝑖 , 𝑥𝑖
′, 𝑟𝑖; 𝑓

𝒙𝟏 𝒙𝟏
′

𝒙𝟐 𝒙𝟐
′

𝒙𝒎 𝒙𝒎
′

>

>

>

⋮

𝑟1 = 1

𝑟2 = 3

𝑟𝑚 = 1
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Predicting anti-CRISPR proteins

• Identify if a protein in a set of proteins is an Anti-
CRISPR protein

– Given: sets of sets of proteins (proteomes) in which at 
least one protein is an anti-CRISPR protein

• Only 20 examples

– Required: Rank the known anti-CRISPR protein higher 
than non-anti-CRISPR proteins in the proteome

• Used ranking constraints with an XGBoost model

• Able to identify new anti-CRISPR proteins in new 
species

50

Eitzinger, Simon, Amina Asif, Kyle E. Watters, Anthony T. Iavarone, Gavin J. Knott, Jennifer A. Doudna, and Fayyaz ul Amir Afsar Minhas. 
“Machine Learning Predicts New Anti-CRISPR Proteins.” Nucleic Acids Research. April 16, 2020. https://doi.org/10.1093/nar/gkaa219

https://www.google.com/url?q=https%3A%2F%2Fdoi.org%2F10.1093%2Fnar%2Fgkaa219&sa=D&sntz=1&usg=AFQjCNHjmfOQG_Vov3NmRK8mhok_ZxYEEg
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RECOMMENDATION SYSTEMS
An exercise into SRM
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Recommendation Systems

• Task
– Predict the rating or preference a user would give an item

• Given:
– Training data: Matrix of Items rated by users

• Other names
– Matrix Completion Problem
– Information Filtering Problem

52

https://help.netflix.com/en/node/100639
https://en.wikipedia.org/wiki/Recommender_system
Andrew Ng’s lectures: https://www.youtube.com/playlist?list=PL_npY1DYXHPT-3dorG7Em6d18P4JRFDvH

MOVIE / USERS Alice (1) Bob (2) Carol (3) Dave (4)

Love at last 5 5 0 0

Romance Forever 5 ? ? 0

Cute puppies of love ? 4 0 ?

Nonstop car chases 0 0 5 4

Swords vs. Karate 0 0 5 ?

𝑌(𝑀×𝑈) = [𝑦𝑚𝑢]

https://help.netflix.com/en/node/100639
https://en.wikipedia.org/wiki/Recommender_system
https://www.youtube.com/playlist?list=PL_npY1DYXHPT-3dorG7Em6d18P4JRFDvH
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REO/SRM for Collaborative Filtering Recommendations

• Representation
– Represent each movie 𝑚 by its features: 𝒙𝑚

• Note these features may not be known

– Represent the prediction score for this movie for user 𝑢 as: 𝒘𝑢
𝑇 𝒙𝑚

• Note that the weight vector 𝒘𝒖 characterizes each user

– Whenever a user 𝑢 rates a movie 𝑚, we set a flag 𝑠𝑚𝑢 to 1 otherwise 0

– The rating for the movie 𝑚 by user 𝑢 is 𝑦𝑚𝑢

• Evaluation
– Prediction error for all labelled movies

– We add regularization terms: 
𝜆𝑢

2
σ𝑢=1

𝑈 𝒘𝑢
2, 

𝜆𝑚

2
σ𝑚=1

𝑀 𝒙𝑚
2

– The complete optimization problem aims to find both user weights and movie features

• Optimization
– Can alternate between finding user weights and movie features
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𝐸 =
1

2


𝑢=1

𝑈


𝑚=1

𝑀

𝑠𝑚𝑢 𝒘𝑢
𝑇  𝒙𝑚 − 𝑦𝑚𝑢

2

min
𝒘𝒖,𝒙𝒎

𝜆𝑢

2


𝑢=1

𝑈

𝒘𝑢
2 +

𝜆𝑚

2


𝑚=1

𝑀

𝒙𝑚
2 +

1

2


𝑢=1

𝑈


𝑚=1

𝑀

𝑠𝑚𝑢 𝒘𝑢
𝑇  𝒙𝑚 − 𝑦𝑚𝑢

2
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What can we do with this?

• We can rank the movies that were not ranked by a user

• We can also identify similar movies
• Nearest neighbors over 𝒙𝑖

• Or similar users
• Nearest neighbors over 𝒘𝑗

• Or identify popular trends of movies

– Average movie ratings across all users 
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OTHER PROBLEMS
An exercise into SRM
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ML Task ML Task

Classification (Binary and Multi-class: OVR, OVA, etc) Out of Domain Detection

Regression Novelty Detection/One-Class Classification

Dimensionality Reduction / Decomposition Retrieval / Vector Database Search

Clustering Prediction under domain shift or concept drift

Biclustering Counterfactual prediction

Recommender System, Basket (item co-occurrence analysis) Zero and Few Shot Prediction

Learning to Rank (Ordinal Regression) Semi-Supervised Learning

Generative Modelling: Conditional and Unconditional Weakly-supervised and multiple instance learning

Multi-task Prediction Causal Learning, Inference and Discovery

Multi-Label Prediction Active Learning

Survival Prediction (Churn Prediction or Failure Prediction) Meta Learning

Adaptive Prediction Sets & Conformal Prediction Curriculum Learning

Meta-Learning: Learning to learn and learning to optimize Transfer Learning

Representation Learning Contrastive and self-taught Learning

Open Set Recognition Online and Continuous Learning

Subset Discovery Reinforcement learning

Domain Specific tasks
CV: Object detection, localization, counting, instance segmentation, 
semantic segmentation, image to image regression

Structured Output Learning
Topic Modeling, Machine Translation, Counterfactual prediction
Community discovery, graph learning, time series forecasting, … 56
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“Nearly everything is really interesting if you go 
into it deeply enough.”

(Feynman)
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