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Applications of Machine Learning

* An ability that | would like you to learn is to identify how to use
machine learning in different domains.

 Machine learning can be applied in a wide array of real-world
applications
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Data, Big Data and Data Science

 We are going through an
age of “Big Data”
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Our Emergent Digital Future

http://www.digitaltonto.com/2011/our-emergent-digital-future/
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, . . . . .
Moore’s Law — The number of transistors on integrated circuit chips (1971-2016) SUsUE
ol p g e i . : i - =P gl nData
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are
strongly linked to Moore's law.
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Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic. Licensed under CC-BY-SA by the author Max Roser.
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Question

e Where does the
bottleneck lie?
— Data Analysis by Humans

— Have humans become
smarter?

— How about we automate
that?

CS909: Data Mining
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Data Science

e Use of the scientific method in
the development of:

Eunip:ufér‘

Science/IT Statisti
— Processes P, e
. Sci
— Algorithms s
— SYStemS Domains/Business

Knowledge

* For extraction of knowledge
from structured or unstructured
data

e Examples
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DEC1a1, 2017 (@ 08:32 PM

LinkedIn's Fastest-Growing Jobs Today Are In Data
Science And Machine Learning
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Data Scientists Soars
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US: 33 states accommodate self-
driving vehicles on public roads.

California: In 2018, DMV
allowed fully autonomous
vehicles with no driver to
operate onits public roads.

Arizona: Governor Ducey gave
the green light for cars without
drivers to operate on public
roadsin 2018

Autonomous Vehicle Access to Public Roads:

None or unknown Some access [l High access

UK: The government passed a
bill to draw up the liability and
insurance policies related to
autonomous vehicles.

Applications

Sweden: Last December, Volvo
launched its Drive Me project,
which provided self-driving cars to
aitimbenof pesple. China: Shanghai issued its
first self-driving licenses in
2018.

South Korea: The K-City is
the largest town model ever
built for self-driving car
experimentation.

, i
Ty, .
o
i ® Delng Electt™

Germany: the parliament passe
a law last May that allows
companies to test self-driving
cars on public roads.

Netherlands: Council of Ministers 7
first approved driverless vehicle Singapore passed legislation
road testing in 2015. recognizing motor vehicles
don't require a human driver

New Zealand: The country has
no specific legal requirements
for cars to have drivers.
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Handwriting Recognition / OCR
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Jazz Concert. Organizing such an eventis no picnic, and as
Dresident of the Alumni Association, a co-sponsor of the event,
Kate was overworked. But she enjoyed her job, and did what was

We were referred to you by Xena Cohen at the University Medical
Center. This is regarding my friend, Kate Zack.
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required of her with great zeal and enthusiasm. sk ks, ¥ Sop wnd  blod i ATz, vee R H
However, the extra hours affected her health; halfway through the I exbasien . -
show she passed out. We rushed her to the hospital, and several Vi b o vesy bed Pl brg, Gald g Eidly dea
questions, x-rays and blood tests later, were told it was just Jub of A mmf} wd v ou et ofinion 7
exhaustion.
Tk g !
Kate's been in very bad health since. Could you kindly take alock Tim
at the results and give us your opinion?
Thank youl
Jim
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The Letter
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First Postal Code Reader Worldwide

;M WA 75775 SEATTLE, WA 98103
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1982: First Address Reader Worldwide

7 1234 ELM STREET

o ir A S vt
’"/4//4, iy 78 /¢ 3
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First Multi Line Reader

MR. JOHN SMITH

‘/,' g s L :;%..‘f»—"
/A 1% 78/¢3

CS909: Data Mining University of Warwick



1996: First Sender’s Address Reader

PAUL DRURY
1123 3RD AVENUE

NEW YORK, NY 10019

CS909: Data Mining University of Warwick 18



1998: First Full Text Reading
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2000: First Graphics Recognition

STAMP: 84 ¢

4 Wk 78/¢3

) ' 6/
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2004: First Full Recognition

SQUKRE&S‘TLS

1123 3rd Aveniue

New York, NY 10019
LOGO:SQUARE & SONS

llll“lllll‘ll lllﬂ'll"lllll]lli ll“nllln”ll'l |' l'nll
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2008: Recognition on Both Sides of Envelope

B
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1123 3¢d Avenion ‘
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OCR Accuracy

Read rate
100% Machine print
0 Handwriting
80°% Arabic handwriting
Multi-lingual OCR

60%

40% -

20%

0% -

1970 1975 1980 1985 1990 1995 2000 2005 2010 Year

OCR Benchmarks
NIST'93 Test Award
ISRI'95 Award
ICDAR'07 Arabic Award
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Applications: Biometrics

.

.’:?’

face {acial thermogram

hand geometry hand vein

ST
4 34
.
.

retinal scan signatury volor print
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acebook Friends Tagging

We've Suggested Tags for Your Photos

We've automatically grouped together similar pictures and suggested the names of friends who might
appear in them. This lets you quickly label your photos and notify friends who are in this album.

Tag Your Friends

This will quickly label your photos and notify the friends you tag. Learn more

Who is this? Who Is this? Who is this?

Francis Luu

Skip Tagging Friends Save Tags

CS909: Data M University of Warwick 25
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Word Accuracy Rate (%)

100%

90%

80%

70%

Voice Assistants

Google Machine Learning
Achieving Higher Word Accuracy, 2013-2017

95% %

———Google — - Threshold for Human Accuracy

2013 2014 2015 2016 2017

Alexa Siri Google Now
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Gmail: ML in NLP

William Shakespeare ‘I

More spam, but not in Gmail inboxes

N

Jun 04 Apr 05 Fab 06 Dec 06 Qct o7

0 %

B Spam prevalence: % of all incoming Gmail traffic (before filtering) that is spam
B Missed spam: % of total spam reported by Gmail users

As the amount of spam has increased, Gmail users have received
less of it in their inboxes, reporting a rate less than 1%.

CS909: Data Mining

Transformer Al poetry: Poetry classics as reimagined and rewritten by an artificial intelligence.

“Sonnet 18”

William Shakespeare

Shall I compare thee to a summer’s day?

Thou art more lovely and more temperate:
Rough winds do shake the darling buds of May,
And summer’s lease hath all too short a date;

A winter’s day, when beams of sun are few,

And skies are grey with clouds intemperate,

Is to thy beauty somehow sordid grown.

Her lovely-lovely eye is quite shut up,

Like windows pale before a sunny shower.

The earth that’s cold and moist, like to my mistress,

When once that she unbrac'd, her lovely jewel,
Grows as both ugly and uncourtly.

Poor soul, the center of my motley host,

See, now they request thy sovereign presence;
The din of merry hearts hath brought me thus

To greet thee, thou unsoild and saint-like beauty.

University of Warwick
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Recommender Systems

e Recommend movies based on user
preferences, interests and likes

e Similar ideas for facebook...

— Find friends that share your interests

CS909: Data Mining University of Warwick 29



Keyboard acoustics

Text recognized by the HMM classifier, with cepstrum features (underlined
words are wrong),

the big money fight has drawn the shoporo od dosens

of companies in the entertainment industry as well

as attorneys gnnerals on states, who fear the

fild shading softwate will encourage illegal acyivitt,
srem the grosth of small arrists and lead to lost cobs and
dimished sales tas revenue.

Text after spelling correction using trigram decoding,

Aejeyieg ‘elulopes Jo Ausianiun

HYOAL 'd T PUC ‘NOHZ DNId 'ONVNHZ I

the big money fight has drawn the suppert of dozens

of companies in the entertainment industry as well as
attorneys generals in states, who fear the film sharing
software will encourage illegal activity, stem the growth

of small artists and lead to lost jobs and finished sales
tax revenue.

Original text. Notice that it actually contains two typographical errors, one of
which is fixed by our spelling corrector.

the big money fight has drawn the support of dozens

of companies in the entertainment industry as well as
attorneys gnnerals in states, who fear the file sharing
software will encourage illegal activity, stem the growth
of small artists and lead to lost jobs and dimished sales
tax revenue.

CS909: Data Mining University of Warwick 30
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* Gesture Recognition

PCR in HCI/CV

CS909: Data Mining
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Synthesis

;3IHHEEQQE
' ff @nm
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AR RN LS

https://deepmind.com/blog/article/Agent57-Outperforming-the-human-Atari-benchmark
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https://deepmind.com/blog/article/Agent57-Outperforming-the-human-Atari-benchmark

Google DeepMind's

AlphaFold 2

ac L
-l ﬁﬁ,ﬁ}{/ £ X7

i/ TN

Al Breakthrough in Biology
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Machine Learning

‘X\\ : »
What my friends think | do What other computer
scientists think | do

*(ers((&*n
£75&8&%
»

min b +c 3¢, max 3 e -3 Sy, e 1
2 pn =l £l jml d

st. YW xP+b)21-¢, * s1. 0s¢;<C

£.20 i(lj_\', =0
P

Python 5.1.8 — An enhanced Interactive Python.
-> Introduction and overview of IPython's features.
quickref -> Quick reference.
elp -> Python's own help system.
bject? -> Details about 'object', use ‘object??' for extra details.

1
h(B) = —||,|6’|| +C —leldx (0.1 - y,(Bx,)
n = L
\|, Traceback (most recent call
in <modules

PyTorch

Il
h(ﬂ} = ;Z [5”18”2 +C= max[D_ 1- }'l{ﬁ'rjj)] : No module named 'PyTorch'
i=1

What my wife thinks | do What | think I do What | actually do
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Applied Machine Learning

* Examples from my research

CS909: Data Mining

University of Warwick
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Data Science: Hurricane Intensity Prediction

* Hurricane Intensity Prediction

* |n collaboration with National
Hurricane Center, USA

» Deep-PHURIE

Storm Size

Super Typhoon Tip
Remember that =S
storms are classified o RMSE: 7.8kt RMSE: 8.6kt
on the basis of wind L
speed, not size. 18
130
120
Tropical Cyclone Tracy —~110
%)
§ 100 [
http//www.srh.noaa.gov ; 90 F
27
» Largest recorded hurricane: Typhoon Tip, Northwest Pacific, é :z -
12 October 1979 % wl
» Smallest recorded hurricane: Tropical Cyclone Tracy, near § so *
Australia, 24 December 1974 [
sl L]
L]
.
10

0 L 1 Il 1 W= S
0 10 20 30 40 50 60 70 80 9% 100 110 120 130 140 150

Deep-PHURIE: Deep Learning based Hurricane Intensity Estimation from Infrared Satellite Imagery, M. Dawood, A. Asif and Fayyaz Minhas, in Neural Computing and Appucauvris. Ackual Intensity.(knots)

pp. DOI: 10.1007/s00521-019-04410-7, July 2019.
PHURIE: Hurricane Intensity Estimation from Infrared Satellite Imagery using Machine Learning, Amina Asif, Muhammad Dawood, Bismillah Jan, Javaid Khurshid, Mark DeMaria,
and Fayyaz ul Amir Afsar Minhas, in Neural Computing and Applications, DOI: http://dx.doi.org/10.1007/s00521-018-3874-6, 2018

CS909: Data Mining University of Warwick 37



http://dx.doi.org/10.1007/s00521-018-3874-6,

Data Science: Journal Recommendation System

P R I S M

PRISM: Journal Paper Recommendation System

PRISM helps you find journals that could be best suited for publishing your research papers. Please also consult the journal's Aims and
Scope for further guidance. Ultimately, the Editor will decide on how well your article matches the journal.
Simply insert your title and abstract and select the appropriate field-of-research for the best results.

Our Recommendations

Hover-Net: Simultaneous segmentation and classification ¢ v/

medical image analysis

Nuclear segmentation and classification within Haematoxylin & Eosin stained histology imagesis a v
fundamental prerequisite in the digital pathology work-flow. The development of automated methods for iece transactions on medical imaging
nuclear segmentation and classification enables the quantitative analysis of tens of thousands of nuclei
within a whole-slide pathology image, opening up possibilities of further analysis of large-scale nuclear
morphometry. However, automated nuclear segmentation and classification is faced with a major ; medical image computing and computer assisted intervention — miccai 2018

Clear

Find Journal

ieee transactions on geoscience and remote sensing

ieee transactions on image processing

e Using classical NLP
* Using BERT

End to end Learning-based Journal Recommendation System by M. Bilal and Fayyaz Minhas (in prep.)

CS909: Data Mining University of Warwick



| can't be as confident about
computer science as | can about
biology. Biology easily has 500 years
of exciting problems to work on. It's

at that level.

— Denald Knuth —

CS909: Data Mining University of Warwick 39
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COVID19 Meets Machine Learning
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ECG Classification

Salactad Heats of Typs. LERH

Salatiel Bty of Ty pec PR

Salacied Dasti of Tysa: APE
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Medical Data Classification
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Predicting Protein interactions, interfaces and affinity

* |nput: Two protein structures or sequences
* Qutput: What residue pairs interact

<

Apply PAIRpred to your proteins here

Input File Type: pab*
File containing sequence or structure of ligand : | Choose File | No fi

File containing sequence or structure of receptor: | Choase File | No i

Email:
suawT

[1] Fayayz Minhas and Asa Ben-Hur, Multiple instance learning of Calmodulin binding sites. Bioinformatics 28, i416, 2012.

[2] Wajid Abbasi, Amina Asif, Saiga Andleeb, and Fayyaz Minhas, CaMELS: In silico Prediction of Calmodulin Binding Proteins and their Binding Sites, in Proteins: Structure,
Function and Bioinformatics, 2017.

[3] Issues In Performance Evaluation for Host-Pathogen Protein Interaction Prediction, Wajid A. Abbasi and Fayyaz Minhas, in Journal of Bioinformatics and Computational
Biology, vol. 14, no. 3, 1650011, January 2016.

[4] Training host-pathogen protein—protein interaction predictors , Abdul Hannan Basit, Wajid Arshad Abbasi, Amina Asif, Sadaf Gull and Fayyaz Minhas, in Journal of
Bioinformatics and Computational Biology, Vol. 16, No. 04, 1850014 (2018).

[5] Issues In Performance Evaluation for Host-Pathogen Protein Interaction Prediction, Wajid A. Abbasi and Fayyaz Minhas, in Journal of Bioinformatics and Computational
Biology, vol. 14, no. 3, 1650011, January 2016.

[6] Training host-pathogen protein—protein interaction predictors , Abdul Hannan Basit, Wajid Arshad Abbasi, Amina Asif, Sadaf Gull and Fayyaz Minhas, in Journal of
Bioinformatics and Computational Biology, Vol. 16, No. 04, 1850014 (2018).
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Experimental Validation: SnRK1- fC1

GhSnRK1 506aa

* In Silico Prediction and Validations of Domains
Involved in Gossypium hirsutum SnRK1 Protein
Interaction with Cotton leaf curl Multan
betasatellite encoded BC1

* [BC1, pathogenicity determinant encoded by

Cotton leaf curl Multan betasatellite interacts wit ’:..\4.,?» c1D

calmodulin-like protein 11 (CML11) in Gossypiurn x :;‘”\3\

hirsutum vy VT:"\““
v

Pak Eco Growth Sectorwise 2015-16
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Other W el
ESG Pt B Teres
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Leaf esation
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20 | Cotton: 51% of total foreign exchange
% Cotton Leaf Curl Virus: loss of 3M bales/year

Actual and Targets for each Sub-sec broken down by Sector. Color shows details about Actual and Targets. The marks are la
beled by Actual and Targels

http://www.dawn.com/news/1201323 GhCML11

In Silico Prediction and Validations of Domains Involved in Gossypium hirsutum SnRK1 Protein Interaction with Cotton leaf curl Multan betasatellite encoded BC1, Kamal, Hira, Fayyaz ul Amir Afsar Minhas, Hanu Pappu, Imran Amin et al., in Frontiers in
Plant Science 10 (2019): 656.

Bioinformatics and molecular analysis of Gossypium hirsutum calmodulin-like protein (CML11) interaction with begomovirus-transcription activator protein C2. Hira Kamal, Fayyaz Minhas, et al., in PLoS One (In press).
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Predicting anti-CRISPR proteins
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Eitzinger, Simon, Amina Asif, Kyle E. Watters, Anthony T. lavarone, Gavin J. Knott, Jennifer A. Doudna, and Fayyaz ul Amir Afsar Minhas. “Machine Learning Predicts New Anti-
CRISPR Proteins.” Nucleic Acids Research 48, no. 9 (May 21, 2020): 4698-4708. https://doi.org/10.1093/nar/gkaa219.
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https://doi.org/10.1093/nar/gkaa219

Current Focus: PATHLake

PATHology data Lake,
Analytics, Knowledge
and Education

UK Research and
Innovation

£15.7 million
Objective:

— Improve speed and
accuracy of cancer
diagnosis
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: 4
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The Revolution in Pathology

\-\— Biopsy
L needle

Computational Pathology

University of Warwick
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Why?

) | . Mareh 1968 1923
* Shortage of Pathologists w!:” . e
e Quantification is difficult (e LR
* Subjectivity | -y
" - - _

* Inter-observer variability
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How much fat?
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45.9%

R. Glodin, “The Clinical Challenge of Image Analysis and Al”, CRUK Early Detection Sandpit,
Royal College of Pathologists, London, UK, 20 Nov. 2019
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Real Tile

Deshpande, Srijay, Fayyaz Minhas, Simon Graham, and Nasir Rajpoot. “SAFRON: Stitching Across the Frontier for Generating
ArXiv:2008.04526 [Cs, Eess], August 11, 2020. http://arxiv.org/abs/2008.04526.
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Number of clusters: 3232
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Steps in the development of a data science model

Define the Identify Prepare and Model the Trainand Verify and
Problem Required Data Pre-process Data Test Deploy
Identify business goals Assess needed data Select required data Select algorithms Train the model with Verify final maodel
Identify data mining  Collect and understand  Cleanse/format dataas  Build predictive models sample data sets Prepare visualizations
goals data necessary Test and iterate and deploy

CS909: Data Mining University of Warwick
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Constructs of a Data Mining System for Prediction

* |dentify the objective

— |dentify the unit of classification (example)
* Image block, protein sequence, ....

Real world
Phenomenon Sensor

©)
3

Feature extraction mechanism

Decision
Machine Learning |—»
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Learning from Data

 Example Case

— Pathologists vs. Computer Scientists
* Hypothetical!
* Classify a person in their "native” environment
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Constructs

e Sensor(s)

— Camera

* Feature Extraction
— White coats or lap aprons?
— Computer Screen or microscopes?
— Income?

* Machine Learning
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Feature Space

' 1/6+1/4=0.42

; 3/6+0/4=0.5
Computer Screen?

Whiteness in Dressing
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Feature Space Classification

Computer Screen? 0/6+0/4=0.0

Whiteness in Dressing
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* Representation

— Represent examples in a feature space

— Define a classification function
* Line: f(x;w) = wx+w,x?+b =0

 Evaluation

— Define an error function
* Misclassifications

* Optimize
— Reduce error

e Real Test (Generalization)
— How does it perform on unseen data?

CS909: Data Mining

So far?

Parameter/Weight Updates

Error
Computation

Features ML Output

Known Target of Training Example: +1

University of Warwick

60



End of Lecture-2

We want to make a machine that will be proud of us.

- Danny Hillis
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