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Problems Other than Classification

• Regression

– Output is a continuous variable

– Predict age from an image
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Regression

• Estimate the relationship among variables
– Dependent variables
– Independent variables

• Used in 
– prediction and forecasting
– estimating effects of variables on each other

• Mathematical formulation
– Model: 𝑦 = 𝑓 𝒙;𝒘 + 𝝐

• For example: 𝑦 = 𝑤𝑥 + 𝑏 + 𝝐

– The Objective is to estimate the parameters 
𝒘 that produce outputs that are close to the 
given targets 
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SRM: Ordinary Lease Squares Regression (OLSR)

• Representation
• 𝑓 𝒙 = 𝒘𝑻𝒙 + 𝑏

• Evaluation
• Regularization: None

• Error: Square Loss

• 𝑙 𝑓 𝑥 , 𝑦 = 𝒇 𝒙 − 𝒚 2

• Optimization Problem
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min
𝑤



𝑖=1

𝑁

(𝒘𝑻𝒙𝒊−𝑦𝑖)
2 = 𝑿𝒘 − 𝒚 𝟐 = 𝑿𝒘 − 𝒚 𝑻(𝑿𝒘 − 𝒚)

Taking derivative wrt w and setting to zero gives:

𝒘 = 𝑿𝑻𝑿
−𝟏
𝑿𝑻𝒚

𝑿 𝑁×𝑑 , 𝒚 𝑁×1 =

𝑦1
𝑦2
⋮

𝑦𝑁
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Linear Regression: Simple(st) Example

• Example

– 𝑿 =
1 1
2 1

, 𝒚 =
3.5
4.75

– Thus: 𝒘 = 𝑿𝑻𝑿
−𝟏
𝑿𝑻𝒚 =

1.25
2.25

– Now 

• 𝒘𝑻𝒙(𝟏) =
1.25
2.25

𝑇 1
1

= 3.5

• 𝒘𝑻𝒙(𝟐) =
1.25
2.25

𝑇 2
1

= 4.75
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Coding
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import numpy as np

import matplotlib.pyplot as plt

X0 = np.array([[1],[2]])

y =np.array([3.5,4.75])

X = np.hstack((X0,np.ones((X.shape[0],1)))) #append 1 to each example

w = np.linalg.pinv(X)@y

f = X@w

e = f-y

L = e@e
plt.figure();plt.plot(X0,f,'ro');plt.plot(X0,y,'bx');plt.grid();plt.xlabel('x');plt.ylabel('output');plt.legend(['Prediction','True’]);

plt.title('Data Plot')

plt.figure();plt.plot(y,f,'o');plt.grid();plt.xlabel('True value');plt.ylabel('Predicted value');plt.title('Regression Scatter Plot')
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Using Sk-learn
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from sklearn.linear_model import LinearRegression

regr = LinearRegression(fit_intercept = False).fit(X, y)

f = regr.predict(X)

print('Weights:',regr.coef_)

plt.figure();plt.plot(y,f,'o');plt.grid();plt.xlabel('True value');plt.ylabel('Predicted value');plt.title('Regression Scatter Plot')

# No need to append 1 to feature vector using below

from sklearn.linear_model import LinearRegression

regr = LinearRegression(fit_intercept = True).fit(X0, y)

f = regr.predict(X0)
plt.figure();plt.plot(y,f,'o');plt.grid();plt.xlabel('True value');plt.ylabel('Predicted value');plt.title('Regression Scatter Plot')
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Statistical Inference by Regression
• Statistical Inference

– The goal of regression is to identify how a change 
in one variable changes the expected value of 
the other variable while keeping all else the 
same (ceteris paribus)

• Linear regression: E[y|x] = b + w x
– Statistics libraries write it using the shorthand 

notation: 𝑦~1 + 𝑥
– What do the coefficients tell us?

• w tells us if x and y have a (linearly) association
• We can get “p-values” for the regression coefficient 

and use this as a hypothesis test to test if the two 
variables are indeed related

– In the example in the given code (link below): For each 
one-unit increase in x, the expected value of y increases 
by 0.2970 units, holding all other variables constant. This 
coefficient is also statistically significant, with a very low p-
value (p < 0.05), suggesting a strong linear relationship 
between x1 and y.

11

https://github.com/foxtrotmike/CS909/blob/master/regression_residuals.ipynb 

Synthetic Data Generation
# Array of 1000 values with mean = 1.5, stddev = 2.5
X = 2.5 * np.random.randn(1000) + 1.5
# Generate 1000 noise terms 
noise = 0.5 * np.random.randn(1000) 
# Actual values of Y
y = 2 + 0.3 * X + noise

https://github.com/foxtrotmike/CS909/blob/master/regression_residuals.ipynb
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Questions

• If two variables are unrelated
– What would be their regression coefficients?

• If two variables are positively related
– What would be their regression coefficient?

• Would the regression coefficient be the same (in 
general) if I go in the reverse direction?

• 𝑦 = 𝑤𝑥𝑦𝑥 + 𝑏𝑥𝑦 + 𝜖𝑥𝑦

• 𝑥 = 𝑤𝑦𝑥𝑦 + 𝑏𝑦𝑥 + 𝜖𝑦𝑥

• Would the error be correlated with the 
independent variable? 
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Problems with least squares solution

• No regularization

– We want the parameters to 
change slightly with change in 
the input data
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Regularized Least Squares Regression

• Ridge Regression

– Ridge regression addresses some of 
the problems of Ordinary Least 
Squares by imposing a penalty on the 
size of the coefficients. The ridge 
coefficients minimize a penalized 
residual sum of squares:

• What is the role of the hyperparameter 
alpha?
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Coding
from sklearn import linear_model
ridge = linear_model.Ridge(alpha=a)
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OLS vs. Ridge Regression

• Ridge regression is basically minimizing a penalised version of the least-
squared function. The penalising shrinks the value of the regression 
coefficients. Despite the few data points in each dimension, the slope of 
the prediction is much more stable and the variance in the line itself is 
greatly reduced, in comparison to that of the standard linear regression
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https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols_ridge_variance.html#sphx-glr-auto-examples-linear-model-plot-ols-ridge-variance-py

https://github.com/foxtrotmike/CS909/blob/master/regression.ipynb 

https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols_ridge_variance.html#sphx-glr-auto-examples-linear-model-plot-ols-ridge-variance-py
https://github.com/foxtrotmike/CS909/blob/master/regression.ipynb
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Issues
• Both OLS and Ridge Regression are linear models

– Only able to predict “linear” relationships between 
input and output variables

• Linear regression assumes that the relationship 
between independent and dependent variables 
is linear and the error residuals should be 
normally distributed (link to code)
– So before applying it, you should check this by 

plotting the histogram of the residuals
– Otherwise, you can transform the variable (e.g., 

through box-cox or other transforms) or use 
generalized linear models or other strategies

• Due to squaring of the error of each data point 
in the loss function, both OLS and ridge 
regression can be very sensitive to outliers

• We can reduce the impact of outliers by using 
softer penalties
– Linear penalty 
– Epsilon insensitive loss
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𝑦′ − 𝑦 2

|𝑦′ − 𝑦|

𝑚𝑎𝑥 0, 𝑓 𝒙 − 𝑦 − 𝜖

co
u

n
ts

x log2(x)

https://github.com/foxtrotmike/CS909/blob/master/regression_residuals.ipynb
https://github.com/foxtrotmike/CS909/blob/master/regression_residuals.ipynb
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_map_data_to_normal.html
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From ∈-insensitive loss to SVR

• ∈-insensitive loss
𝑙 𝑓 𝑥 , 𝑦 = 𝑚𝑎𝑥 0, 𝑓 𝒙 − 𝑦 −∈

• Support Vector Regression
– Representation

• 𝑓 𝒙 = 𝒘𝑻𝒙 + 𝑏

– Evaluation
• Regularization: 𝒘𝑻𝒘

• Error: Epsilon insensitive loss

– Optimization Problem
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−∈ +∈

min
𝒘,𝒃

1

2
𝒘𝑻𝒘+

𝐶

𝑵


𝒊=𝟏

𝑵

𝑚𝑎𝑥 0, 𝑓 𝒙𝒊 − 𝑦𝑖 −∈
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Non-linear Regression with SVR

• Using Representer Theorem & Kernel Trick
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Representer Theorem: 𝒘 = σ𝑖=1
𝑁 𝛼𝑖𝒙𝑖

min
𝜶,𝑏

1

2


𝑖,𝑗=1

𝑁

𝛼𝑖𝛼𝑗 𝒙𝑖
𝑻𝒙𝑗 +

𝐶

𝑵


𝒊=𝟏

𝑵

𝒎𝒂𝒙 0, 

𝑗=1

𝑁

𝛼𝑖𝒙𝑖
𝑇𝒙𝑗 + 𝑏 − 𝑦𝑖 −∈

min
𝒘,𝑏

1

2
𝒘𝑻𝒘+

𝐶

𝑵


𝒊=𝟏

𝑵

𝒎𝒂𝒙 0, 𝑓 𝒙𝒊 − 𝑦𝑖 −∈

𝑓 𝒙 = 𝒘𝑇𝑥 + 𝑏 =

𝑖=1

𝑁

𝛼𝑖𝒙𝑖
𝑇𝒙 + 𝑏

min
𝜶,𝑏

1

2


𝑖,𝑗=1

𝑁

𝛼𝑖𝛼𝑗 𝑘(𝒙𝒊, 𝒙𝒋) +
𝐶

𝑵


𝒊=𝟏

𝑵

𝒎𝒂𝒙 0, 

𝑗=1

𝑁

𝑘(𝒙𝒊, 𝒙𝑗) + 𝑏 − 𝑦𝑖 −∈

Kernel Trick: Replacing 𝒙𝑖
𝑻𝒙𝑗  with 𝑘(𝑥𝑖 , 𝑥𝑗)  𝑓 𝒙 = 𝒘𝑇𝑥 + 𝑏 =

𝑖=1

𝑁

𝛼𝑖𝒙𝑖
𝑇𝒙 + 𝑏 =

𝑖=1

𝑁

𝑘(𝑥𝑖 , 𝑥) + 𝑏
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Kernels in SVR

• In the kernel space the SVR is fitting a line which corresponds to an arbitrary curve 
in the original feature space

19



Data Mining University of Warwick

Example
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https://scikit-learn.org/stable/auto_examples/svm/plot_svm_regression.html

See: https://github.com/foxtrotmike/CS909/blob/master/regression.ipynb 

https://scikit-learn.org/stable/auto_examples/svm/plot_svm_regression.html
https://github.com/foxtrotmike/CS909/blob/master/regression.ipynb
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Cross-validation and performance metrics

• Evaluation protocols for hyperparameter 
selection remain the same as in classification

• How to calculate how good we are doing?
– Measure error or correlation between true and 

predicted outputs for different examples in a test 
set

• Error Measures
– Sum of squared errors
– Mean squared error
– Mean Absolute error
– Root mean square error
– R2 score

• Pearson and Spearman Correlation Coefficients
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https://scikit-learn.org/stable/modules/model_evaluation.html

https://scikit-learn.org/stable/modules/model_evaluation.html
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Practical Application
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https://en.wikipedia.org/wiki/Hurricane_hunters

Hurricane Intensity 
Estimation
Input: Infrared Satellite 
Images of Hurricanes
Output: Maximum 
Sustained Windspeed in 
knots

https://en.wikipedia.org/wiki/Hurricane_hunters
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PHURIE ML Pipeline
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PHURIE: Hurricane Intensity Estimation from Infrared Satellite Imagery using 
Machine Learning, Amina Asif, Muhammad Dawood, Bismillah Jan, Javaid Khurshid, 
Mark DeMaria, and Fayyaz ul Amir Afsar Minhas, in Neural Computing and 
Applications, DOI: http://dx.doi.org/10.1007/s00521-018-3874-6, 2018. (Paper)

http://www.google.com/url?q=http%3A%2F%2Fdx.doi.org%2F10.1007%2Fs00521-018-3874-6%2C&sa=D&sntz=1&usg=AFQjCNFYalInABdEuWBYGnBiY8iS6ZNYJw
https://www.google.com/url?q=https%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs00521-018-3874-6&sa=D&sntz=1&usg=AFQjCNHCAmGiGJyWQ3rcfhQ_iWMOsLvlgA
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Practical Application

24
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Extension: Deep PHURIE
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Deep-PHURIE: Deep Learning based Hurricane Intensity Estimation from Infrared Satellite 
Imagery, M. Dawood, A. Asif and Fayyaz Minhas, in Neural Computing and Applications. pp. 
DOI: 10.1007/s00521-019-04410-7, July 2019.
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Required

• Reading:

– Section 13.10 in Alpaydin 2010

– http://ciml.info/ Linear Models

– Very useful: Regression with linear models 

• https://scikit-learn.org/stable/modules/linear_model.html

– Code: Scikit-learn, https://github.com/NICTA/revrand

– StatsModel Regression Exercises: 
https://www.statsmodels.org/dev/examples/index.html

27

http://ciml.info/
https://scikit-learn.org/stable/modules/linear_model.html
https://github.com/NICTA/revrand
https://www.statsmodels.org/dev/examples/index.html
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