



## Study of Supercritical Coal Fired Power Plant Dynamic Responses and Control for Grid Code Compliance

(EPSRC Project Ref No: EP/G062889)

**Professor Jihong Wang** 

Power and Control Systems Research Laboratory School of Engineering, University of Warwick, Coventry CV4 7AL, UK

> Workshop, UK-China: Partners in Energy Research London, UK, March 2014











- Background
- Overview of the project: major achievements
- Summary












Over 40% of electricity is generated from coal with CO2 Emission of 1020kg/MWh.



**Cleaner Coal Technologies** 

# Improving efficiency

- larger scale
- higher pressure and temperature
- operation optimisation
- new technologies
- Carbon capture and storage (CCS)



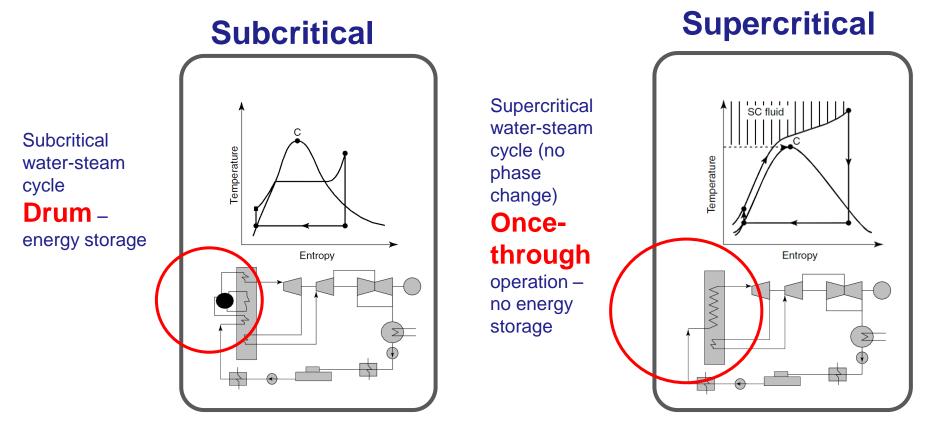








# **Supercritical technology**


|                         | Subcritical (conventional) | Supercritical                  | Ultra supercritical                        |
|-------------------------|----------------------------|--------------------------------|--------------------------------------------|
| Temperature<br>(°C)     | 500 – 550                  | 500 - 600                      | <b>550 − 600, (600 − 700)</b> <sup>*</sup> |
| Pressure (MPa)          | 16 – 17                    | 24 – 26                        | <b>27 – 32, (40 – 42)</b> <sup>*</sup>     |
| Features                | Drum: single<br>reheat     | Once through:<br>single reheat | Once through: double reheat                |
| Efficiency<br>cycle (%) | 33 - 35                    | 40-45                          | 42 – 47, <b>(50</b> – 55) <sup>*</sup>     |











#### **Challenges:**

Can supercritical power generation responses to the demand changes fast enough to satisfy **GB Grid Code** requirement?

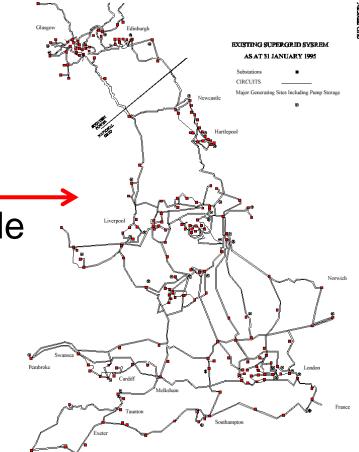


## PACSR





## **Future new power plants in the UK - SUPERCRITICAL**






? GB Grid Code

Power generation responses to the demand changes

Fast enough to satisfy the grid code specification











| Station Name   | Representation           | Company                           | Address                                          |                 |                     |          | Capacity<br>in MW |
|----------------|--------------------------|-----------------------------------|--------------------------------------------------|-----------------|---------------------|----------|-------------------|
| Aberthaw B     | National Ash             | RWE Npower                        | The Leys                                         | Aberthaw, Barry | South<br>Glamorgan  | CF62 42W | 1,489             |
| Cockenzie      | ScotAsh                  | Scottish Power                    | Prestopans                                       | East Lothian    |                     |          | 1,152             |
| Cottam         | EDF Energy               | EDF Energy                        | Cottam Power<br>Company, PO Box 4, nr<br>Retford | Nottinghamshire |                     | DN22 0ET | 1,970             |
| Didcot A       | National Ash             | RWE Npower                        | Didcot                                           | Nr Oxford       |                     | OX11 7HA | 2,020             |
| Drax           | Hargreaves CCP           | Drax Power Limited                | Drax                                             | Selby           | North Yorks         | YO8 8PQ  | 3,870             |
| Eggborough     | British Energy           | British Energy                    | Eggborough                                       | Goole           | North<br>Humberside | DN14 0BS | 1,960             |
| Ferrybridge C  | Keadby generation<br>Ltd | Scottish & Southern<br>Energy plc | PO Box 39, Stranglands<br>Lane                   | Knottingley     | West<br>Yorkshire   | WF11 8SQ | 1,955             |
| Fiddlers Ferry | Keadby generation<br>Ltd | Scottish & Southern<br>Energy plc | Widnes Road                                      | Cuerdley        | Warrington          | WA5 2UT  | 1,961             |
| Ironbridge     | EON UK                   | PowerGen                          | Buildwas Road                                    | Telford         | Shropshire          | TF8 7BL  | 970               |
| Kingsnorth     | EON UK                   | PowerGen                          | Hoo Saint Werburgh                               | Rochester       | Kent                | ME3 9NQ  | 1,974             |
| Longannet      | ScotAsh                  | Scottish Power                    | ScotAsh Ltd, Kincardine-<br>on-Forth             | Fife            |                     | FK10 4AA | 2,304             |
| Lynemouth      | Alcan                    | Alcan Primary Metal -<br>Europe   | Ashington                                        | Northumberland  |                     | NE63 9YH | 420               |
| Ratcliffe      | EON UK                   | Powergen                          | Ratcliife on Soar                                | Nottingham      |                     | NG11 0EE | 2,000             |
| Rugeley        | International Power      | International Power               | Rugeley Power Station                            | Armitage Road   | Rugeley             | WS15 1PR | 976               |
| Tilbury B      | National Ash             | RWE Npower                        | Fort Road                                        | Tilbury         | Essex               | RM18 8UJ | 1,020             |
| West Burton    | EDF Energy               | EDF Energy                        | West Burton Power<br>Company, Retford            | Nottinghamshire |                     | DN22 9BL | 1,932             |
| Wilton         | Hargreaves CCP           | ICI                               | PO Box 1985, Wilton<br>International             | Middlesborough  |                     | TS90 8WS | 100               |

List of UK power stations

#### - All Subcritical (~33% efficiency)



## **Overview of the project**

#### **Objectives:**

Through study supercritical coal fired power plant mathematical modelling and simulation:

- to understand the dynamic responses of supercritical power plants and GB Grid Code Compliance
- to investigate the possible strategies for improvement

#### **Strategy:**

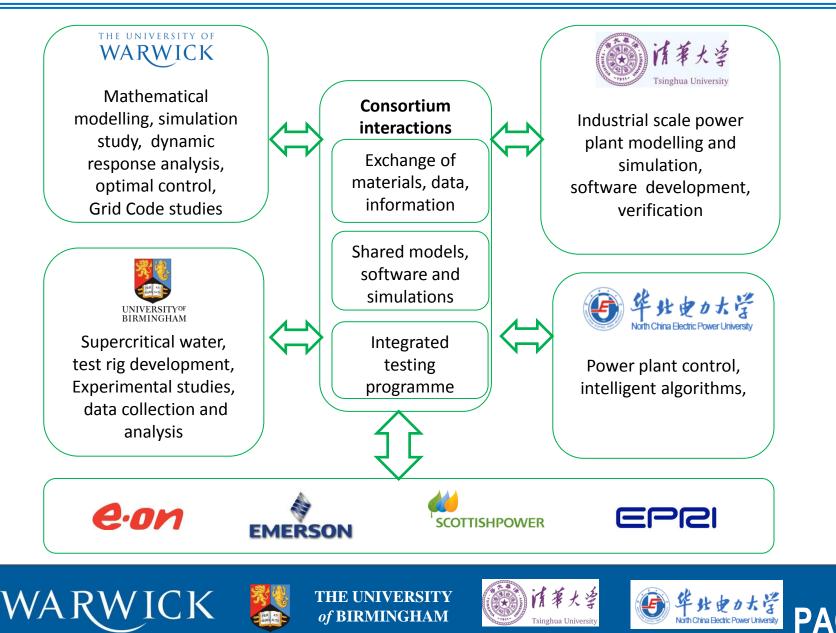
Collaboration with the researchers in China


















## **Overview of the project**



Tsinghua Universit





#### Team: Warwick: **Professor Jihong Wang** Dr Jacek D Wojcik Mr Mihai Draganescu Mr Shen Guo, Mr (Dr) Omar Mohamed (graduated) Dr Bushra Al-Duri **Birmingham:** Dr lain Kings Mr Sam Massoudi Mr Alvaro Gil **Professor Junfu Lv Tsinghua University:** Professor Qirui Gao Dr Yali Xue **North China Electric Professor Xiangjie Liu Power University: Professor Guolian Hou**

THE UNIVERSITY OF WARWICK

UNIVERSITY<sup>OF</sup>















Secondary Frequency Response

High Frequency Response

#### Major achievement 1 – Grid Code study

| Frequency Variation Interval [Hz]      |               |             | Frequency Control Strategies               |                                                                  |                                   |                                 |                                                 |                                                                                                                                                                                                                                                                              |                                                                         |  |
|----------------------------------------|---------------|-------------|--------------------------------------------|------------------------------------------------------------------|-----------------------------------|---------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|
| Country                                | Normal        | Critical    | Country Type of Frequency Control Strategy |                                                                  |                                   | trol Strategy                   | Response Time                                   |                                                                                                                                                                                                                                                                              |                                                                         |  |
| Country                                | Operation     | Situations  | Non                                        |                                                                  | Primary Operating Reserve         |                                 | ng Reserve                                      | active power increase within 5 s and maintained for another 15 s                                                                                                                                                                                                             |                                                                         |  |
| UK                                     | 49.5 - 50.5   | 47.0 - 52.0 | Northern Ireland & Ireland                 | Operating Reserve                                                | Secondary Operating Reserve       |                                 | ting Reserve                                    | active power increase within <b>15 s</b> and maintained for another <b>90 s</b>                                                                                                                                                                                              |                                                                         |  |
| Northern Ireland                       | 49.5 – 50.5   | 47.0 – 52.0 | ting R                                     |                                                                  |                                   | Tertiary Operating Reserve band |                                                 | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                        |                                                                         |  |
| Ireland                                | 49.8 - 50.2   | 47.0 – 52.0 | d & Ire                                    | A     A     Tertiary Operating       ∞     %     1       ∞     1 |                                   | '9<br>1                         |                                                 | active power increase within 90                                                                                                                                                                                                                                              | ctive power increase within 90 s and maintained for another 5 min       |  |
| France                                 | 49.5 - 50.5   | 47.0 - 52.0 | /e<br>eland                                |                                                                  | Tertiary Operating Reserve band 2 |                                 | Reserve band                                    | active power increase within 5 min and maintained for another 20 min                                                                                                                                                                                                         |                                                                         |  |
| Italy                                  | 49.9 - 50.1   |             | т                                          |                                                                  | •                                 |                                 |                                                 | <ul> <li>50% of the active power increase within 15 s;</li> <li>100% of the active power increase within 30 s;</li> <li>100% of the active power increase supplied for at least 15 min.<br/>The quantum of active power required for Primary Control is regulated</li> </ul> |                                                                         |  |
| Italy<br>(Sicily & Sardinia)           | 49.5 - 50.5   | 47.5 – 51.5 | France, Italy,<br>F<br>(UCTE               |                                                                  | Primary Control                   |                                 | ol                                              |                                                                                                                                                                                                                                                                              |                                                                         |  |
| Austria                                | 49.5 – 50.5   | 47.5 – 51.5 | y, Aus<br>Pola<br>TE me                    | E membe                                                          |                                   | Secondary Control               |                                                 | by the Transmission System Operator, for each Generating Unit apart                                                                                                                                                                                                          |                                                                         |  |
| Romania                                | 49.5 – 50.5   | 47.0 – 52.0 | nd<br>mber                                 |                                                                  |                                   |                                 |                                                 | activated no later than <b>30 s</b> after the incident and its operation must end                                                                                                                                                                                            |                                                                         |  |
| Poland                                 | 49.5 - 50.5   | 47.0 - 52.0 | Roma<br>s)                                 |                                                                  |                                   |                                 |                                                 | within 15 min at the latest                                                                                                                                                                                                                                                  |                                                                         |  |
| Australia                              |               | 47.0 - 52.0 | nia,                                       |                                                                  | Tertiary Cont                     |                                 | ol                                              | activated during Secondary Control and maintained for no longer than <b>15 min</b> .                                                                                                                                                                                         |                                                                         |  |
| Australia<br>(Tasmania)                | 49.75 – 50.25 | 47.0 – 55.0 |                                            |                                                                  |                                   | Γ                               |                                                 | Frequency Contro                                                                                                                                                                                                                                                             | I Strategies                                                            |  |
| China                                  | 49.8 - 50.2   | 48.0 - 51.0 |                                            |                                                                  |                                   |                                 | Country                                         | Type of Frequency Control<br>Strategy                                                                                                                                                                                                                                        | Response Time                                                           |  |
| UK Frequency Control Strategies        |               |             |                                            |                                                                  |                                   |                                 |                                                 | Fast Raise Service, Fast Lower<br>Service                                                                                                                                                                                                                                    | active power increase within 6 s, active power decrease within 6 s      |  |
| Frequency Control Strategy Response Ti |               |             | me                                         |                                                                  |                                   |                                 | Slow Raise Service, Slow Lower<br>Service       | active power increase within 60 s. active power decrease within 60 s                                                                                                                                                                                                         |                                                                         |  |
|                                        |               |             |                                            |                                                                  |                                   | Australia                       | Delayed Raise Service, Delayed<br>Lower Service | active power increase within <b>5 min.</b> active power decrease within <b>5 min.</b>                                                                                                                                                                                        |                                                                         |  |
| maintained for a                       |               |             | rease within <b>30 s</b> and               |                                                                  |                                   | I                               |                                                 | Regulating Raise Service                                                                                                                                                                                                                                                     | active power increase needed for <b>5</b> <i>min.</i> dispatch interval |  |

active power increase within 30 s and

active power decrease within 10 s and

of **BIRMINGHAM** 

maintained for another 30 min

maintained thereafter

PER AD ARDEA ALTA



active power decrease needed for 5

active power increase within 15 s

PALSI

min. dispatch interval

N/A

North China Electric Power University

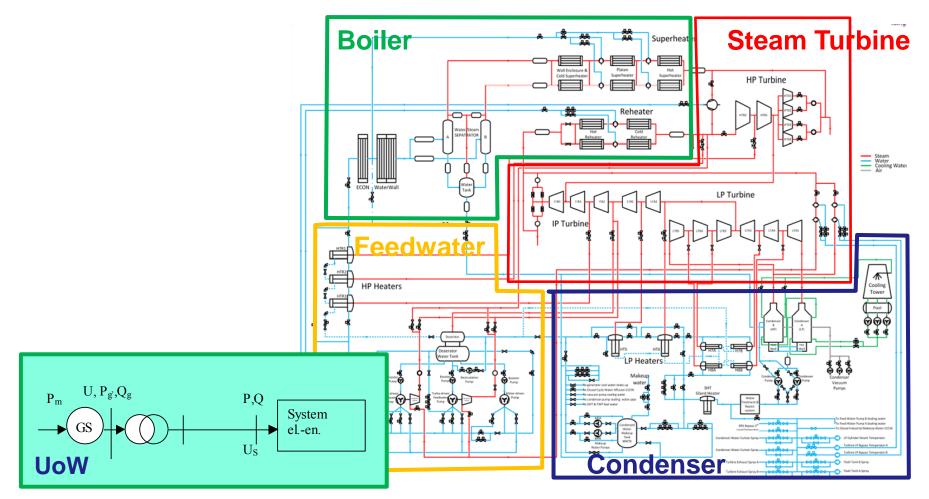
**Regulating Lower Service** 

**Primary Frequency Control** 

Secondary Frequency Control

China

Tsinghua University






PACSR

#### Major achievement 2 – Mathematical modelling and simulation

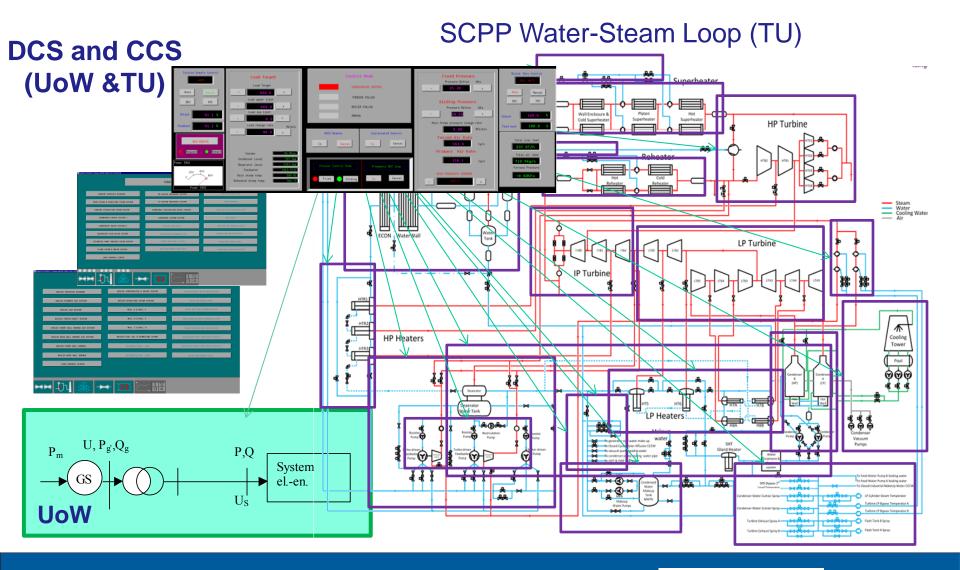
#### SCPP Water-Steam Loop (TU & UoW)















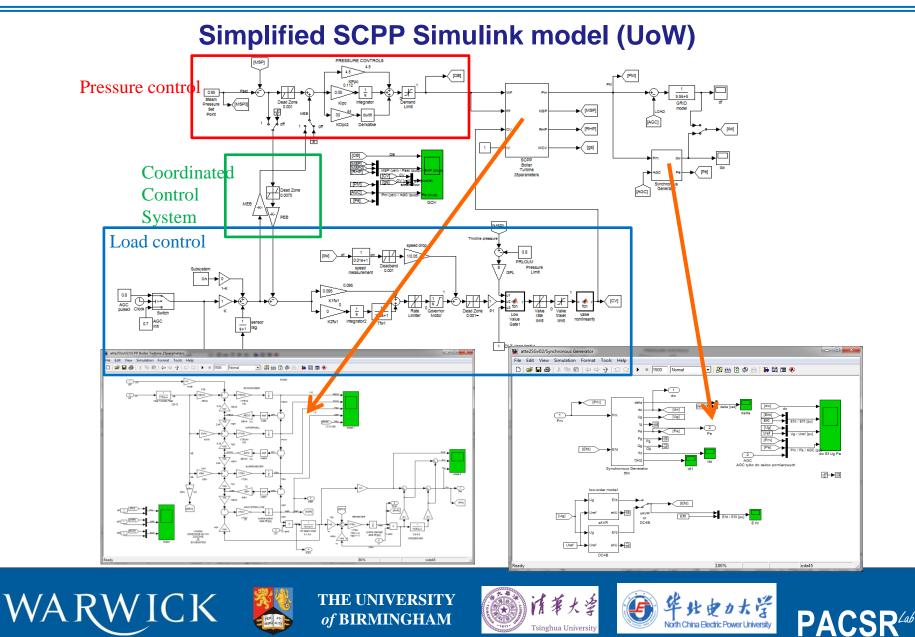

PACSR

#### Major achievement 2 – Mathematical modelling and simulation
















#### Major achievement 2 – Mathematical modelling and simulation







PACSR

#### Major achievement 2 – Mathematical modelling and simulation



A joint Research Lab is set up at Warwick in May 2012





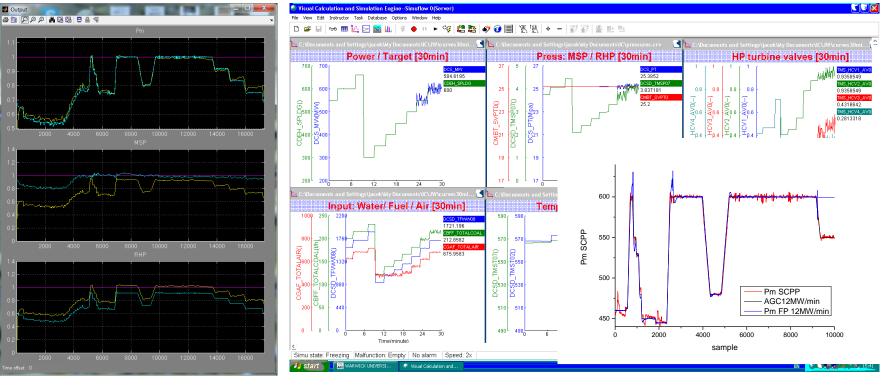
- SimuEngine 2000 (TU&UoW)
- UoW Simulink/Matlab model
- ThermoLib
- gPROMS
- ProTrax
- ANSYS package














#### Major achievement 3 – Model validation and improvement

- on-site plant measurement data ← Chinese partners
- joint efforts of all the four academic institutes



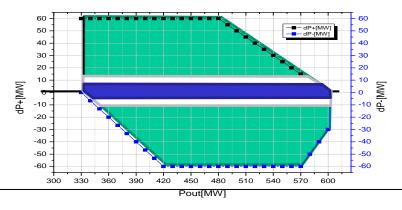















PACSR

#### Major achievement 4 – UK Grid Code compliance study

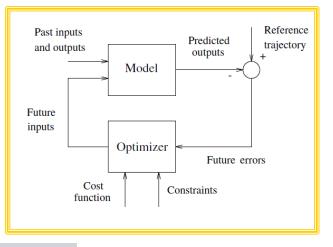
| LOADING UP  |                        |                    | _ | LOADING DOWN |                        |                    |  |  |
|-------------|------------------------|--------------------|---|--------------|------------------------|--------------------|--|--|
| Load<br>[%] | SIMUENGIN<br>ETime [s] | MATLAB<br>Time [s] |   | Load<br>[%]  | SIMUENGINE<br>Time [s] | MATLAB<br>Time [s] |  |  |
| 70+10%      | 140                    | 107.5              |   | 70-10%       | 123                    | 95.5               |  |  |
| 75+10%      | 137                    | 131.75             |   | 75-10%       | 125                    | 96.35              |  |  |
| 80+10%      | 148                    | 149.5              |   | 80-10%       | 129                    | 96.9               |  |  |
| 85+7.66%    | 152                    | 154.05             |   | 85-10%       | 136                    | 104.5              |  |  |
| 90+5%       | 149                    | 156                |   | 90-10%       | 141                    | 122                |  |  |
| 95+3.33%    | 175                    | 159.5              |   | 95-10%       | 142                    | 148.5              |  |  |
| 100         | -                      | -                  |   | 100-5%       | 168                    | 150                |  |  |

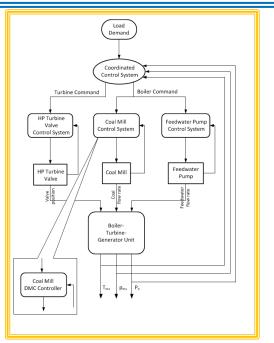


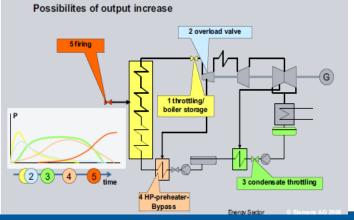









#### Major achievement 5 – New control strategy study

#### Model Predictive Control for plant milling process (UoW, TU, NCEPU)







How to improve PP dynamic response?

**Condensate stop** is very popular solution in China (Siemens technology)











#### EPSRC Engineering and Physical Science Research Council

#### **Publications**



#### **List of Journal Papers:**

- Draganescu, M., Guo, S., Wojcik, J., Wang, J., Xue, YL, Gao, QR., Liu, XJ, Hou, GL., Dynamic matrix model predictive control of the mill coal flow rate for improving dynamic performance of a supercritical coal fired power plant, accepted for publication by *International Journal of Automation and Computing*, 2013, to appear 2014.
- Guo, S., Wang, J., Wei, J.L., Zachriasdes, P., A new model-based approach for power plant Tube-ball mill condition monitoring and fault detection, *Energy Conversion and Management*, (80), pp10-19, 2014.
- Liu, X.J., Kong, X.B., Hou, G.L., Wang, J., Modelling of a 1000MW power plant ultra super-critical boiler system using Fuzzy-Neural network methods, *Energy Conversion and Management*, Vol 65, pp518-527, 2013.
- Sun, Z.X., Wang, J.F., Dai, Y.P. and Wang, J., Exergy analysis and optimization of a hydrogen production process by a solar-liquefied natural gas hybrid driven transcritical CO<sub>2</sub> power cycle, International Journal of Hydrogen Energy, Vol.37,No.24. pp18731-18739, Dec 2012.
- Mohamed, O.I., Wang, J., Al-Duri, B., Lu, J.F., Gao, Q.R., Xue, Y.L., Study of a multivariable coordinate control for a supercritical power plant process, *International Journal of Energy Engineering*, Vol 2, No. 5, pp210-217, 2012.
- Mohamed, O., Wang, J., Guo, S., Wei, J.L., Al-Duri, B., Lv, J. and Gao, Q., Mathematical modelling for coal fired supercritical power plants and model parameter identification using genetic algorithms, a book chapter in *Electrical Engineering and Applied Computing*, Springer, 2011.

#### List of Conference Papers

- Draganescu, M., Wang, J., Wojcik, J., Guo, S., Dynamic matrix control of coal feeder speed of a supercritical power plant, the proceedings of ICAC 2013, London, UK, Sept. 2013.
- Mohamed, O., Wang, J., Al-Duri, B., Lu, J.F., Gao, Q.R., Xue, Y.L., Liu, X.J., Predictive Control of Coal Mills for Improving Supercritical Power Generation Process Dynamic Responses, *the Proceedings of the 51<sup>st</sup> IEEE CDC Conference*, Hawaii, USA, Dec. 2012.
- Sun, Z.X., Dai, Y.P., Liu, H., Wang, Y. and Wang, J., Dynamic performance of a dual-pressure waste heat recovery system under partial load operation, *the 19th International Conference of Computing and Automation*, Loughborough, UK, Sept 2012.
- Xue, Y.L., Li, D.H., Zhang, Y.Q., Gao, Q.R., Wang, J. and Sun, Z.X., Decentralized Nonlinear Control of 300MWe Circulating Fluidized Boiler Power Unit, *UKACC International Conference in Control*, Cardiff, UK, Sept 2012.
- Mohamed, O., Al-Duri, B., Wang, J., Predictive Control Strategy for a Supercritical Power Plant and Study of Influences of Coal Mills Control on its Dynamic Responses, *UKACC International Conference in Control*, Cardiff, UK, Sept 2012.
- Liu, X.J., Hou, G.L., Wang, J., The dynamic Neural network modelling of a Ultra Supercritical Boiler unit, accepted by *IEEE American Control Conference*, San Francisco, USA, 29<sup>th</sup> June-1<sup>st</sup> July, 2011.
- Mohamed, O., Wang, J., Guo, S., Al-Duri, B., Wei, J.L., Modelling Study Of Supercritical Power Plant And Parameter Identification Using Genetic Algorithms, *The proceedings of World Congress of Engineering*, Vol II, London, UK, pp973-978, July 2010. ISBN: 978-988-18210-7-2, ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

















- Joint UK-China Workshop/kick-off meeting in the UK in Dec 2009
- Joint EPSRC Project Progress Meeting/Workshop in Oct 2011 at the University of Nottingham, UK
- Organised an international Workshop on Modelling and Simulation of Power Plant and CCS Process, 20-21 March 2012 at the University of Warwick, UK



PA(



• Profs Gao and Xue visited Warwick for three months and worked on setting up the simulation software, Feb-May, 2012.











#### Interactions



Thermal Power Plant Modelling and Simulation Laboratory opened on 3rd May 2012 at the University of Warwick, UK

#### ✓ Project Progress Meeting/Workshop in Beijing, China (July 2012)





























#### ✓ Joint Project Progress Meeting/Workshop in Beijing, China (Aug 2013)







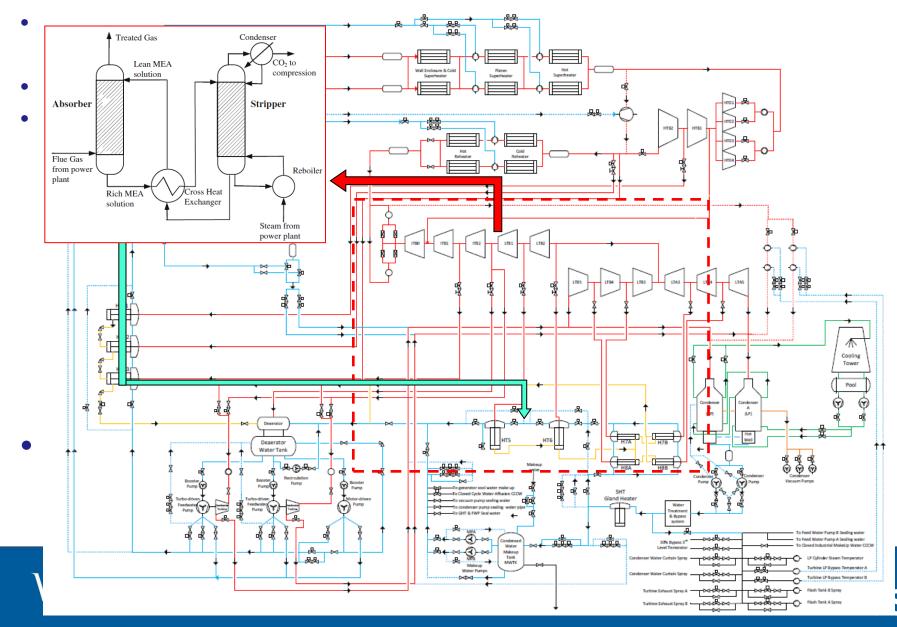
- Without the collaboration between UK and China, it is impossible to conduct the project work.
- The major project objectives are achieved.
- The supercritical power plant simulation software platform provides a unique research facility for UK academic institutes. This facility is now used for
  - study of post combustion carbon capture dynamic process
















#### Summary

#### Supercritical Thermal Power Plant - Steam-Water Loop









- Without the collaboration between UK and China, it is impossible to conduct the project work.
- The major project objectives are achieved.
- The supercritical power plant simulation software platform provides a unique research facility for UK academic institutes. This facility is now used for
  - study of post combustion carbon capture dynamic process
  - supporting the research in grid scale energy storage: study of high temperature thermal storage
  - supporting the future research plan in using the thermal power plant thermal inertia as energy storage for load balancing and peak shaving.
  - teaching
- Most important: long-term collaboration
   between all the partners











# Thank you!

