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Abstract 

This paper describes the results of a three year project, jointly funded by the UK government and industry, to 
develop a multisensor system capable of discriminating between the aromas of different beers. The system consists 
of an array of up to 24 conducting polymer sensors (thin films electrodeposited onto a microelectrode structure). 
The conducting polymers provide the active layer in these conductometric odour sensors and respond differentially 
to the headspaces of beers and lagers. The interface circuitry and signal conditioning have been designed and 
realized in custom PCBs housed in a Eurorack-based multisensor system. A comprehensive suite of software 
modules has been developed to automate the sampling system and process the sensor array data. The output 
from the polymer array is pre-processed using a variety of algorithms (e.g., fractional change in conductance, 
normalized relative response) and then classified using a statistical (chemometric fingerprinting technique) or 
neural predictive classifier (multi-layer perceptron using back-propagation learning). The odour-sensing system 
can distinguish subtle taints, e.g., 0.5 ppm of diacetyl in an ethanol solution with only nine different varieties 
of conducting polymers. 

Introduction 

The flavour of beer is determined by the sensory 
impact from a combination of its smell, taste and texture. 
However, the sense of smell adds the largest contribution 
to its overall flavour [ 11. There are about 800 compounds 
that are known to influence the flavour of beers, each 
differing in their sensory thresholds of detection. Of 
these 800 or so compounds, about 40 may be regarded 
as having key impacts. Flavour is currently measured 
using a combination of analytical chemistry techniques, 
e.g., gas chromatography-mass spectrometry (GC-MS), 
and sensory analysis, e.g., a human tasting panel. How- 
ever, this can be a slow and expensive process, with 
the analytical methods failing to identify some of the 
key compounds and the sensory panels producing qual- 
itative information. In addition, the output from this 
type of analytical instrumentation is difficult to map 
onto sensory descriptors such as malty, warty, stale, 
and so on. Consequently, there is a considerable need 
for superior analytical instrumentation [2]. We have 
previously reported on the design of a 1Zelement 
conducting polymer chemoresistor based electronic nose 
for monitoring the flavours of lager beers [3]. This 
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instrument relies upon the manual injection of an 
odorant into a chamber containing the array of sensors 
and uses a statistical predictive classifier (a so-called 
chemometric fingerprinting algorithm). We now report 
on the development of a superior electronic nose that 
has fully automated flow-injection complete with self- 
diagnostics, an array of 24 conducting polymers, and 
a multi-layer perceptron (MLF’) neural network, using 
back-propagation of errors learning, to predict class 
membership. 

Automated flow-iujection system 

Figure 1 shows the basic configuration of our flow- 
injection system. Individual gases or a mixture of gases 
are supplied by pressurized bottles via the three input 
lines. Carrier flow into the test rig is controlled by 
three programmable mass-flow controllers (MFCs), 
leading to a mixing chamber used to combine the gases. 
The flow-path is configurable, via the action of the 
quad Neptune Research (NR) valve blocks, to direct 
carrier gases through to any selected sample vessel and 
from there onto the sensor head. We have selected 
nitrogen (line l), air (line 2) and CO, as carrier gas 
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Fig. 1. Schematic diagram of the odour-sampling apparatus for the automated electronic nose system, showing from left to right, 
gas bottle sources (line 1, 2 and 3), line filters, mass-flow controllers (MFC), non-return valves, two-way purging valve, quad normally 
closed (NC) valves, sample vessels, fuel cell with compressor pump, final flow-meter, sensor head by-pass valve and sensor head 
housing temperature, humidity and odour sensors. 

TABLE 1. Conducting polymers used in our electronic nose 

Sensor No. Polymer type Sensor No. Polymer type 

1, 2’ polypyrrolefIEATS/water 11, 12 poly-pyrrole/HxWwater 
3, 4 polypyrrolefT’EATS/l’C 13, 14 polypyrrole/OSA/water 
5, 6 polypyrrole/pTSA/ethanol 15, 16 polypyrrole/pTSA/water 
7, 8 polypyrrole/l%Vwater 17, 18 polypyrrole/DSA/water 
9, 10 polypyrrole/HpSA/water 19-24 unused 

agents. The samples are maintained at an elevated 

temperature of 30 “C and are also constantly stirred 
at a controlled rate in order to promote an odorous 
headspace. During the sampling phase, the carrier gas 
is made to percolate through the sample, thereby in- 
creasing the sensor array response. All the valves and 
mass-flow controllers shown are under computer control. 
The sensor head contains an array of up to 24 conducting 
polymer chemoresistors mounted on a conical block, 
together with a PRT temperature sensor and capacitive 
humidity sensor. The 18 conducting polymers used in 
the work presented here are given in Table 1. We have 
used duplicates of each sensor in the array to check 
the reliability of the output. Full details of the polymer 
growth have been given elsewhere [3, 41. 

The electronic hardware has been implemented using 
custom-designed PCBs conforming to EurocardTM mod- 
ule standards in a Eurorack-based system. Figure 2 
shows the lay-out of the four modules that are used 
in this system. Hardware functionality includes con- 
ducting polymer interface circuitry (module 2) providing 
24 channels, described previously [3]. The system in- 
cludes a fuel cell for the monitoring of the ethanol 
level if required. Further details of the instrumentation 
are given elsewhere [5]. 

Data acquisition and processing 

The custom-designed software was written in Borland 
Pascal 7.0 as a protected-mode DOS application. The 
software provides calibration, data acquisition, data 
processing, data display and data export in standardized 
Lotus 1-2-3TM format (for subsequent processing using 
commercial pattern-recognition packages). A real-time 
rig monitor in the form of a graphical user interface 
(GUI) has been implemented to also allow manual 
control over the odour-sampling apparatus. Figure 3 
shows the sampling sequence used for the purposes of 
this study. Three cleaning phases have been included 
in the sequence to ensure contamination-free odour 
sampling. We initially used clean air to prepare the 
system and CO, to store the lager samples in each of 
the three sample vessels and then carry the odour to 
the sensor head. Automated self-diagnostics are also 
carried out to improve confidence in the acquired data. 
In all, the sampling sequence takes approximately 4 h 
for three individual samples. 

The digitized signals from the sensor array were 
averaged to reduce bit noise and the fractional change 
in conductance calculated for each sensor i responding 
to an odour j: 



Fig. 2. Schematic diagram of the electronic circuitry for the 
automated electronic nose system showing module 2, six-channel 
conducting polymer interface card; module 3, temperature and 
humidity card; module 4, system cards; module 5, flow injection 
rig controller. 

Fig. 3. Flow-chart of the phases in the odour-sampling procedure. 

(1) 

This response parameter was generally negative, except 
for sensor nos. 5 and 6. The overall array response is 
thus an 18-dimensional vector representing the odour. 
The response vectors were analysed using the che- 
mometric fingerprinting method reported previously [3, 

51 and also by a neural network. In the latter case, 
the sensor signals were normalized so that the values 
lay in the range [0, l] and hence maximized the use 
of the network input space. Then the values were fed 
into a three-layer fully connected MLP neural network 
using a back-propagation of errors learning regime. 
There were 18 elements in the input layer, six elements 
in the hidden layer and three elements in the output 
layer representing the odour classes. Sigmoid functions 
were used in the hidden layer to act as data ‘squashing 
functions’, combined with linear transfer functions in 
the input and output layers. A learning rate of 1.0 and 
momentum term of 0.7 were chosen because of good 
results achieved earlier [6]. Training took place using 
the three-fold cross-validation method over 100 000 
training iterations. 

Results 

The automated electronic nose system was tested 
using an ethanol solution representing the basic chemical 
constituents of a lager beer: 4% ethanol in pure de- 
ionized water. Considerable effort was spent in optim- 
izing the stability and response of the polymer array. 
First, it was found that the response of the sensors 
fell sharply with increasing temperature, and so the 
array was run at a constant temperature of about 35 
“C. Secondly, CO, carrier gas produced a drift in the 
baseline resistance of some of the sensors and so nitrogen 
was used in all phases except during sampling. Thirdly, 
some sensors were sensitive to water vapour, but this 
sensitivity changed in the presence of the ethanol. 
Clearly, there is a competition in hydrophilic binding 
sites within the polymers between water and ethanol. 
After some effort, the experimental coefficient of var- 
iance was reduced to below 7%. Five samples of pure 
carrier gas, a 4% ethanol solution, and a 4% ethanol 
solution with 0.5 ppm diacetyl(2,3 butanedione) added, 
were then tested. The level of diacetyl, present in the 
lager beer, is closely associated with the maturation of 
the brew and is therefore of prime interest to brewers. 
Figure 4 shows radar plots of the response vectors 
calculated by eqn. (1). Clearly, the baseline response 
(to pure carrier gas) is quite different from that to the 
ethanol solutions. The difference between the control 
ethanol solution with and without the added diacetyl 
taint is more subtle. However, sensors 2, 7, 9, 10, 17 
and 18 do show small but statistically significant vari- 
ations between all three classes. These sensors were 
selected for use in the chemometric fingerprinting tech- 
nique described previously [3, 51. This technique, em- 
ploying a simple array normalization scheme, was used 
to obtain a statistical fingerprint of the class data against 
which all 15 samples were then compared in a leaving- 
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Fig. 4. Radar plots of (a) tbe pure carrier gas, (b) the ethanol solution (4% v/v) and (c) 0.5 ppm of diacetyl in the ethanol solution. 
The solid lines indicate the mean values, while the dashed lines show the upper and lower confidence levels. 

TABLE 2. Number of odours correctly predicted by the pattern-recognition methods 

Method Carrier gas Ethanol solution Diacctyl taint Apparent success-rate 

Fingerprinting 5 4 4 13/15 or 87% 
Back propagation 5 5 4 14/15 or 93% 

one-out method. Then four of the five samples were 
used to train an 18 X6X3 neural network and the fifth 
used to test the network (three-fold cross-validation). 
This was repeated in turn for each of the five samples 
until all 15 measurements had been predicted. The 
chemometric fingerprinting method correctly predicted 
the class of 13 of the 15 measurements, while the 
neural network proved to be slightly better with 14 out 
of 15 correctly predicted. Table 2 summarizes the results. 

Conclusions 

An electronic nose with a fully automated flow- 
injection system has been developed for the analysis 
of flavours in lager beers. The system has been designed 
in a modular lay-out, runs under DOS on a PC platform 
and is self-diagnostic. A conducting polymer electronic 
nose has been shown to provide a good sensitivity to 
a diacetyl taint at the sub-ppm level. 
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