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SUMMARY 
The performance of any el\ectronic nose is ultimately 
determined by the properties of its constituent parts (e.g. 
the sensors, signal processing, and pattern recognition 
engine). Electronic noses currently exploit different sensor 
materials technologies (e.g. semiconducting oxide, 
conducting polymer, phthalocyanines and lipid coatings) as 
well as different pattern recognition paradigms (e.g. 
canonical analysis, back-propagation and learning vector 
quantification). This; has led to the need to compare 
objectively the performance of an increasing number of 
both research and commercial electronic noses. This paper 
addresses this problem and suggest the need for odour 
standards to define both the range and resolving power of 
an electronic nose. We present a generic model from 
which we can define such parameters. The model can also 
be employed as diagnostic tool which can predict not only 
the relative performance of different electronic noses but 
also the effect of, for example, changing the number or 
type of odour sensor, temperature fluctuations or ageing. 
We believe that the definition of standard odour samples 
and standard performance parameters would be of great 
benefit in this field. 

INrRODUCTION 
A considerable amount of research has been directed 
towards the development of electronic nose 
instrumentation over the past decade. Research groups 
now exist in countries such as Australia, Denmark, France, 
Germany, Japan, Sweden, UK and USA. The general 
approach has been to develop an array of sensors based 
upon a single material or transducer in a monotype 
electronic nose. This approach has led to the arrival of 
three commercial instruments which dominate the world 
market, namely, the Fox 2,000 (Alpha MOS SA, France), 
Digital aroma analysis system (Aromascan Plc, UK) and 
the NOSE (Neotronics Scientific Ltd, UK) [1]. A number 
of other instruments are also under development and we 
may see 10 or more commercial instruments by the end of 
this decade. 

The aim of this paper is to quantify the ability of an 
electronic nose to discriminate between different complex 
odours. Figure 1 shows a general representation of 
multidimensional odour space, Q3. The dotted lines 
demarcate the seven primary aromatic notes, i.e. 
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Figure 1. Defining standards in odour space for range and 
resolving power. 

camphoraceous, floral etc. An electronic nose may be 
designed to map out all of these regions or more 
realistically a subset of them relevant to the needs of a 
particular end-user. A set of primary odours or notes could 
be chosen (labelled A) to test the ability of an electronic 
nose across odour space and thus determine its range. 
Secondly, and more importantly, a second sample of a 
similar note could be chosen which is in close proximity in 
odour space (labelled B). The ability with which these 
samples (or a set of them) can be identified will determine 
the resolving or discriminating power of the electronic 
nose. This test is the more important one because users 
need to discriminate between similar smells arising from 
the same product, rather than, say, discriminating between 
a floral and musky perfume. 

ELECTRONIC NOSE MODEL 
Figure 2 shows the basic stages of signal processing in an 
electronic nose. Sample space Q is defined by either the 
chemical composition of the samples which may be a 
single compound (i.e. a simple odour), or more likely a 
number of compounds (e.g. a complex odour). The zero 
point represents odour-free air. The sensor array responds 
to the sample A and so maps one point in sample space 
onto sensor space !&. This is a crucial stage in the process 
and broadly determines the resolving power of the 
electronic nose. In the human olfactory system, the front- 
end processing is elaborate and manages to boost the 
sensor sensitivity to the sub-ppb level yet at the same time 
suppress the signal noise. The integrity of the output from 
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Figure 2. Signal processing in an electronic nose. 

the sensor array thus largely determines the performance of 
an electronic nose. Key parameters are the number and 
type of sensors, the specificity of the sensors, their noise 
level, stability, thermal sensitivity and so on. In other 
words, if the samples are not distinct in sensor space, then 
the pattern recognition (PARC) engine cannot be expected 
to discriminate them. Any attempt to do so will be 
unproductive as the noise in sensor space will be mapped 
in proportion onto classification or odour space C13. For 
example, it is possible to boost the ppm sensitivity of 
commercial tin oxide sensors to the ppb level through 
electronic circuitry [2] but the concurrent increase in noise 
and drift provides no benefit in resolving power. 
Therefore, we assume in this model that the performance 
of the sensor array dictates the overall performance of the 
nose and that any limitations due to the accuracy of the 
ADC [3 ]  can be ignored. So provided the Euclidean 
distance between points in sensor space is adequate, then 
the PARC method can classify them using a range of 
methods (such as metric transformations, back-propagation 
or self-organising maps) appropriate to the nature of sensor 
space, i.e. linearity in concentration, sensor co-linearity, 
and dimensionality etc. 

Model of Sensor Array 
The exact relationship between the sample space and 
sensor space clearly depends upon the type of sensor used. 
In order to develop this analytical model we will assume an 
empirical power law dependency. In fact this is unphysical 
and in our computational model discussed later we have 
extended the choice to include a Langmuir adsorption 
isotherm which models a saturation process. So the output 
from a sensor i in an array of n sensors can be modelled as 

where there is a regression coefficient a,, or sensitivity 
factor for each of the m compounds present in the sample, 
and aIo is the output of the sensor in odour-free air. xJ 
represents either the concentration of compound j or an 
odour note present in the sample. The exponent k, would 
take a value of one for a linear sensor but is about 0.3-0.8 
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in semiconducting oxide conductance sensors. The model 
assumes that the compounds are independent which is 
realistic for polar organic molecules. 

The general response S of the entire array can be 
written in matrix form as AX+B or explicitly: 

For an array of perfectly specific sensors, the regression 
matrix A reduces to the diagonal matrix as shown in 
equation (3). This sensor system can perform 
multicomponent analysis but clearly lacks the range of a 
nose as it could only identify n samples. 

( 3 )  

I O  . . a n m )  

In practice, gas sensors are not orthogonal which means 
that some of the off-diagonal terms are non-zero and so 
increases the range of the system while decreasing the 
resolving power. Thus, in principle, hundreds of different 
odours could be discriminated with a small set of sensors. 

The Role of Errors 
In an ideal sensor system, for example a set of six 
orthogonal linear sensors, there are no errors and so in 
effect there exists an infinite number of response vectors. 
Vectors that are very close can be resolved by changing the 
distance metric (e.g. to Mahalanobis) and thus enhancing 
the gain. In practice, there a number of sources of error 
that will determine the number of odour samples that can 
be discriminated in sensor space and hence its capability. 
Errors arise from the variation of the concentrations of the 
components in the sample. These may be due to variation 
in the sampling method or due to natural variation in the 
sample itself. For example, Mackay-Sim has identified 
sources of experimental variability for piezoelectric odour 
sensors [41. Clearly, a standard sample can be defined with 
a concentration variation below a specified limit of, say, 
1% and so be used with a standard sampling procedure 
(e.g. standard temperature, pressure, a flow-rate of 100 
ml/min, and a humidity of 50%) and to compare different 
electronic noses. Variations can also occur in the sensor 
coefficients which may be random in nature due to 
materials variability or systematic due to changes in, say, 
temperature or humidity. Indeed, in some cases 
deliberating changing the sensor's operating temperature 
can aid the resolving power of the array [ 5 ] .  In addition, a 
variation in the base-line parameter a,o could represent a 
systematic drift due to the ageing or poisoning of the 
sensor. In this case the sensor output will follow a drift 
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line and there is likely to be a correlation between the 
regression coefficients. Ail of these cases can be described 
within a sensor error model. For the general model given 
in equation (1) 

where represents the fractional error on a sensor 
parameter. 

Resolving Power of 'Stationary' Noses 
Figure 3 illustrates the model of an electronic nose with a 
sample with error E,: in sample space Q, propagating 
through to a response vector with error ES in sensor space 
Q2. For randomly distributed errors, the response vector 
now falls into an ellipse (n=2) with the semi-major and 
semi-minor axis give by the standard deviation of the 
sensor output. The variance on the sensor can now be 
related to the variance on the sensor parameters and 
component concentrations using equation (l), 

(5) 

where the first term contains the errors in the base-line 
signal, the second term contains the component 
concentration errors and the last term contains the errors in 
the sensitivity of sensor material to components. 
The resolving power of a nose can now be defined for two 
samples (A and B) in type of a statistical t-test by, 

Sample Space 
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MODEL 

Classification Space Sensor Space Predicted Sample 

Figure 3. Modelling of errors in an electronic nose. 

where ISAB I is the distance between in the response 
vectors and (TA and oB are the errors calculated along the 
direction of the distance metric. This parameter is 
essentially that referred to by Muller as the electronic 
selectivity [6]. 

The volume that the error on the response vector os 
occupies in sensor space determines the discriminating 
power of the electronic nose and the total number of 
odours that can be recognised. The volume Vn of a 
hyperellipsoid comprising a set of n sensors with semiaxes 
defined by the standard error is: 

(7) 

The use of a hyperellipsoid model rather than a 
hypercuboid model is significant when considering a large 
sensor array as illustrated in Table 1. The ratio indicates 
the reduced volume that a hyperellipsoid occupies 
compared to a hypercuboid calculated from the prefactor in 
equation (7) and its hypercuboid equivalent. 

Table 1. Effect of hypermodel on error volume. 
n Ellipsoid Cuboid Ratio 

2 n (ellipse) 4 (square) 0.785 
3 47d3 (ellipsoid) 8 (cube) 0.523 
6 n3/9 64 0.08 1 

n odd 7~"'~/ (n/2)!r (n/2)  2" 

1 2 (line) 2 (line) 1.000 

n even 7~"'~/(n/2) ! 2" 

The number of response vectors that can be discriminated 
in sensor space (i.e. the range) is simply given by 

i=n 

'fi FSD(S,) 
(8) 

Volume of sensor space - i=l 

Volume of sensor error 
Nn = - 

V" 

where the FSD(SJ is the full scale deflection of the output 
signal Si from sensor i, and Vn is defined in terms of the 
model parameters and their errors by equations (5) and (7). 
For sensors that operate over a fixed range, the error 
volume determines the number of samples that can be 
discriminated. 

An error on the regression coefficients or material 
sensitivity causes a concentration-dependent error volume, 
i.e. the error volume monotonically increases with 
increasing component concentration, see the third term in 
equation (5). To illustrate this, Figure 4 shows the 
concentration dependence of the number density (number 
of discriminated response vectors per unit range) due to a 
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Figure 4. Effect of sensitivity errors 
discrimination power of an electronic nose. 

upon the 

non-zero standard error on the regression coefficient al I .  

The number density N :  (using pre-factor for n=l) is given 
by, 

This is similar to the one dimensional parameter proposed 
by Muller [6]. In this case the number density of the nose 
falls with increasing concentrations. This is made worse 
when the exponent ki is greater than one, and of course, for 
a Langmuir film the situation is worse as site saturation is 
approached. 

In a similar manner it is now possible to define the 
performance of any electronic nose from the values of 
sensor model parameters, component concentrations and 
their errors. 

COMPUTATIONAL NOSE 
Although it is possible to obtain analytical expressions for 
an electronic nose with random errors, the situation is more 
complicated when modelling systematic errors such as 
temperature dependent parameters and ageing 
characteristics. Consequently, we have designed a 
computational model of an electronic nose with which to 
evaluate its performance. The sensor model now offers the 
choice of a Langmuir isotherm in which adsorption sites 
can be saturated as well as a conventional linear and power 
law. In addition, the exponent ki can also have an error on 
it due to poisoning, ageing or temperature. Thus the sensor 
model of equation (4) is extended to become, 

1-m 
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Now the sensor parameters can be set for the appropriate 
choice of sensor (e.g. semiconducting oxides, conducting 
polymers). The effect of errors on the performance of the 
nose can be simulated by introducing errors such as a 10% 
increase in the base-line value, or a 5% decrease in the 
main sensitivity term, or the effect of interference through 
the off-diagonal regression coefficients. Alternatively, 
when it is not possible to distinguish between samples with 
an existing electronic nose, it is possible to simulate and 
identify the key parameters or alternatively to determine 
the effect of increasing the number of sensors or changing 
the type of sensor. 

CONCLUSION 
A model has been constructed which can be used to define 
the performance of an electronic nose based upon the 
errors present in the response vectors of a sensor array. 
Analytical expressions have been obtained for the 
resolving power and range of electronic noses with random 
distributed errors. In addition, a computational model has 
been set up which can describe linear, log-linear law, and 
Langmuir isotherm sensors. This computational model can 
be used to simulate the performance of current commercial 
electronic noses and predict the effect of adding sensors, 
changing sensors, noise, drift etc. The model predicts the 
ability of the electronic nose to resolve similar samples. 

The definition of two odour standards is proposed. 
Firstly, a standard which determines the range of the 
electronic nose which comprises a set of primary odours 
Second, and more importantly, two similar odour samples 
which should be repeatably resolved by the electronic nose 
over a given period of time. These can be determined from 
a standard model of an electronic nose based upon 
reasonable values of the sampling error, materials variation 
and base-line error. It is assumed that when two samples 
are mapped onto two distinct regions in sensor space, then 
the pattern recognition system can classify them using a 
suitable metric as odours of differing type (or intensity). 
Should the user wish for a quantitative prediction of the 
original component concentrations then classical 
multivariate analysis (MVA) must be employed and further 
computational errors will occur. 
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