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Abstract 

The performance of any electronic nose is ultimately determined by the properties of its constituent parts (e.g., the sensors, signal 
processing and pattern-recognition engine). Electronic noses currently exploit the technologies of several classes of sensor material 
(e.g. semiconducting oxide, conducting polymer, phthalocyanines and lipid coatings) as well as a variety of pattern-recognition para- 
digms (e.g. back.propagation, self-organizing map and discriminant function analysis). Consequently, there is a need to compare objec- 
tively the performance of the increasing number of both research and commercial electronic noses. This paper addresses this problem 
and suggests the need for odour standards to quantify both the ability of an electronic nose to discriminate between similar odours (i.e. 
its 'resolving power') and a number of dissimilar odours (i.e. its 'range'). We present a generic model from which we can define these 
two fundamental parameters, and hence develop a benchmark for the performance of these different electronic noses against two pro- 
posed odour standards. This model can be employed not only as a design tool to predict the performance of an electronic nose against 
an odour standard, but also as a diagnostic tool that can determine, :or example, the effect of random errors in the sampling method, 
sensor characteristics or the effect of systematic errors associated with sensor drift or changes in ambient temperature. We believe that 
our definition of odour standards and performar~ce parameters for electronic noses could be used to create a European standard, which 
is now required in this rapidly expanding field and marketplace. 
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1, Introduction 

A considerable amount of research has been directed 
towards the development of electronic-nose instrumenta- 
tion over the past decade. Numerous research groups now 
exist in countries such as Australia, Denmark, France, 
Germany, Japan, Sweden, UK and USA. The general ap- 
proach has been to develop an array of sensors based 
upon a single class of material and type of transducer in a 
monotype electronic nose. This approach has led to the 
arrival of three commercial instruments that currently 
dominate the world market, namely, the Fox 2000 (Alpha 
MOS SA, France), Digital Aroma Analysis System 
(Aromascan Plc, UK) and the NOSE (Neotronics Scien- 
title Lid, UK) [ 1 ]. A number of other instruments are also 
under development and we may see 10 or more commer- 
cial instruments by the end of this decade. 
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The main aim of this paper is to consider how the abil- 
ity of an electronic nose to discriminate between odours 
can be standardized across the industry. Fig. 1 shows a 
general representation of multidimensional odour space' 
fJ3. The dotted lines demarcate the seven 'primary' aro- 
matic odours, .i.e. camphoraceous, floral, etc. (A simple 
classification system propose4 by Amoore [2] is use~d to 
illustrate our model. The concept of a primary odour is 
perhaps oversimplistic and is still under debate.) An elec- 
tronic nose may be designed to work in all of these re- 
gions or, more realistically, a subset of them relevant to 
the needs of a particular end user. A set of primary odours 
could be chosen (labelled A) to test the ability of an elec- 
tronic nose across odour space and thus determine its 
range. Secondly, and more importantly, a second set of 
odours could be chosen, which in each case lie in close 
proximity in odour space to odour A (labelled B). The 
ability of an electronic nose to classify these known 
odours will determine both its resolving power and range. 
The resolving power is the more important parameter 
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ODOUR 
SPACE 

f~3 

Fig. I. Simple classification of odour space C~ 3 propose~ by Amooze 
[2] and used here to illustrate the location of odour samples (labelled A 
and B) with which to define the range (type A) and resolving power 
(type B) of an electronic nose. 

because users need tO discriminate between similar smells 
arising from the same product, rather than, say~ discrimi- 
nating between a floral and musky perfume. 

cation space 23. For example, it is possible to boost the 
ppm sensitivity of commercial tin oxide sensors to the 
ppb level through electronic circuitry [3] but the concur- 
rent increase in noise and drift provides no benefit in re- 
solving power. Therefore, we assume in this model that 
the performance of the sensor array dictates the overall 
performance of the nose and that any limitations due to 
the accuracy of the analogue-to-digital converter (ADC) 
[4] are not fundamental to the problem. So provided rep- 
licate samples form distinct clusters in sensor space, then 
the PARC method should be able to classify them by 
employing a method (such as metric transformations, 
back-propagation or self-organizing map) appropriate to 
the nature of sensor space, e.g. linear in concentration, 
high degree of sensor colinearity, etc. Previous work has 
shown that the function that maps sensor space onto clas- 
sification space is reasonably well behaved for sensor 
arrays based upon oxide, polymer and lipid materials (see 
references in [1] for details). 

2. Electronic nose model 2.1. Model o f  sensor array 

Fig. 2 shows the basic stages of signal processing in an 
electronic nose. Sample space ~ l  is defined by either the 
chemical composition of the sample, which may be a 
single compound (e.g. 100~tg/l of (+)-Iimonene in water 
for a simple citrus (lemon) odour) or, and more likely, a 
number of compounds (e.g. a combination of citrus com- 
pounds such as undecyl alcohol (lime) with limonene). 
Although some odours can be engineered chemically in 
this manner, many contain tens if not hundreds of com- 
pounds and so the sample space must be defined in terms 
of the headspace composition (e.g. 100% Brazilian coffee 
bean, or 50% Brazilian and 25% Colombian coffee beans 
for a blend) diluted in a carrier gas. The zero point in 
sample space represents the baseline value of the sensor 
array in odour-free air or a calibration standard (e.g. the 
headspace from a solution of 5% ethanol in pure deion- 
ized water held at 300°C). The sensor array responds to 
the sample A and maps one point in sample space onto 
sensor space f~2. The choice of sensor parameter (e.g. the 
fractional change in conductance) and data preprocessing 
is crucial and broadly determines the resolving power of 
the electronic nose. In the human olfactory system, the 
front-end processing is elaborate and manages to boost 
the sensor sensitivity to the sub-ppb level and yet, at the 
same time, suppresses the signal noise. The condition of 
the signal from the sensor array thus largely determines 
the performance of an electronic nose. Key parameters 
are the number and type of sensors, the specificity of the 
sensors, their noise level, stability, thermal sensitivity and 
so on. In other words, if the samples do not create distinct 
vectors $i in sensor space, then the pattern-recognition 
(PARC) engine cannot be expected to discriminate them. 
Any attempt to do so will be unproductive as the noise in 
sensor space will be mapped as uncertainty in the classifi- 

The exact relationship between sample space and sen- 
sor space clearly depends upon the type of sensor used. In 
order to develop an analytical model we shall assume an 
empirical power-law dependency, so the output Si from a 
sensor i in an array of n sensors can be modelled as 

k~ 4" ai2 xk~ 4". k~ S i - aio 4" all Xl • .+ain x m (1) 

where there is a regression coefficient a# (sensitivity fac- 
tor when j ;e 0) for each of the m compounds present in 
the sample, and aio is the baseline output of the sensor in 
the reference air. :9 represents either the concentration of 
compound j (ppm or ,ug i -i) or percentage of odour pres- 
ent in the sample. The exponent k~ takes a value of I for a 
linear sensor but is typically in the range 0.5-0.9 for 
semiconducting oxide conductance sensors. (In fact this is 
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Fig. 2. Basic signal processing in an electromc nose where a chemical 
vector X/in sample space Q! is converted by a sensor array and trans- 
ducer into an electrical signal to form a vector Sj in sensor space Gt 2. 
Then the sensor vector is identified in classification (odouO space 2 3 
as, for example, floral by a pattern-recognition (PARC) engine. 
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inadequate to describe the full working range of polymer 
sensors and so in the computational model discussed later 
we have extended the choice to include a Langmuir ad- 
sorption isotherm that models a sorption process.) The 
model assumes that the compounds do not react with each 
other, which is normally the case for polar organic mole- 
cules (and chosen to be the case when defining our stan- 
dard odours). 

The general response S of the entire array can be writ- 
ten in matrix form as AX + B or explicitly 

/ilia a a m/x S2 __.. a21 a22 . • X2k~ 

. " a . . A x  

/ ~llO / 

~,anO 

(2) 

For an array of perfectly specific (orthogonal) sensors, the 
regression matrix A reduces to the diagonal matrix as 
shown in Eq. (3). This sensor system can perform multi- 
component analysis (m ~ n) but clearly lacks the range of 
a human nose (several thousand smells) as it could only 
identify a limited number of odours (albeit of varying 
odour quality scale). 

ann 0 0 0 / 
0 (3) 

• Omn 

natural variation in the sample itself. For example, 
Mackay-Sire et al. have identified sources of experimen- 
tal variability for piezoelectric odour sensors [5]. Clearly, 
an odour standard must be defined with a concentration 
variation below a specified limit of, say, 1% and be used 
with a standard sampling procedure (e.g. standard tem- 
perature, pressure, a flow rate of 100 ml min -n and a hu- 
midity of 50%) to compare reliably different electronic 
noses. Variations can also occur in the sensor coefficients 
a 0 ( j ,  0), which may be random in nature due to mate- 
rials variability or systematic due to changes in, say, tem- 
perature or humidity. Indeed, in some cases deliberately 
changing the sensor's operating temperature can aid the 
resolving power of the array [6]. In addition, a variation 
in the baseline parameter a~ could represent a systematic 
drift due to the ageing or poisoning of the sensor. In this 
case the sensor output will follow a drift line and there is 
likely to be a correlation between the regression coeffi- 
cients. All of these cases can be described within a sensor 
error model (error on ki is added for completeness below) 
such as that given in Eq. (4). 

Si(I +e s~ ) = aio(l +e 

j----/tl 

a,o )+ ~ aij(l +e ao )[Xj (1 +e xj )]ki 
j=l 

(4) 

where ea and £x represent the fractional errors on the sen- 
sor coefficients and concentration, respectively. 

2.3. Resolving power of  'stationary' noses 

In practice, gas sensors are not completely orthogonal, 
which means that some of the off-diagonal terms are non- 
zero and this increases the range of the system while de- 
creasing the resolving power through overlapping vectors. 
Thus, in principle, hundreds of different odours could be 
discriminated with ~ small set of non-specific sensors• 

2.2. The role o f  errors 

In an ideal sensor system o£ for example, a set of six 
orthogonal linear sensors, there are no errors and so in 
effect there exists an infinite number of distinct response 
vectors (in practice restricted only by the full-scale de- 
flection of the sensor and the ADC resolution). Vectors 
that are very close together can be resolved by simply 
changing the distance metric (e.g. to Mahalanobis) and 
thus enhancing the signal gain. In practice, there are a 
number of sources of error that will determine the number 
of samples that can be discriminated in sensor space and 
hence the performance of the electronic nose. Errors can 
arise from the variation of the concentrations of the com- 
ponents in the sample and the relative concentration of 
components due to differential evaporation, etc. These 
may be due to variation in the sampling method or due to 

Fig. 3 illustrates the model of an electronic nose with 
two samples labelled A and B with error in sample space 

Sample Space 
X~., 

of 

Classification Space 

xa S= 

T Rlt 

I 
Sensor Space Predicted Sample 

0" ~ S, 01 = 
CV I 

Fig. 3. Schematic diagram showing the propagation of sample and 
sensor errors through a computational electronic nose. Vectors are 
either classified as odours (in this case by plotting the first two canoni- 
cal variables) or used in multivariate analysis (MVA) to predict the 
original component concentrations xj. 
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Qn producing two response vectors with error in sensor 
space ~ with separation SAn. For randomly distributed 
errors, each response vector falls into a hyperellipse with 
the axes given by the standard deviations of the sensor 
outputs. The variance on the sensor signal c# s can now be 
related to the variance on the sensor coefficients and 
component concentrations from Eq. (4). 

j---m j--m 

0.2 = O  2 + k t E  2 2 atjGx~ + k t E o 2  2 A~ a m a# X j 
j= l  j=! 

(5) 

where the first term contains the error in the baseline sen- 
sor signal, the second term contains the component con- 
centration errors and the last term contains the errors in 
the sensitivity of the sensor to m different components. 

A statistical parameter RP may now be defined to 
quantify the power of a nose to resolve two similar odour 
samples (see A and B in Fig. 1) 

RP= ISA.I 
-bOB 

(6) 
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Fig. 4. Concentration dependence of the number density (a measure of 
the resolving power) for linear (k = 1) and non-linear (k = 0.5,2.0) sen- 
sors determined using Eq. (9). The number density is independent of k 
at low concentrations when the baseline error term dominates, i.e. the 
sampling error term is small (here all  --- 5, Oal I = 10% and Oxj - 0). 
When the sensitivity term dominates, i.e. there is a significant sampling 
error term, the number density becomes dependent upon the value of k 
(here all  =5, eal ! = 10% andoxi= 10%). 

where [SAB[ is the separation of response vectors (see 
Fig. 3) and OA and ae are the errors calculated along the 
direction of the distance metric. This parameter is essen- 
tially that referred to by Miiller as the 'electronic selec- 
tivity' [7]. 

The volume that the error on the response vector as 
occupies in sensor space determines both the local resolv- 
ing power RP of the electronic nose and the maximum 
number of odours that can be classified as distinct (see 
below). The volume V, of a hyperellipsoid comprising a 
set of n sensors with semiaxes defined by the standard 
error is 

[=ti 
./2 

l ] . a s ~  2u 

Error volume, V. = t=t (7) 
nF(n 12) 

The use of a hyperellipsoid model rather than a hyper- 

Table l 

Effect of the choice of hypermodel (ellipsoid or cuboid) upon the 
multiplying factor in the error volume. V., for sensor arrays of size n 

n Ellipsoid Cuboid Ratio 

! 2 (line) 2 (line) 
2 ~ (ellipse) 4 (square) 
3 4n/3 (ellipsoid) 8 (cube) 
6 ~3/9 64 
n :tn/21(nl2)! 2n 
even 
n odd ~n/2/(n/2)!,(n/2) 2 n 

1.000 
0.785 
0.523 
0.081 

cuboid model is significant when considering a large sen- 
sor array as illustrated in Table 1. The ratio indicates the 
reduced volume that a hyperellipsoid occupies compared 
to a hypercuboid calculated from the prefactor in Eq. (7) 
and its hypercuboid equivalent. 

The maximum number of response vectors N, (i.e. a 
measure of the range) that can be discriminated (this as- 
sumes that the PARC engine is error-free) in sensor space 
is simply given by 

t=. 
H FSD(S t ) 

Volume of sensor space i--t 
N. = = (8) 

Volume of sensor error V, 

where the FSD(S3 is the full-scale deflection of the output 
signal St from sensor i, and V, is defined in terms of the 
model parameters and their errors by Eqs. (5) an~' (7). For 
sensors that operate over a finite FSD, the error volume 
determines the number of samples that can be discrimi- 
nated. The volume of the sensor error, V,, is a function of 
the sensor output and so it is not in general uniform over 
sensor space. 

An error on the regression coefficients or material 
sensitivity causes a c°ncentrati°n'dependent error vol- 
ume, i.e. the error volume monotonically increases with 
increasing component concentration, see the third term in 
Eq. (5). To illustrate this, Fig. 4 shows the concentration 
dependence of the number density (number of distinct 
response vectors per unit sensor output) due to a 10% 
standard error on the regression coefficient ann of linear 
(k = 1) and non-linear (k = 0.5,2.0) sensors. The number 
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density N' (using pre-factor for n -- 1) of a specific sensor 
(this is similar to the one-dimensional parameter proposed 
by Mtiller [7]) was calculated using, 

Table 2 

A set of 29 organoleptic descriptors with commercially available 
chemical compounds produced by Aldrich [8] 

l 2 
N' =-- = (9) 

0' 2 2 2 2 V I 2 +kldlO0"xl +k lOanXl  1 alo 

Here the number density of the sensor system falls with 
increasing concentration. Note that making the sensor 
non-specific generates additional error terms (see Eq. (5)) 
from the other component concentrations, which further 
increase the fall of the number density with concentration. 
The number density is also modified by the exponent k~, 
and the relative size of the three error terms in the de- 
nominator of Eq. (9). The number density of an array of 
any size can be determined from Eq. (7) and when inte- 
grated over the hypervolume gives the maximum number 
of distinct vectors N,. 

It is thus possible to compute the error volume, maxi- 
mum number of distinct vectors and number density of 
any sensor array from the values of sensor model parame- 
ters, component concentrations and their associated er- 
rors. 

3. Definition of odour standards 

It should be noted that the number of odours Mn that 
can be discriminated as distinct from the number of re- 
sponse vectors IV, depends upon the definition of classifi- 
cation space, Q3. The organoleptic response of an odour 
can be classified on a six-point odour-quality scale (such 
as that formatted by the Institute of Olfactory Sciences, 
211 Tampa St., Park Forest, IL 60466, USA, in 1977) as 
shown in Fig. 5. For simple odours this means that all 
concentrations below the olfactory threshold (e.g. 
gl0/zg/I for (+)-Iimonene) are classified as 'odourless' 
while all concentrations above a certain level are classi- 
fied as 'extremely odorous', etc. The values of the 
threshold and scales vary from odour to odour. Conse- 
quently, the number of classes of odour that can be dis- 

i 
Odour quality scale 

0 i 2 3 4 

Sample concenumion 

Extremely 

Fig. 5. Classification of samples using a six-point odour-quality scale. 
The olfactory threshold lies at the intersection of quality classes 0 and 
!. 

Alliaceous Ethereal Minty 
Animal Fatty Mossy 
Balsamic Floral Musty 
Camphoraceous Fruity Nutty 
Chemical Green Pepper 
Citrus Herbaceous Smoky 
Coffee Meaty Soapy 
Earthy Medicinal Spicy 

Sulfurous 
Vegetable 
Waxy 
Wine-like 
Woody 

criminated will be related to N, but usually a much lower 
value (the exception being when the electronic nose is 
very bad !). 

The range of an electronic nose can be tested by the 
use of a number of very different odour standards 
(labelled A in Fig. 1) consisting of commercial products 
with known organoleptic properties. For example, "Fable 2 
lists 29 distinct odour descriptors (this is a superior set of 
odour descriptors to the seven proposed by Amoore [2]) 
which are associated with chemical compounds commer- 
cially available from Aldrich [8]. Thus, a standard odour 
of type A can be defined as a specific concentration of a 
compound in pure water (e.g. 1 ppm of diacetyl in water 
for butterscotch). A number of different type-A odour 
standards can then be selected (e.g. 29) and used to quan- 
tify the range of an electronic nose by their correct classi- 
fication. Each standard will also have a specific concen- 
tration error (e.g. 1%) so that any error in the sampling 
system is apparent to the users. 

More importantly, there is a need to discriminate be- 
tween similar odours that lie close to A in odour space 
(labelled B in Fig. l). Again these can be selected as sin- 
gle chemical compounds. For example, citrus odours can 
be classified into type-A lemon ((+)-Iimonene) and type- 
B lime (undecyl alcohol). More sophisticated noses could 
classify the samples into the six-point odour-quality scale 
rather than the binary scale of odourless/odorous. In this 
particular example, more difficult tests could be used 
whereby odour-standard B could be another compound 
that produces a lemon citrus note, such as fencyl alcohol. 
The resolving power of an electronic nose can now be 
defined as the value of the test parameter RP (defined by 
Eq. (6) for standard odours A and B associated with a 
specific olfactory descriptor. 

4. Computational nose 

4. I. Sensor model 

Although it is possible to obtain analytical expressions 
with which to defi,e the performance of an electronic 
nose, the situation is rather complicated when modelling 
sensor arrays with non-zero off-diagonal regression coef- 
ficients, random sampling and sensor coefficient errors, 
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and systematic errors due to such as temperature changes, 
ageing, etc. Consequently, we have designed a computa- 
tional model of an electronic nose with which to evaluate 
the performance of a generalized sensor array. The sensor 
model now offers the choice of a Langmuir isotherm in 
which adsorption sites can be saturated as well as con- 
ventional linear and power-law responses. In addition, the 
exponents ki can also have errors Mk. Thus the sensor 
model of Eq. (4) is extended to become 

S i ( l  + o  $, ) = a i o ( l  +%,0  ) 

j=m 

+ E  aij (1 + e a,~ )[xj (1 + e x~ )]k,0+% ) 
j=! 

j=m +,~, bo(l +e ho )x~(l +ex~ )cu(l + eco ) 
(1o) 

~=~ l+bu(l+e~,o)xj(l+e~ ~ ) 
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Now the sensor parameters can be set for the appropriate 
choice of sensor (e.g. semiconducting oxides, conducting 
polymers). The effect of errors on the performance of the 
electronic nose can be simulated by introducing errors 
such as a 10% increase in the baseline value aio, or a 5% 
decrease in the main sensitivit) term aij (j~e0, i =j) ,  or the 
effect of interference through non-zero off-diagonal re- 
gression coefficients. In addition, when it is not possible 
to distinguish between standard odour samples (e.g. types 
A and B) with an existing electronic nose, it is possible to 
use this model to diagnose problems and improve the 
design (e.g. by simulating the effect of, for example, in- 
creasing the number of sensors or changing the type of 
sensor used). 

4.2. Computational results 

Fig. 6 shows results obtained from our computational 
model for a simple nose consisting of two non-linear 
odour sensors detecting a mixture of three odours (two 
variable). A uniformly spaced set of concentration points 
with values of [0, 20, 40, 60, 80, 100] has been used with 
a 5% random error on all regression coefficients to model 
materials variation. Fig. 6a shows a plot of sensor space 
when the sensors are specific to one component, the ex- 
ponent k is equivalent to a typical semiconducting oxide 
gas sensor (k - 0.8) and there are non-zero baseline val- 
ues (am = 1, a20 = 2). Clearly, the range of this nose is 
very limited. Notice that the spacing between clusters of 
10 replicate samples reduces with increasing concentra- 
tion because of the initial choice of uniformly spaced 
cmncentration points with non-linear sensors. Notice also 
that the clusters become indistinct at higher component 
concentrations. Fig. 6b shows the additional effect of 
making the sensors non-specific. In this case the sensors 
are sensitive to all three components but with a reduced 
(positive) sensitivity typically observed for doped tin ox- 
ide gas sensors. There is a 20% (30%) sensitivity of sen- 
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u . . , , . ~ . . ~ . .  ¥ ' ~ " "  

• db~Oee 

I I I I I 

20 30 40 50 60 

Output from sensor 1 

Fig. 6. Response of a simple computational nose based upon two non- 
linear (k = 0.8) sensors with 5% error on the baseline and sensitivity 
coefficients (aij) to an evenly spaced set of 36 reference concentrations, 
x I = [0, 20, 40, 60, 80, 100] and x 2 = [0, 20, 40, 60, 80, 100]: (a) spe- 
cific sensors, (b) non-specific (SnO2-1ike) sensors with a 20% response 
to the other component, and a 30% response to a third component (i.e. 
interference) at a fixed concentration of x 3 = l'00. 

sor 1 (2) to the other variable component whilst having a 
30% sensitivity to the third component, which has a fixed 
concentration of 100 units. As can be seen, the sensor 
space is now both distorted and shifted. So for non- 
specific sensors, sample space maps onto a transformed 
sensor space in which certain regions are now less com- 
monly accessed and hence have a different information 
content. Regions that are commonly accessed due to 
cross-sensitivity lie close to the lines intersecting the sen- 
sor axes and here clusters are hard to resolve. 

Fig. 7 shows the computational results on a more so- 
phisticated electronic nose. In this case there are six non- 
linear (k~O.8), non-specific (SLOe-like) sensors detecting 
three complex odours. Each complex odour comprises 
four components of differing amounts (70%, 15%~ 10%, 
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centration errors Ox of (a) 5% and (b) 20% to simulate 
sampling variation. Although the odours ~re separable 
there is considerable variation in the second principal 
component associated with higher sampling errors: a 
feature which has been observed experimentally with 
commercial tin oxide sensors. Also note that the spread of 
the clusters varies between sample types. This is because 
odours A and B were given similar components, whereas 
odour A' was quite different. Plotting the first and third 
principal components helps ameliorate this effect, as 
shown by Fig. 8 where there is still a 20% sampling error. 

Fig. 9 shows the effect of drift on this complex nose. 
In this case the sensitivity of the sensors (regression 
terms) has drifted by 20%. The direction of the drift in 
principal-component space is shown and is similar to that 
followed for sampling errors. However, a 20% drift in the 
sensor sensitivity is less detrimental than a 20% sampling 
error. Clearly the resolving power of the nose has been 
reduced by these errors. 

S. Conclusions 
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Fig, 7. Effect of random sampling errors upon a complex computational 
nose with six SnO2-1ike (k = 0.8) sensors responding to three odours 
(labelled A. A' and B) each containing a set of four out of seven differ- 
ent components. Fach sensor has a specificity of 0.S (a# with i "-j) and 
four non.zero regression coefficients (a# with i - j)  set to 0.25, 0.15. 
0.07 and 0.03. Principal-component plots are used to show the effect of 
(a) 5% random sampling error and Co) 20% random sampling error (!0 
replicate samples). 

5%) out of a total of seven possible components. Princi- 
pal-component analysis is used to display sensor space 
and generally indicates the success of using a predictive 
classifier such as a back-propagation technique. Fig. 7 
shows the first and second principal components for a 
sample set consisting of 10 replicates with random con- 

At this time there is a need to design new electronic 
noses for an ever-increasing range of uses. We have con- 
strutted a computational model of a generic electronic 
nose. The model assumes that the sensors obey the prin- 
ciple of linear superposition. This is often a good ap- 
proximation for low concentrations of analytes in metal 
oxide and polymer films, when it is not Eqs. (1) and (4) 
must be modified. This can be used as a design tool to 
evaluate the effect of, for example, the number of sensors, 
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Fig. 8. Plotting the first and third principal components (instead of the 
first and second as in Fig. 7b) shows improved separation of  the three 
odours. In other words, the sampling error features strongly in the sec- 
ond principal component. 
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Fig. 9. Effect of a 20% drift of all sensor parameters aij on the response 
of a complex computational nose to three ooours. Sample and sensor 
parameters are the same as those used in Fig. 7. 

the type of sensors (linear, power law, Langmuir, specific, 
non-specific) and the choice of P A R C  on its response to 
known odours. The model can also be used as a diagnos- 
tic tool to study the effect of both random and systematic 
errors (e.g. sampling and sensor characteristics) upon its 
resolving power as weii as providing large data sets for 
optimizing PARC methods. 

There also exists a need to quantify the performance of 
an electronic nose, so as to compare the different instrd- 
ments and to show that they can meet the specification 
laid down by the various customers. Such a specification 
has to be in the form of a European standard. In this paper 
we have proposed odour standards and analytical expres- 
sions which can be used to define the working range and 
resolving power of electronic noses First, a standard of 
type A, which determines the range of an electronic nose 
through the use of a set of different organoleptic chemical 
products. Secondly, and more importantly, further sam- 

pies of similar odours (type B) can be used to determine 
the resolving power of the electronic nose. 

The commercial future of electronic noses clearly de- 
pends upon them meeting well-defined standards 
(European or International). We believe that we have 
shown that such standards can be developed to provide a 
reliable measure of the performance of these new instru- 
ments. 
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