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Abstract 

In this paper we compare the ability of a fuzzy neural network and a common back-propagation network to classify odour samples that 
were obtained by an electronic nose employing semiconducting oxide conductometric gas sensors. Two different sample sets have been 
analysed: first, the aroma of three blends of commercial coffee, and secondiy, the headspaee of six different tainted-water samples. The two 
experimental data sets provide an excellent opportunity to test the ability of a fuzzy neural network due to the high level of sensor variability 
often experienced with this type of sensor. Results are presented on the application of three-layer fuzzy neural networks to electronic nose 
data. They demonstrate a considerable improvement in performance compared to a common back-propagation network. 
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1. Introduction 

Artificial neural networks (ANNs) have been the subject 
of research for over 20 years. However, it is during the last 
decade or so, that research interest has blossomed into com- 
mercial application, and they are now widely used as predic- 
tive classifiers, discriminators and in pattern recognition in 
general. Recent neural-network research has been directed 
towards the improvement of the ability of multi-layer percep- 
trons to generalize and classify data through the design of 
better training algorithms and superior networks. One impor- 
tant, yet neglected, aspect has been to understand the exact 
nature of the data. ANNs have been employed in the field of 
measurement where the nature of the data is highly diverse, 
ranging from digital pixel values from CCDs in vision sys- 
tems to analogue d.c. conductance signals in a semiconduct- 
ing oxide electronic nose. The uncertainty in the data comes 
in as a part of the real-world implementation itself, often 
attributed solely to the imprecision of the measurement. Con- 
ventional ANNs (e.g., multi-layer perceptrons) do not 
attempt to model precisely the vagueness or fuzziness of data. 
This often culminates in poorly trained networks where the 
problem becomes more significant as the uncertainty in the 
data increases and the size of the training set decreases. Fuzzy 
neural networks (FNNs) make use of fuzzy logic to model 
fuzzy data. FNNs have a relatively recent history but interest 
has increased through the application of fuzzy logic in non- 
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linear control systems. In this paper we discuss FNNs and 
apply them to electronic nose data. We compare the perform- 
ance of a FNN to that of a standard back-propagation (BP) 
network. We also consider how FNNs differ from their non- 
fuzzy counterparts and so the applications in which their 
performance should be better. More detailed discussions on 
FNNs can be found in Ref. [ 1 ]. 

2. Artificial neural networks 

ANNs are mathematical constructs that try to mimic bio- 
logical neural systems. Over the years, ANNs have become 
recognized as powerful non-linear pattern-recognition tech- 
niques. The networks are capable of recognizing spatial, tem- 
poral or other relationships and performing tasks like 
classification, prediction and function estimation. ANN 
development differs from classical programming in the fact 
that in modality the data variance is learnt over a number of 
iterations. One of the main problems of an ANN approach is 
knowing when optimal network parameters have been found. 
Further, as the data sets become less well behaved, the train- 
ing typically becomes more difficult, and the class prediction 
less than satisfactory. It is generally accepted [2] that there 
are several advantages in applying ANNs as opposed to any 
other mathematical or statistical techniques. For instance, 
their generalization abilities are particularly useful since real- 
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world data are often noisy, distorted and incomplete. In addi- 
tion, it is difficult to handle non-linear interactions 
mathematically. In many applications, the systems cannot be 
modelled by other approximate methods such as expert sys- 
tems. In cases where the decision making is sensitive to small 
changes in the input, neural networks play an important role. 
Nevertheless, ANNs have some potential disadvantages as 
well, since the choice of the way in which the inputs are 
processed is often largely subjective and different results may 
be obtained for the same problem. Furthermore, deciding on 
the optimal architecture and training procedure is often dif- 
ficult, as stated above. Many problems would need different 
subjective considerations, including speed, generalization 
and error minimization. ANNs have other potential disadvan- 
tages as well. For example, there is very little formal mathe- 
matical representation of their decisions and this has been a 
major hurdle in their application in high-integrity and safety- 
critical systems. 

Multi-layer perceptrons are the most commonly used ANN 
in pattern classification and typically comprise an input layer, 
an output layer and one or more hidden layers of nodes. Most 
of our electronic nose work has employed two-layer networks 
(excluding the input layer), since the addition of further 
hidden processing layers does not provide substantial 
increases in discrimination power [3]. We have used an 
advanced BP method called Silva's method [4] in order to 
train the neural networks in the conventional way on the 
electronic nose data (described later) and then compare the 
results with fuzzy neural models. 

3. Experimental details 

3.1. Fuzzy neural model 

Fuzzy logic is a powerful technique for problem solving 
which has found widespread applicability in the areas of 
control and decision making. Fuzzy logic was invented by 
Zadeh in 1965 and has been applied over recent years to 
problems that are difficult to define by precise mathematical 
models. The approach is particularly attractive in the field of 
decision making, where information often has an element of 
uncertainty in it. 

The theory of fuzzy logic in turn relates to the theory of 
fuzzy sets where an effort is made to distinguish between the 
theory of probability and possibility. There is more than one 
way in which fuzziness can be introduced into neural net- 
works and hence different workers mean different things by 
the term 'fuzzy neural network'. Some researchers define 
these networks as having fuzzy inputs and fuzzy outputs and 
hence try to fuzzify (i.e., assign a membership value to data 
values within the range 0-1 using a possibility distribution) 
before data are presented to the ANN. This concept can obvi- 
ously be further extended, as described, for example, by 
Zadeh [5], where the inputs and outputs are truly fuzzified 
by their transformation into linguistic terms. So rather than 

having a particular numerical value (e.g., in the input or 
output), we can describe values linguistically as very low, 
low, moderate, high, very high, etc. This kind of fuzzification, 
though tempting for some applications (e.g., classifying the 
quality of odours), would not be suitable for others in which 
the boundaries are hard to specify. Fuzzy logic attempts to 
distinguish between possibility and probability as two distinct 
theories governed by their own rules. Probability theory and 
Bayesian networks can be used where the events are repetitive 
and statistically distributed. The theory of possibility is more 
like a membership-class restriction imposed on a variable 
defining the set of values it can take. In the theory of proba- 
bility, for any set A and its complement A c, A N A c -- O (null 
set), which is not true in the case of the theory of possibility. 
Possibility distributions are often triangular and so similar in 
shape to normal distributions with the mean value having the 
highest possibility of occurrence, which is one. Any value 
outside the rain-max range has a possibility of occurrence of 
zero. Hence in mathematical terms, the possibility that a~ is a 
member of the fuzzy set X = {al, a2 ..... an } is denoted by its 
membership value M(ay). This membership value of aj in X 
depends upon the mean, minimum and maximum of the set 
X. An introductory treatment to the theory of fuzzy logic is 
given by McNeill and Freiburger [ 6]. A more mathematical 
description of fuzzy sets and the theory of possibility is avail- 
able in Dubois and Prade [7]. 

We have made use of the fuzzy neural model proposed 
initially by Gupta and Qi [8]. This model challenges the 
manner in which conventional networks are trained with ran- 
dom weights, because these random weights may be disad- 
vantageous to the overall training process. Let us consider a 
12 X 3 X 3 neural network architecture. At the end of training 
we hope to have an optimal point in 51 ( 12 × 3 + 3 × 3 + 
3+3)-dimensional space that describes the best set of 
weights with which to classify the training patterns, and also 
to predict unknown patterns. This optimal point is harder to 
achieve in practice as the data become more non-linear, addi- 
tional difficulties being caused by noise in the data. The main 
problem with random weights is that we usually start the 
search from a poor point in space which either slowly, or 
perhaps never, takes us to the desired optimal point, i.e., a 
global minimum. A suitable starting point, preferably 
dependent on the kind of training data, is highly desirable. It 
can speed up training, reduce the likelihood of getting stuck 
in local minima and take us in the right direction, the direction 
for the global minimum. The result is a better set of weights 
that will better classify the test patterns. The fuzzy neural 
network (FNN) approach adopted here attempts to do exactly 
this. It makes use of possibility distributions [ 9 ], which helps 
in determining the initial set of weights. These weights them- 
selves are fuzzy in nature and depend entirely on the training- 
set distribution. Here the neural network reads a file of 
weights before training. These weights are generated in 
advance by performing calculations on a possibility distri- 
bution function as shown in Fig. 1. Once the network is 
trained, the final weights are no longer fuzzy but can take any 
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Fig. 1. (a) The possibility distribution S(u: X, B, Y) is used to determine 
the membership value of a measurement u. S(v: X, B, Y) is given by 0 when 
u<~X, 2 ( u - X ) Z / ( Y - X )  2 when X<u<~B, 1 - 2 ( u - y ) 2 1 ( Y - X )  2 when 
B < v ~< Y and 1 when u > Y. Note that Yis the mean value, X is the minimum 
value and B is the bandwidth in this possibility distribution. (b) The mem- 
bership function M is related to the function S with M= 1 -S (v :  Y, Y+B/ 
2, Y+B) when u> Y, and M=S(o: B, Y-B~2,  Y) when u ~< Y. 

real value. These saved weights are then used with the test 
data for recognizing new patterns. 

3.2. E lec t ron ic  nose  

The present work is concerned with the application of 
FNNs to electronic nose data. An electronic nose comprises 
of a set of  odour sensors that exhibit differential response to 
a range of  vapours and odours [ 10]. Previous work has been 
carried out in the Sensors Research Laboratory and the Intel- 
ligent Systems Engineering Laboratory at the University of 
Warwick  to identify alcohols and tobaccos [ 11,12]. 

Here data were collected from an array of  semiconducting 
oxide gas sensors (i  = 1 to n) in response x U to a measurand 
j in terms of  a fractional change in steady-state sensor con- 
ductance G, namely, 

(Go,~our - G~ar) ( 1 ) 
xij = a ~  r 

This was chosen because it was found to reduce sample var- 
iance in earlier work on odours [ 10] and is recommended 
for use with semiconducting oxide gas sensors in which the 
resistance falls with increasing gas concentration. 

The electronic nose comprised a set of  either 12 or four 
commercial ly available Taguchi gas sensors (Figaro Engi- 
neering Inc., Japan);  see Table 1 for the choice of  sensors. 
The odour sensors have a sensitivity to certain gases at the 
ppm level. Measurements  were made under constant ambient 
conditions (e.g.,  at 30 °C and 50% RH) .  W e  shall now briefly 

describe the implementation of  two different neural network 
architectures for recognizing three different classes of  coffee 
with 89 patterns and six different classes of water constituents 

with 60 patterns. 

3. 3. Cof fee  da ta  

The coffee data set provides an interesting challenge for 
the fuzzy neural models. It consisted of 89 patterns for three 
different commercial  coffees, 30 replicates of  coffee A (a  
medium-roasted coffee blend of  type I ) ,  30 replicates of 
coffee B (a dark-roasted coffee blend, also of  type I)  and 29 
replicates of  coffee C (a  dark-roasted coffee of  a different 
blend, type II) .  Looking at the descriptive statistics for the 
individual sensor measurements, it was recognized that the 
nature of  the variance in the sensor data would be difficult to 
model. It was soon realized that 100% recognition was 
unlikely to be achieved. The testing was performed using n- 
fold cross-validation) The initial data set was segmented to 
give either a training set of  80 patterns and a test set of  nine 
patterns for the first two coffees (this was done with nine 
fold) ,  and then 81 patterns for training and eight patterns for 
testing the last coffee. This was necessary because the third 
class of  coffee had one missing pattern. Each pattern con- 
sisted of  12 sensor values, xis. The patterns constituting the 
training and testing set were rotated so that in every fold we 
had a unique training and testing set. The 12 x 3 X 3 architec- 
ture was trained using both Si lva ' s  method (a  modification 
of the standard non-fuzzy back-propagation method) and its 
fuzzy counterpart. Although the weights for our fuzzy model 
were within the [0,1 ] range, the sensor data themselves were 
not coded in any particular way. 

A bootstrapping method could have been used to improve the true error 
prediction, but we wanted to compare the results with earlier work that used 
cross-validation [ 13 ]. 

Table 1 
Commercial semiconducting oxide gas sensors from Figaro Engineering 
Inc., Japan used to analyse the coffee and water samples 

Sensor No. Coffee samples Water samples 

TGS 800 { ~/ 
TGS 815 × ~/ 
TGS 816 × ~/ 
TGS 821 x ~/ 
TGS 823 x ~/ 
TGS 824 × v / 
TGS 825 ~/ ~/ 
TDS 830 ~/ ~/ 
TGS 831 x ~/ 
TGS 842 x ~/ 
TGS 880 x/ x 
TGS 881 x ~/ 
TGS 882 x ~/ 
TGS 883 x { 

Total 4 12 
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3.4. Water data 

In this case the data set was collected using a smaller 
portable four-element electronic nose rather than the 12-ele- 
ment system used to collect the coffee data. There were in all 
60 different patterns for six different types of water. The 
headspace of two vegetable-smelling waters types A and B, 
a musty water, a bakery water, a grassy water and a plastic 
water were analysed. Taking 10 folds again (rotating the 
patterns in training and testing sets), the network was trained 
with 54 patterns at any one time and tested with the remaining 
six patterns. Each pattern consisted of four sensor values. The 
neural network used had a 4 × 6 × 6 architecture just like its 
fuzzy counterpart. 

Now let us describe the network mathematically. The 
inputs nodes can be defined by a vector/, the hidden nodes 
by a vector m and the output nodes by a vector n. The mem- 
bership value mi serves as a weight between l~ and all nodes 
of re. Hence we can determine the weights of all the neurons 
connecting the input layer to the hidden layer. 

A very similar approach is adopted for finding the weights 
connecting the hidden layer to the output layer, but rather 
than using the sensor value distributions, the hidden-node 
output distributions are used. In order to obtain these ( if  two- 
layer networks are being used), the network needs to be 
initially trained for a few iterations with random weights in 
the non-fuzzy mode. The hidden-node outputs can then be 
separately analysed following the steps given above. 

4. Data analys is  us ing  fuzzy  neural  model  

In order to illustrate how a fuzzy neural model works, let 
us consider the above problem of discriminating between a 
set of different coffee samples. The first step is to define the 
training and testing sets. The training set can contain 27 
patterns of each coffee (i.e., A, B, and C), a total of 81 
patterns (about 90% of the patterns ), and a testing set of two 
or three patterns of each type, a total of eight or nine ( 10% 
of all patterns). The next step is to obtain the starting weights, 
which are no longer random weights as in conventional net- 
works. These will be obtained using possibility distribution 
functions (see Fig. 1). It is possible to use the permutations 
of different coffees with different sensors to yield many dis- 
tributions (e.g., 36 different distributions can be drawn with 
three different coffees and 12 sensors). In order to find the 
weights, a choice must be made of which coffee patterns will 
be used to generate weights (since sensor values of coffees 
A, B and C differ significantly, only one coffee type can yield 
membership values). We chose coffee A data to assist in this 
process, since the sensors have registered higher values than 
in the case of coffees B and C (since medium-roasted coffees 
contain more volatile molecules than darker-roasted ones) 
and noise levels here are supposed to be higher. Out of the 
27 patterns used for training, one pattern is taken out at ran- 
dom called P. The remaining 26 patterns are used to generate 
the distribution for each sensor (i.e., a total of 12). The 
formula used for such a process is described by Zadeh [5] 
as shown in Fig. 1. It may be seen that the possibility of 
occurrence of any measurement decreases quadratically as it 
gets further away from the mean value. The variable B in the 
formula is the measurement for which the possibility value 
is 0.5 and is also known as the 'cross-over' point. A further 
explanation of the details of the formula can also be found in 
Mamdani and Gaines [ 14]. Once all of the distributions have 
been generated (D1,/92 ..... D12), the membership of sensor 
values in pattern P (sl, s2 ..... s12) is determined. This means 
we find the membership of s, in distribution D, (let us say it 
is m;) for P. 

4.1. Example 

Let us see the role of possibility distribution in the Sensor 
1 data for coffee A. We have chosen the first 26 values and 
found the following statistics: 
n = 2 6  
Mean (Y) --- 0.0706 
Min (X) = 0.0564 
B =  (X+ Y)/2 =0.0635 

Let us find the membership value of two measurements 
chosen at random, v = 0.076 and v = 0.1011. (Please refer to 
the formula in Fig. 1 for the following calculation. A mem- 
bership value is the possibility that v is the member of the set 
of all 26 Sensor 1 values.) 

When v = 0.076, 
M =  1 - S  (0.0706, 0.10235, 0.1341) 

-- 1 - 0.0144 
-- 0.985 

(This is expected since the membership value of any value 
very close to the mean is nearly 1.) 

When v--0.1011, 
M =  1 - S  (0.1011, 0.0706, 0.10235, 0.134) 

= 1 - 0.4628 
= 0.537 

5. Results  

It was evident that the sensor outputs were non-linear in 
concentration and contained significant errors attributable to 
systematic noise. Initially, after trying several different train- 
ing algorithms and architectures on a non-fuzzy neural net- 
work, the success rate was no better than 86% on the coffee 
data and no better than 75% on the water data. 

Tables 2 and 3 summarize the results of our data analysis, 
and show the superior performance of the fuzzy neural model 
when compared to the BP technique. Note that when the 
difference in the final output value and the desired value of 
any output-layer node was above the error tolerance limit, it 
was tagged as misclassified. If more than half of the nodes in 
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Table 2 
Results of analysing the coffee data. 81 patterns were used for training with 
nine patterns tested in each fold 

Fold Patterns Nodes Patterns Nodes 
miselassified misclassified misclassified miselassified 
by FNN by FNN by BP by BP 

1 1 2 1 2 
2 0 0 1 2 
3 1 2 2 4 
4 1 2 3 6 
5 1 2 1 2 
6 1 2 1 2 
7 0 0 1 1 
8 0 0 1 2 
9 1 2 3 5 

10 1 1 2 2 

Total 7 13 16 28 

Table 3 
Results of analysing the tainted-water data. 54 patterns were used for training 
with six patterns tested in each fold 

Fold Patterns Nodes Patterns Nodes 
misclassified misclassified misclassified misclassified 
by FNN by FNN by BP by BP 

1 1 3 3 5 
2 1 2 2 3 
3 0 0 1 1 
4 2 3 2 3 
5 1 2 2 2 
6 0 0 1 2 
7 1 2 3 4 
8 1 2 3 4 
9 1 2 1 2 

10 I 2 1 2 

Total 9 18 19 28 

classified nodes and patterns using the FNN model and the 
back-propagation model for the coffee and water data. In the 
case of coffee data, the hypothesis I4-o was comfortably 
rejected at 5% significance level ( t=  -3 .86 ,  p=0 .002  for 
patterns 3 and t =  -3 .50 ,  p=0.0034 for nodes). The same 
results were obtained for the water data ( t = - 5 . 0 1 ,  
p = 0.0004 for patterns and t = - 3.35, p = 0.0042 for nodes). 
This shows that our FNN is a significantly better technique 
than the conventional BP network. 

6. Conclusions 

Fuzzy neural networks (FNNs) have been shown to man- 
age uncertainty in real-world sensor data. Their performance 
on electronic nose data was found to be superior to that of 
their non-fuzzy neural counterparts. We believe that this was 
due to the possibility distribution for weight determination 
averaging out the uneven uncertainty found in the poor 
semiconducting oxide gas sensors. This is especially impor- 
tant when there is a huge search space and a good starting 
point is required. The performance given by non-fuzzy net- 
works depends on the initial set of random weights or other 
training parameters. In our comparison we used a good non- 
fuzzy back-propagation network and so our FNN results 
would be even more favourable if compared to a 'vanilla' 
back-propagation network. FNNs are generic and so may be 
applied to areas in which standard neural networks are cur- 
rently employed. In conclusion, the introduction of fuzzy 
parameters into conventional neural networks can offer a 
significant advantage when solving difficult classification 
problems such as that presented by electronic nose instru- 
mentation. 

a pattern were misclassified, the pattern itself was described 
as misclassified. 

The fuzzy neural models had about half the number of 
misclassified patterns compared to their non-fuzzy counter- 
parts. In addition, they converged in less time and with a 
much reduced error. It should also be stressed that better 
results were not simply obtained because of a relatively 
smaller training set compared to other applications, because 
the non-fuzzy models were gauged with their best start of 
random weights. For this, the best training performance of 
the first 10 starts was taken for comparison. The accuracy had 
now improved to 93% on coffees and 85% on water data by 
making use of the fuzzy neural model compared to the figures 
of 86% and 75% before. 2 This is a significant increase in 
terms of the total number of patterns correctly classified. A 
t-test was done on the coffee and water data shown in Tables 
2 and 3. The null hypothesis Ho demonstrated that there was 
no significant difference between the mean number of mis- 
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