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Diffusion and binding of molecules to sites
within homogeneous thin films

By P. N. BARTLETT! AND J. W. GARDNER?

! Department of Chemistry, University of Southampton,
Southampton SO17 1BJ, UK
2Department of Engineering, University of Warwick, Coventry CV4 TAL, UK

In this paper we consider the process of a chemical species diffusing into a thin homo-
geneous film which contains fixed sites on to which the species can reversibly bind.
We consider the situation in which the interaction of the diffusing species and the
sites is described by the Langmuir isotherm. The differential equations that describe
this nonlinear diffusion reaction problem are studied. We find that the problem may
be conveniently divided into six cases. Each case is presented and approximate ana-
lytical solutions for the concentration profiles are given as a function of time for both
adsorption and desorption. These solutions are relevant in situations of practical im-
portance, including the binding of substrates to immobilized enzymes, the operation
of polymeric gas sensors, and the vapour phase doping of conducting polymers.

1. Introduction

Problems of coupled diffusion and nonlinear chemical reaction are often found in
practical situations. In such systems the diffusion of the chemical species into a phase
is accompanied by chemical reaction either with species already present in the phase,
or catalysed by species within the phase. Examples include diffusion and reaction in
immobilized enzyme membranes, diffusion into living cells and micro-organisms, and
chemical reactions in high polymer substances.

In this paper we present a unified treatment of coupled diffusion and reversible
binding of species to immobile sites within a uniform homogeneous film. This model
is appropriate to practical processes and systems, such as the dyeing of cloth or
wool (Wilson 1948), the binding of substrates to immobilized enzymes (Engasser &
Horvath 1976), the doping of conducting polymers (Kim et al. 1988), or the response
of fibre-optic or surface acoustic wave chemical sensors based upon reversible binding
onto immobilized sites (Seitz 1984; Ballantine & Wohltjen 1989).

Our particular interest is in the diffusion and reaction of gas molecules in thin
uniform films of conducting polymers, such as poly(pyrrole) and poly(aniline). In-
teraction between the gas molecules and the polymer leads to changes in the film
conductivity. This effect can be used in a chemoresistor configuration to construct
a gas sensor. Recent work in our laboratory has shown that devices constructed by
the deposition of a thin conducting polymer film across a narrow (typically 10 pm)
gap show rapid reversible changes in conductivity on exposure to a variety of organic
vapours (Bartlett et al. 1989, 1990; Bartlett & Ling-Chung 1989a, b). Similar results
have been reported for the responses of such devices to inorganic gases such as NOo,
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NHj3, and HyS (Miasik et al. 1986; Hanawa et al. 1988). In order to understand the
dynamic response of such devices it is essential to model the time-dependent concen-
tration profile of the gas and the concomitant time-dependent fraction of occupied
binding sites within the polymer film.

Although a number of particular solutions applying to certain aspects of the gen-
eral problem have been reported, we are not aware of a full unified treatment of
this problem. Hermans (1947) solved the problem of diffusion of a species into a
semi-infinite medium containing a finite number of irreversible binding sites which
were assumed to be either completely empty or completely full. This corresponds to
a situation in which the kinetics of the reaction are much faster than the diffusion
process and in which at equilibrium all of the sites are saturated. This model leads to
the formation of a sharp boundary which propagates through the medium. Wagner
(1950) addressed the problem of diffusion of a species into a bounded layer under
conditions where the diffusion coefficient is proportional to the concentration of the
diffusing species. This corresponds to the situation in which the occupancy of sites
is linearly related to the concentration of the diffusing species (Gardner 1989a, b).
More recently, the reversible uptake of dopants in conducting polymers has created
renewed interest in this problem. Kim et al. (1988) have investigated the diffusion
equations which describe the reversible trapping of a species diffusing into and out
of a semi-infinite medium under conditions where the kinetics are fast as compared
with diffusion so that local equilibrium is assumed. Numerical solutions of this prob-
lem are given in a subsequent paper by the same group (Murphy et al. 1988). Prock
& Giering (1989a,b) have also addressed this problem for both semi-infinite and
bounded media and provide qualitative support for these numerical solutions.

The work described above addresses different but related aspects of the same
general coupled diffusion—reaction problem. Below we present a full approximate
analytical solution to this general problem for both adsorption and desorption. We
show that the general problem can be divided into six principal cases, for which we
can obtain useful analytical solutions that can be tested by experiment and compared
to the results of simulation of this problem. We describe the interrelation of these
six cases and compare them to previous work. In a subsequent paper we will use the
concentration and site occupancy profiles presented below to calculate the theoretical
change in the electrical conductance of conducting polymer films on exposure to
organic vapours, and compare it with our experimental results.

2. Preliminaries

We consider the general problem of a species A diffusing into a planar homoge-
neous film of constant thickness L that contains a uniform concentration of immobile
reactive sites S. The local chemical reaction within the film between the diffusing
species and the sites can be described by

K,
A+S=AS, (2.1)

£
where k¢ is the second-order rate constant describing the binding of the species A at
an unoccupied site S, and k;, the is the first-order rate constant describing desorption
of the species A from an occupied site AS. Furthermore, we assume that there are
no interactions between molecules of A on different sites, so that the adsorption
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process is described by the Langmuir adsorption isotherm (Moore 1974) and the
rate constants k¢ and &y, are independent of coverage. The ratio of the forward and
backward rate constants,

K = ki [k, (2.2)

is called the adsorption coefficient and has units of reciprocal concentration; it is
a measure of the affinity of the sites for the species A. When K is large, the sites
become saturated at low concentrations of A; when K is small, the sites interact
weakly with A and high concentrations are necessary to saturate the sites.

For the one-dimensional case, taking = as the distance in the film, ¢ as the time,
and 6(z,t) as the fraction of occupied sites, we can write the following diffusion
reaction equation for the species A:

0%a da
where a(x,t) is the concentration of the diffusing species A, and N is the concentra-
tion of binding sites within the film. Assuming that the species A is present in the
external phase at a constant concentration a.,, then the boundary conditions for the
adsorption transient are

att=0,0=0and 0< <L,

vVt > 0, gﬁ =0and a =ay at ¢ = L. @4
dz|,_,
Here we assume that the partition coefficient for the species A into the film is unity
and that there is no kinetic barrier at the film surface to the passage of A into the
film. It should be noted that the effect of the partition coefficient is readily taken
into account by replacing a., by K,as, where K, is the partition coefficient. We
also know, from consideration of the kinetics of the reactions at the sites, that

N% = kea(1 — O)N — kyON. (2.5)

Then combining equations (2.3) and (2.5) gives
0°0  Oa _ 09

v NE' (2.6)
At this point it is convenient to introduce the following dimensionless parameters:
x=2z/L, (2.7)
T = Dt/L? (2.8)
Y= a0, (2.9)
k=kNL?/D, (2.10)
A= Kaeo, (2.11)
n=KN. (2.12)

The dimensionless parameter x describes the balance between the adsorption (k¢N)
and diffusion (D/L?) kinetics in the film; when x > 1, the adsorption process is much
faster than that of diffusion. The parameter A describes the position of equilibrium:
for A < 1, most of the sites will be unoccupied at equilibrium; for A > 1, all the
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sites will be occupied at equilibium. Finally, n is the product of the ratio of the
forward and backward rate constants and the concentration of binding sites. Thus,
the parameter 7 is a property of the material and is independent of the sample
thickness or concentration of the diffusing species. Note that the ratio x/n, which
occurs in a number of the equations below, describes the balance between desorption
(kp) and diffusion (D/L?) kinetics in the film; when /7 > 1, the desorption process
is much faster than that of diffusion.

Using these dimensionless parameters, equation (2.6) can be rewritten in the fol-
lowing form:

&y Oy noo

B B = A5 (2.13)

The corresponding boundary conditions for the adsorption transient (2.14) become
at7=0,0=0and y=0,0<x<1
d’)’ (2.14)

vr>0, — =0and y=1at x =1.
dy <=0
Similarly, we can express equation (2.5) in terms of the dimensionless parameters,
0
Ny, = kAY(1 —6) — k6. (2.15)

Equations (2.13) and (2.15) are coupled nonlinear partial differential equations
and do not have an exact analytical solution. However, we can identify a number of
limiting cases for which we can develop approximate analytical expressions for the
concentration profiles. We now derive solutions for each of these cases.

3. Linear diffusion-reaction (A < 1)

We begin by considering the region where A < 1. This corresponds to low adsor-
bate concentrations where the film is never saturated (6 < 1). Equation (2.15) can
then be simplified to give the coupled equations as

Py 0y nob

o " ar T ABr 31)

né—g = KAy — k0. (3.2)

This problem is now analytically soluble using the method of Laplace transforms.
The inverse transform is obtained from the Heaviside expansion theorem with the
roots (s,,) simplified by use of Taylor’s theorem. In this way, we find the following ex-
pressions for the adsorbate concentration profile, y(x, 7), and site occupancy, 6(x, 7),
as a function of dimensionless time and distance through the film:

—1—_9r COS[( + l)wx] expls,T]
v(x, 7)) =1-2 Z )271'2 — spklnfs, + “/77]] (3.3)
0(x,7) = A — 2mk) Z + 3) cos((n + 3)mx] exp(s,7] )

(K + 773n —1)*[(n + %)27r2 — snknfs, +x/n]]’
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where

(n+1)2n%k
nle(l+1/n) + (n+ 3)°r2]
Equations (3.3) and (3.4) are somewhat cumbersome. Fortunately, we can identify

several approximate analytical expressions that correspond to particular physical
solutions, some of which have already been reported.

n=20,1,2,...,00 and s, ~ — (3.5)

(a) Case IN<1,n<1,Kk>n)

When 7 < 1 and & > 7, the dominant terms of s, reduce to —(n + $)?n2, and so
equation (3.3) becomes

(3.6)

v(x, _ 7% i os[(n + = 7'()(] exp[—(n + %)27r27-] |

(1)( +3)

Under these conditions, the chemical reaction is fast when compared to the dif-
fusion of A through the film. Consequently, equilibrium is maintained between the
adsorbate and the sites, and the reaction kinetics do not appear in the final result.
Equation (3.6) is identical to the result for simple diffusion with no accompaning
reaction, as we would expect (Crank 1975). The occupancy of the sites 6 is related
to the adsorbate gas concentration 7 by the Langmuir isotherm and, from equa-
tion (3.4),

O(x,7) = Ny, ask/n> sy, (3.7)

Treatments of this case for the semi-infinite geometry (Prock & Giering 1989; Gardner
1989a) and for a thin film (Gardner 1989b) have been presented previously.

(b) Case II(A<1,n>1,k>1)

When « > 1 and 1 > 1, reaction at the binding sites removes a significant portion
of the adsorbate as it diffuses into the film. Under these circumstances, equation (3.3)
reduces to

. ;i os|(n + )7rx] exp[—(n + %)27r27'/17] (3.8)

(=1)*(n+ ;)
and

0(x,7) = A, (3.9)
when k> (n+ 1)*n%.

This is identical in form to equation (3.6) but has the dimensionless time parame-
ter 7 replaced by 7/n; this is equivalent to the diffusion coefficient D being replaced
by D/n (= D/KN) as the effective diffusion coefficient. Thus, in this case the con-
centration profiles have the same form as in case I but with the adsorbate appearing
to diffuse more slowly into the film, hence modifying the effective diffusion coeffi-
cient as expected (Gardner 1989a). Once again equilibrium is maintained between
the adsorbate and sites (equation (3.9)).

(¢) Case III A< 1, k<1, kK<n)

When A <« 1 and k < 0, diffusion is fast when compared to the adsorption kinetics,
so that k < 1 and equation (3.5) for s,, simplifies at first order to s, = —k/n both
for large and small values of 7. Substitution of —k /7 in equations (3.3) and (3.4) for
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Figure 1. The relationship between the three linear diffusion-reaction cases (A < 1). The
boundaries between the cases are shown by the thick lines.

v gives

. 2~ cos[(n+ g)mx] exp[—(n + 3)°7?7]
Y(x, 7)) ~ 1 nz:(:) A |

s
0(x,7) = M1 — exp(—kT/n)). (3.11)

Consequently, the diffusion of adsorbate through the film is essentially instan-
taneous on the time scale of reaction with the sites; the adsorbate concentration is
independent of x and depends only upon the kinetics of the adsorption reaction. The
same holds true for n < 1 as the terms in the exponential series rapidly converge
to zero. On the time-scale of the diffusion process, s, must be expanded to second
order to give a diffusion equation.

To summarise, the diffusion of the species A into the film is fast when compared
with the rate of reaction of A with the sites (k/n < 1). Thus, A diffuses into the
bounded layer before any reaction can occur and so 7y is described by the bounded
layer diffusion equation. Reaction between the species A and the sites then takes
place on a longer timescale, after v has reached a value of 1 independent of x. The
fraction of occupied sites 6 approaches its equilibrium value A exponentially with
time, as expected. This corresponds to the model used by Bartlett & Ling-Chung
(1989a) to describe a thin polymeric gas-sensitive film.

Figure 1 shows a case diagram for A < 1 illustrating the relationship between
cases I, IT and III. At the boundaries (marked by solid thick lines) between the cases,
the full equations, (3.3) and (3.4), must be used.

In figure 2 we show the adsorbate concentration and site occupancy profiles cal-
culated from the analytical solution for the three cases discussed above.

(3.10)

4. Reaction kinetics (k < n/(1+ 1))

We now turn our attention to the region where the reaction kinetics are slow so
that diffusion is more rapid than chemical reaction and equilibrium is no longer
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Figure 2. Plots of the adsorbate concentration v and the site occupancy divided by its equilibrium
value 0/0, for cases I-III calculated for 7 = 0.1, 0.2, 0.5, 1.0, 2.0, 5.0 and 10.0. The curves for
case I (a) are calculated from equations (3.6) and (3.7) with x = 100, A = 0.01 and n = 0.01;
for case II (b), from equations (3.8) and (3.9) with x = 100, A = 0.01 and n = 100; for case III
(c), from equations (3.10) and (3.11) with x = 0.01, A = 0.01 and 7 = 1.0. For each calculation,
0 is 0.0099.
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maintained. This requires diffusion to be faster than either the forward or backward
reaction, whichever is the slower process. In dimensionless terms, this corresponds to
the condition that k < n/(1+n). Consequently, the fractional occupancy of the sites
0(x, 7) is determined by the chemical kinetics. Under these conditions the time-scales
for diffusion and reaction are different and, hence, we can decouple the differential
equations. Equation (2.15) can be rewritten in the form
n 00
- = —6(1/X . 4.1
15 = k(= 0(1/A+7)) (4.1)
Now, 0 <y<1land 0< 80 < A/(1+)),and thus —1 < (y—0(1/A+7)) < 1, so that,
with k < /(1 +n),
n 060
177 «1
Aot <h

and equation (2.13) becomes

2
9 9y, (4.2)
ox? Or

This is equivalent to applying the steady state approximation to the site occupancy

0; in effect, we assume that the diffusion of A into the film occurs on a much faster

time scale than the change in occupancy of the sites. Equation (4.2) is now the simple

diffusion equation and so we get

2 i cos(n + 3)mx] exp[—(n + %)%27-].

y(x, )~ 1—-— EEey (4.3)

™
n=0

Then assuming that - is constant because the time scales of diffusion and reaction
are now different, solution of equation (2.15) for 6 gives

b(x,7) = 1 iVM (1 — exp <—(1+%)’”>> . (4.4)

The diffusion of A into the film occurs before there is any significant reaction to
fill the sites, so that it follows simple bounded diffusion. The reaction with the sites
occurs subsequently when the concentration of A is close to its equilibrium value
within the film (y ~ 1). Equation (4.4) for § has two limiting forms depending on
the magnitude of A\. We now present these two limiting cases.

(a) Case III (k <n/(1+n), A<1)
When A <« 1 we can simplify equation (4.4), with v ~ 1, to obtain
0(x,7) ~ Al — exp(—K7/n)] (4.5)

It is satisfactory that this is identical to the result which we obtained for case III
above (§3c) as a special case of equation (19) derived for A < 1.

(b) Case IV (k <n/(1+mn), A>1)
When A > 1 and v ~ 1 in equation (4.4), we can replace (1 4+ Ay) by My to give
0(x,7) = 1 — exp(—=AysT/n). (4.6)

This corresponds to the situation in which the sites are fully occupied at equilibrium,
hence as 7 — 00, 0 approaches 1. The curves are similar to those in case III, except
for a factor of v in the exponential, and are therefore not shown.
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5. Nonlinear kinetics with slow diffusion (k > n/(1 + n))

So far we have developed solutions for all A < 1, and for all Kk < n/(1 + n). We
now consider the final region where k > n/(1 + n). Since & > n/(1 + 1) we can
assume that equilibrium is maintained between the diffusing species A and the sites,
so that

0=M/(14+\y) (5.1)
and
a0 A oy
ar — (L+Mm)2or
Substitution in equation (2.13), followed by rearrangement, gives

Py (1+ M) +n0y

o (1+M)? or

It is clear from inspection of equation (5.3) that in this case the problem is nonlinear.
When \ < 1, equation (5.3) neatly reduces to the modified diffusion equation,

(5.2)

(5.3)

o

Ox? or’

The solution to this equation, with suitable boundary conditions (Gardner 1989a),

produces the results for case I when < 1, and for case IT when 7 > 1, given above.

When A > 1 we can identify two new cases from equation (5.3) which depend
upon the value of n. We now consider these cases in turn.

(a) Case V(k>n/(1+n), A>1, A2 >n)
When A2 > n and X > 1, equation (5.3) reduces to the simple diffusion equation.
Thus, ~ is described by the simple bounded diffusion result

= (1+n) (5.4)

g >, cos[(n + %)WX] exp|—(n + %)27r27']
s Z (_1)n(n+ %) )

n=0

PY(X,T) =1- (55)

and, because equilibrium is maintained, 0 is given by equation (4.4).

It is satisfactory that for A < 1 the equations reduce to those for case I. Equa-
tions (5.1) and (5.5) describe the propagation of a reaction profile through the film.
In general, at the outside of the film Ay > 1, and so § = 1 and the sites are satu-
rated; on the inside of the film Ay <« 1 and 6 = 0, the sites are empty. As A diffuses
into the film, described by equation (5.5), the boundary between the saturated and
unsaturated regions moves from the outside to the inside of the film (figure 3).

(b) Case VI(k>n/(1+n), A\>1, X2 <n)

So far we have considered the situation for A < 1 and A > 7 for & > n/(1 + n).
We now consider the final region where 1 < A2 < 7. In this case we cannot linearize
the nonlinear diffusion equation (5.3).

In this case we have an example of a ‘moving boundary’ problem. The problem
of diffusion with a moving boundary has been of great interest for many years.
Hermans (1947) discussed the penetration of sulphide ions into a gel containing heavy
metal ions. In order to tackle the problem, he made the simplifying assumption that
the sites were either empty or full, which led to a discontinuous solution. In 1969,
Paul claimed that an analytical solution is not feasible for the sorption problem
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Figure 3. Plot of the adsorbate concentration v and the site occupancy divided by its equilibrium
value 6/0 for case V: nonlinear fast kinetics with normal diffusion. The curves are calculated
from equations (5.5) and (4.4) with k = 100, A = 100 and n = 1 for 7 = 0.002, 0.005, 0.010,
0.020, 0.050 and 0.100. For this calculation, 0. is 0.99.

and that the requirements of a numerical solution are too cumbersome. Instead, he
used the method of Frisch (1957) to derive analytical expressions for the time lags
on adsorption and desorption. More recently Murphy et al. (1988) have obtained
numerical solutions of a ‘stiff” nonlinear diffusional boundary-value problem, where
the diffusing material can be reversibly bound to fixed traps. The solutions show,
as expected, a difference in the adsorption and desorption times and a sharp step
in the concentration profiles. Finally Kim et al. (1988) have addressed the problem
of doping electroactive polymer films and produced a nonlinear partial differential
equation identical to that given here (see equation (5.3)).

It is instructive to begin by considering a very simple model. For case VI the reac-
tion kinetics are fast compared to diffusion and at equilibrium a significant amount
of the diffusing species is bound to the immobile sites within the film. Under these
circumstances, as the species A diffuses in to the film, a reaction front will be estab-
lished at some position x, within the film. Ahead of this reaction front (for x < x.)
the sites will be empty, behind the reaction front (for x > x.) the sites will be full. At
the boundary, corresponding to ¥ = x., we assume that the sites are half full so that,
from equation (5.1), v. = 1/A. The velocity with which the reaction front moves into
the film is determined by the requirement that the flux of material reacting at the
front balances the flux of material diffusing through the film to the reaction front

. Ay
dr  ndy’

(5.6)

Assuming that the gas profile in the outside saturated region is linear, we can substi-
tute into equation (5.6) for dy/dy and obtain the following equation for the velocity
of the boundary:

dxe _ AML=7) (5.7)
dr 71— x.)
Given that x, = 1 at 7 = 0, and that ~, is constant until the reaction front hits
the impermeable region at x = 0, then equation (5.6) may be solved to produce a
quadratic in x.. Its solution (taking the negative root as the only physical solution)
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Figure 4. Schematic of the moving boundary problem.

gives the time dependency of the wavefront as
X = 1= [2(1 =y )rA/n)2. (5.8)

Equation (40) describes the position of the boundary as it moves through the film.
Note that the position of the boundary depends on 71/2, because, as time progresses,
the distance over which the material must diffuse in order to reach the reaction front
increases and hence the flux decreases.

We can also approach this problem in a different manner. Again we begin by di-
viding the film at x = x., where v = v, = 1/, into two regions; an inner region
where the sites are unsaturated and an outer region in which the sites are saturated
(figure 4). We then proceed to solve the problem by adapting Neumann'’s solution
for the propagation of a boundary between two phases in a semi-infinite medium
(Carslaw & Jaeger 1959). In terms of Neumann’s formulation of the problem, the
transient describing the diffusion of the gas into the polymer (the adsorption tran-
sient) corresponds to melting.

To move the boundary between the saturated and unsaturated regions through
a distance dy, a quantity of adsorbate ndx/\ per unit area must be supplied by
diffusion. This requires

1om 91 _ ndx

ndx Ox Adr’
where v, (x,7) and 2(x,7) are the concentrations of gas in the unsaturated and
saturated regions, respectively (equation (5.9) corresponds to equation (2) on p. 284

of Carslaw & Jaeger (1959)). For linear diffusion, v, and 7, have to satisfy

(5.9)

Fn On

2 0, (5.10)
%y, Oy

92 or 0, (5.11)
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Figure 5. Plot of log(¢) values calculated for adsorption transients from equation (5.13) against

log([A/n]*/?) for values of 7 of: 10, (0); 107, (e); 10%, (v); 10°, (¥); 10°, (O). A range of A values
are shown.

and the appropriate boundary conditions.
Following Carslaw & Jaeger (1959), the position of the boundary between the two
regions for the adsorption transient case is given by

(1—x.) =2¢r'/2, (5.12)
where ( is the root of

exp(=?)  qeexp(=Cn) gt/ -
erf ¢ n/2(1 = ) erfe(¢n'/?) A1 =)’ '
and the concentrations of adsorbate on the two sides of the boundary for the adsorp-
tion transient are given by

1/2(1 _
Ve erfc{n (1-x)

T erfe(Cnil?) 513 } +e(x;7), (5.14)

1— 1—x
Yp=1- afc erf{2T1/2}+a(x,7), (5.15)

where we have added a correction term, £(x, 7), to take into account the effects of
the finite thickness of the film.

Equation (5.13) for ¢ was solved numerically using the Van Wijngaarden-Dekker—
Brent method (Press et al. 1986). A good approximation for ¢ is found to be ¢ =
0.65()\/n)*/? (figure 5). Thus, to a good approximation, the position of the boundary
is

(1—x.) = 1.3(tA/n)/2. (5.16)
It is pleasing that this result is identical in form to that given in equation (5.8) for
the very simple model of a propagating boundary.

Neumann’s treatment assumes semi-infinite linear diffusion. This is not true of
our problem. A better approximation to 7 is achieved by folding in the semi-infinite
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Figure 6. Plot of the adsorbate concentration 7 and the site occupancy divided by its equilibrium
value 6/6, for case VI: the moving boundary problem. The curves are calculated from equations
(5.1), (5.12)—(5.15) and (5.17) with x = 100, A = 10 and 7 = 1000 for 7 = 10, 15, 20, ..., 60. For
this calculation, 6 is 0.909.

linear diffusion profile at the impermeable boundary (i.e. x = 0). Folding in the
external profile twice increases y; and v, with

Y n'/? n'/?
e(x, T) ~ e (Cr72) [erfc{m(1+x)} —erfc{m(?)—x)}] . (5.17)

At some point the moving boundary will encounter the inside edge of the film. To
deal with this we calculate the time at which the boundary reaches the inside of
the film, 7,. From equation (5.16), 7. = 0.59n/\. For times greater than this critical
time we assume that the process is dominated by simple diffusion. The solution for
diffusion into a bounded layer starting from a general concentration profile has been
given by Crank (1975). Modifying this equation to apply to our problem gives

2 o~ cos(nm) —1 .
’Y(X,T) =1+ 7—1' E % Sln(%mr(x + 1)) exp(—i—n27r2(7- — 7-*))
n=1

+QZsin(%n7r(x + 1)) exp(—in’n* (1 — 7.))

n=1
1

x/ VQ(X’,T*)sin(%nw(x+1))dx’, (5.18)
0

where v (x’, 7 ) is given by equation (5.15) with x = x’ and 7 = 7,. Profiles calculated
using equations (5.1), (5.12)—(5.15) and (5.16) are shown in figure 6.

The profiles calculated for this case show a well developed reaction front in the
plots of 8 as the saturated region spreads from the outside into the film. It is noticable
in the profiles for v that, to a good approximation, these are linear in the saturated
outer region, as assumed in the very simple analysis which lead to equation (5.8).
Notice, also, that because the material diffusing into the film must fill the sites, the
time scale for the process is significantly longer, by a factor of the order of n/A, than
that for simple linear diffusion.

Phil. Trans. R. Soc. Lond. A (1996)


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org on January 3, 2012

48 P. N. Bartlett and J. W. Gardner
(@)

log x

ON RO

—

K=1
@ | @
NS

(»)

log ¥

e,
S

<

log A

0

Figure 7. Full case diagram for all six cases showing the regions of dominance for the different
cases as a function of k, A and 7.

6. The case diagram

We now collect our results. Figure 7 shows the relation between the six cases in
(k, A, n) space. The corresponding approximate analytical expressions for vy(x, 7) and
0(x, ) are collected together in Appendix A. At the boundaries between the cases,
the approximate solutions will be most in error and a more complex expression should
be used. These are gathered together in Appendix B. It is satisfactory that there is a
good match between the cases at the boundaries. We now discuss each case in turn.

In case I, the film is unsaturated at equilibrium and the kinetics of the reaction
are fast when compared to diffusion. Consequently, the occupancy of the sites follows
the diffusion of the species A into the film. The amount of A bound on sites is small
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compared to the amount of free A in the film and thus the diffusion of A is not
affected by the reaction.

In case II, the film is unsaturated at equilibrium and the reaction kinetics are fast
when compared to diffusion. However, this case differs from case I because a large
proportion of A is now bound to sites in the film. This leads to a reduced diffusion
coefficient, and hence the characteristic time for A to diffuse into the film is greater
by a factor n than in case L.

In case III, the film is unsaturated at equilibrium, but now the reaction kinetics
are slow when compared to diffusion. Thus, A diffuses into the film and attains
a constant concentration before reaction occurs. The reaction then proceeds on a
slower timescale homogeneously throughout the film.

In case IV, the film is saturated at equilibrium, but the reaction kinetics are
still slow when compared to diffusion. Thus, again, A diffuses into the film and
attains a constant concentration before the sites are filled. The reaction then proceeds
homogeneously throughout the film to completely fill the sites.

In case V, the sites are saturated at equilibrium and the kinetics are fast so that
the occupancy of the sites follows the diffusion of the species A into the film. The
reaction does not significantly perturb the diffusion because only a small fraction of
A ends up in the bound form. As a result, the region of occupied sites spreads into
the film from the outside at a rate governed by the diffusion of A.

Finally, in case VI, the situation is more complex. Once again the sites are fully
occupied at equilibrium and the reaction kinetics are fast but now the fraction of
the species A bound to sites is significant. Thus, the reaction slows down diffusion
of A into the film. The region of occupied sites spreads through the film as a moving
boundary from the outside in, but now this is slower than for case V because a
significant quantity of A is bound to the immobile sites at equilibrium.

7. Desorption

So far we have considered the problem of the simultaneous diffusion into and
reaction of an absorbate with a uniform homogeneous film. The boundary condi-
tions for this adsorption process are given by equation (2.14). Clearly, there is the
complimentary problem in which the adsorbate is initially distributed uniformally
throughout the film and subsequently diffuses out into the external phase. Under
these circumstances the boundary conditions are

at7=0,0=XA/(1+N)andy=1, 0< x <1,

7.1
Y7 > 0, le_;% =0and y=0at x =1. (7.1)

x=0

Provided the diffusion-reaction equation describing the process is linear, it is easy
to show that the solutions derived for adsorption can be readily modified to describe
the desorption process. We simply need to replace the variables v by (1 — ) and €
by (s — 6) to obtain the desorption solutions. Thus, for cases I-III, the solutions
for the desorption process are readily obtained from the results given above. The
appropriate expressions are given in Appendix C. For cases IV-VI, the diffusion
reaction equation is nonlinear and, hence, the desorption process is not simply derived
from the solutions for the adsoprtion transients.
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(a) Case IV (k <n/(14+mn), A>1)

In case IV, the reaction kinetics are slow when compared to diffusion, hence dif-
fusion of the unbound species from the film is unaffected and is described by equa-
tion (3.6). The fixed sites in the film do not start to empty until v falls to a value of
1/X. The time 74 required to reaches this condition can be found from the solution
of the simple bounded diffusion problem (case I, equation (3.6)). Using the first term
in the series, and setting x = 0, gives

4
Y(x=0,7T=14) = - exp(—iﬂ'%’d). (7.2)
Rearranging and substituting for v = 1/X gives
4
Ta & — In(4\/7). (7.3)
v
The effect of this time delay on the profile for 6 can then be taken into account by
modifying equation (4.6) to give
_exp(—k(r = 7a)/)
1+ exp(—r(T = 7a)/n)

Now when 7 < 74, 6 =~ 1 and when 7 > 74, 0 =~ exp(—«(7 — 74)/n) as required.
Figure 8 shows examples of the adsorption and desorption transients for case IV.

(7.4)

(b) Case V(k>n/(1+n), A>1, A2 >n)

In case V, at 7 = 0 the sites are saturated (A > 1) and the kinetics are fast so
that equilibrium is maintained between the free and bound species (k > n/(1 +n)).
In addition, the conditions are such that only a small fraction of the total amount
of gas is bound to the sites at 7 =0 (A? > n). Thus, the diffusion of the free species
out of the film is essentially unperturbed by the bound material and is described by
the simple bounded diffusion equation (from equation (3.6))

2 i cos|(n + §)mx] exp[—(n + %)27r27]

’Y(X?T) ~ = (—1)"(n+ %) ) (75)

’/T n=0
and then, since the kinetics are fast, 6 is given by equation (5.1). Because the sites
cannot empty until the concentration of free gas falls sufficiently low (v < 1/X) so
as to shift out of the saturated region, the desorption transient for € is slower than
the corresponding adsorption transient. Figure 9 illustrates the difference between

the adsorption and desorption transients in case V.

(¢c) Case VI (k >n/(1+mn), A>1, A2 <n)

Case VI is similar to case V but with one crucial difference; now the amount of
bound gas is significant and so we can no longer assume that it does not perturb the
diffusion of the unbound gas out of the film. In fact, in this case, it is the desorption
of the bound gas which is dominant. As a result, the problem in this case is highly
nonlinear. Expressions for the time lag in desorption under these conditions have
been presented (Paul 1969), but expressions for the concentration profiles are not
readily available.

We begin our analysis by going back to the basic differential equation appropriate
for this case, i.e. equation (5.3). We note for case VI, that n > A\? and so we simplify
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Figure 8. Plot of the adsorbate concentration  and the site occupancy divided by its equilibrium
value 6/0., for the adsorption and desorption transients for case IV calculated for x = 0.01,
A = 10*, n = 0.01. Note the difference in the timescales for the § transient (a) adsorption,
7 =107°,0.01, 0.02, 0.03 etc. up to 0.1; (b) desorption, 7 = 0.01, 1, 2, 3, etc. up to 10. In both
cases, 0 is 0.9999.

(5.3) and write

ox*  (L+Ay)2or’
Our approach is then to substitute an approximate expression for v(x,7) in the
denominator on the right-hand side of equation (7.6) and then to solve it. First, we
put v = 1 in the denominator of equation (7.6), and hence obtain a linear equation
which we solve. We choose to use the form of the expression given in terms of the
complementary error function (erfc) which is a good approximation at short times.
Following Crank (1975) and using our notation, for the desorption transient we obtain

2
0%y n__ Oy (7.6)

C n — 1/2 00 2
[P St <((22<T41-)A)T>2;7 ) + ;(-D”erfc («%11);):22 )

(7.7)
We can now obtain a better approximation for v by taking the leading term in
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Figure 9. Plot of the adsorbate concentration y and the site occupancy divided by its equilibrium
value 0/6., for desorption in case V. The curves were calculated from equations (7.4) and (5.1)
with £ = 100, A = 100 and = 1 for 7 = 0.001, 0.5, 1, 1.5, etc., up to 5. Note that the time scale
is much longer than that for the corresponding case V adsorption transient shown in figure 3.
For this calculation, 0 is 0.99.

equation (7.6) for v at x = 0. This gives

~ = erf[n/?/(2(1 + N)T/?)]. (7.8)

We then substitute this expression for 7y in the denominator of equation (7.6) to give
0? 0

v _ n Y (79)

ox® (1 + Xerf(n'/2/(2(1 + N)71/2))2 7
To solve this we introduce the new variable ¢, such that
Oy

ac = (1+ Xerf(n/2/(2(1 + N)T/?%))2, (7.10)
and hence (7.9) becomes
0%y 0
= ”a_Z' (7.11)

Solution of (7.11), with the boundary conditions for desorption given in equa-
tion (7.1), gives equation (7.12) for +:

2. cos[(n + §)mx] exp[—(n + 3)*7x/n]
’Y(X,T)'V—Z ENECESS) ,

(7.12)

™
n=0

where, from integration of (7.10),

¢= 7’+2>\/ erf(n'/?/(2(1+X)7/%)) d7+>\2/ erf?[nt/2/(21+N)71/2)] dr, (7.13)
0 0
and since the kinetics are fast and equilibrium is maintained, 6 is again given by
equation (5.1).

The evaluation of the integral in equation (7.13) leads to other integrals (Prudnikov
et al. 1986) and it is more convenient to evaluate these numerically. When n'/2/[2(1+
A)] is greater than unity, the following approximation is good:

¢ =71+ 2 rerf[n"/2/(2(1 + X\)7V2)] + XN exf?[n'/2/(2(1 + N)TV/2)). (7.14)
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Figure 10. Plot of the adsorbate concentration v and the site occupancy divided by its equi-
librium value /6 for desorption in case VI. The curves are calculated from equations (5.1),
(7.12) and (7.13) with k = 100, A = 10 and n = 1000 for 7 = 0.1, 100, 200, 300, etc., up to 1000.
For this calculation, 0 is 0.909.

This approximation is valid for most of case VI as A > 1 and \? < 7.

Figure 10 shows typical profiles for desorption in case VI. It is notable that the time
scale for desorption in this case is much slower, by a factor of about 2, than the time
scale for adsorption. This is because in the adsorption process the large concentration
difference between the outside of the film, where v = 1, and the reaction front,
where v = 1/X\ (remember, for this case A > 1), drives the flux of material into
the film by diffusion to fill the fixed sites. In contrast, in the desorption process,
the concentration difference between the inside of the film, where v = 1/, and the
outside, where v = 0, is small and hence the flux of material leaving the film is much
smaller.

8. Conclusions

In this paper we have presented approximate analytical expressions for the tran-
sient concentration profiles for a species diffusing into a bounded film containing a
number of fixed sites which bind the diffusing species according to the Langmuir
isotherm. We have shown that we can distinguish six different limiting cases and we
have shown how these are related by means of a case diagram. We have considered
both the adsorption and desorption transient behaviours for each case. The results
are summarized in Appendix A and Appendix C. We find that for the linear kinetic
cases (I-1II), the adsorption and desorption transients are simply related. For the
nonlinear kinetic cases (IV-VI), the situation is more complex and the adsorption
and desorption transients are different and occur on different time scales. In case
IV, there is a time delay, until v falls to a value of approximately 1/\, before the
sites begin to empty. Thus, the adsorption and desorption transients for v are on the
same time scale, but the corresponding 6 transients are on different time scales. In
case V, the adsorption and desorption transients for v are again simply related, but
the 6 transients are on very different time scales because equilibrium is maintained
between the bound and the unbound material. In case VI, both v and 6 adsorption
and desorption transients are on different time scales.
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We have compared our approximate analytical solution presented here with the
results of digital simulation of the adsorption and desorption processes using finite
difference techniques and we find good agreement. We have also used our approximate
analytical expressions for the concentration profiles to model the transient responses
for gas sensor devices, based on adsorption of a gas into a thin film. Full details of
this work will be given in a subsequent paper.

We thank Mr Keith Pratt for helpful discussions.

Appendix A. Approximate analytical expressions for adsorbate
concentration and site occupancy for adsorption

Case I: (A< 1, n<1,k>n)

2 o= cos[(n + 3)mx] exp[—(n + 1)27?7]
vix, T)~1—-— , O(x,7) = M.
2> STy o)
Case II: (A< 1,n>1,k>1)
2 o= cos[(n + 2)mx]exp[—(n + 1)2x%r

COECESY |

n=0

Case III: (A <1, k <n/(1+n))

1 2 x~cos[(n + 3)mx] exp[—(n + 3)*m*7]
YT R 1= ey ’

0(x,T) = A[1 —exp(kT/n)].

Case IV: (k <n/(1+n), A >1)

v(x, T) ~ 1—% y cos((n + 527_’?]):??1;[;(;? 3)m T], 0(x,T) ~ 1—exp(—XyKT/n).
n=0 2

Case V: (k>n/(1+n), A>1, A2 > )

Yo7~ 1 - %Z etnt 527%] o 00x, 7) = My/(1+Xv).

S D |
Case VI: (k >n/(1+n), A >1, A\ <n)

Y(x,T) & T = 0.59n/ X, X =1 —2¢7Y2,
0(x,7) ~ Xy/(1+ Ay)
exp(—¢?) Yo exp(—(un) o'/

erf ¢ /21— vy.)erfe(¢n'/2) — A1 — )’
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ni/2 /2
e(x, T) =~ erfc {W(l + X)} - erfc{QTl/2 (3-— X)} )

For r < 7,
1/2¢1 _
. n'2(1-x)
X < X*) 71 - erfC(Cnl/Q) erfc{ 27_1/2 } + g(XﬂT))
11— 1-x
X > Xey, Y2o=1-— e erf{2 1/2}+6(X,7-)
For 7 > 7,

Yx,7) =1+ %Z E’—S("HL)_— sin(3nm(x + 1)) exp(—Ln?n%(r — 7))

+2 Z sin(nm(x + 1)) exp(—in’r?(r — 7-*))

n=1

1
x/ Yo (X', ) sin(Anm(x + 1)) dx’'.
0

Appendix B. Exact analytical expressions for gas concentration and
site occupancy (adsorption transients)

Cases I-I1I:
Y(x, 7)

o

(n + ) cos[(n + %)WX] exp|s, ]
=l-in Z 17 [n + 12n2 = sumnls,  n/al]

(n+ 3)cos[(n + 3)mx] exp[s,7]
boT)=A- 2”“2 ¢ (5 + 1) (L) [(n + DPn? — sprlnfs, + /)]

where (n + %)%2/@

n=20,1,2,...,00, ands,~ — )
k(1 +1/n) + (n+ 3)*n?]

Cases III, 1V:

_ 2~ cos((n + g)mx] exp[—(n + 3)*n*7]
(X, 7) ™ ; I+ 1) ,

e = 125 (1o (02257

Appendix C. Approximate analytical expressions for adsorbate
concentration and site occupancy for desorption

Case I: A< 1,n<1, k>n)

2 o= cos[(n + 5)mx] exp[—(n + 1)2727]
n=0 2
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Case II: A< 1,n>1,k>1)

, 0 T) =\,

2 < cos|(n + 3)mx] exp[—(n + 3)27?7 /7]
~ T z:: (-)*(n+3)

Case III: (A < 1, k <n/(1+n))

R\JI'—‘

%Z !

Case IV: (k <n/(1+mn), A>1)

% i é Tx] exp[—(n + 3)*n?7]

(=1)"(n+3) ’

exp(nlr—r)fn) o
T 1+ exp(—k(r —14)/0)’ with 7q = {4In(4/7)} /7.

Case V: (k>n/(1+mn), A>1, A2 >1n)

2 o cos[(n + 2)mx] exp[—(n + L)2n%7]
(x,7)~ = 2 U ) ~ A/ ).
YX T T;) (-1)"(n + 5) X Y vy

Case VI: (k >n/(14+n), A > 1, A2 <n)

2 {Z cos[(n + 3)mx] exp[—(n + §)272(/n]

v06T) ~ 2 ey .0, T) = A/(1+ M),
where
C=1+2) / erf[n'/2/(2(1 + Nr/2] dr + X2 / erf2[/2/(2(1 + \)rV/2] dr
0 0
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