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 A nasal breath sampling device was developed for
 use with dairy cattle .  This device was tested as a
 means of supplying breath for analysis by a gas sensor
 array ,  gas chromatograph-mass spectrometer ,  and
 Fourier transform infrared spectrophotometer .  Con-
 centrations of methane ,  dimethyl sulphide ,  butan-2-
 one ,  and propanone (acetone) in cow nasal breath ,
 under field conditions ,  are reported for the first time ,
 and were detected at 70 – 1000 p . p . m .,  80 – 100  p . p . m .,
 70 – 80  p . p . m .,  and 1 – 10  p . p . m .,  respectively .  The out-
 put from a six-element gas sensor array was analysed
 using chemometric techniques .  Breath samples were
 successfully classified in terms of known input odours
 by referencing to serum 3-hydroxybutanoate ( b  -HB)
 concentrations .  These preliminary breath odour sens-
 ing studies suggest that it may be possible to dis-
 criminate between healthy cows and cows with ketosis
 by developing an application-specific electronic nose
 (ASEN) and sampler .  ÷   1997 Silsoe Research Institute

 1 .  Introduction

 Every year the dairy industry uses feeds with a
 value of £1000  M to produce milk . 1   In early lactation ,
 ketosis is associated with an inef ficient use of feed ,
 causes economic loss and compromises cow health . 2

 Marked improvements in this situation may be at-
 tainable if a simple ,  cheap ,  automatic diagnosis of
 bovine ketosis was readily available .  Ketosis or aceto-
 naemia is traditionally identified at the clinical stage
 by symptoms such as inappetance and the smell of
 acetone on the breath . 2   The detection of acetone on
 the breath by the human nose is prone to variation in
 sensitivity both between and within individuals de-
 pending upon ,  for example their state of health . 3

 Subclinical ketosis can be diagnosed by analysis of
 blood and milk samples in the laboratory .  However ,
 laboratory analyses of body fluids are time consuming ,
 costly and intrusive to the animal as well as being
 inherently dif ficult to automate .  We propose a rapid
 and non-invasive method of sampling breath in dairy
 cattle .  Chemical analysis of the sample can be per-
 formed using laboratory techniques ,  Fourier transform
 infrared spectroscopy (FTIR) and gas chromato-
 graphy-mass spectrometry (GC-MS) ,  and in addition ,
 artificial olfactometry 4   (or odour sensing) using an
 ‘‘electronic nose’’ .  The latter technique may have
 potential application in the automatic detection of
 subclinical ketosis .

 The quality of industrially important odours is
 traditionally monitored by a combination of analytical
 techniques such as GC-MS and human sensory panels ,
 both of which are expensive to implement in practice .
 Discrete devices consisting of a single gas sensor (e . g .
 Odor Monitor by Sensidyne Inc . ) can be used to
 quantify odour intensity ,  but they cannot be used to
 discriminate between dif ferent types of complex
 odours .  Instruments employing an array of non-
 specific electronic gas sensors (e . g .  chemoresistors ,
 field ef fect transistors or surface acoustic wave de-
 vices) termed ‘‘electronic noses’’ have recently been
 developed in attempts to mimic the human olfactory
 system by utilization of artificial intelligence . 4–6   Odour
 classification using an electronic nose ( Fig .  1 ) can be
 achieved in the following way .  The active material of
 each sensor  i  (where  i  5  1 to  n  and  n  is the total
 number of sensors in the array) converts the chemical
 input of odour  j  into a time-dependent electrical
 signal ,   V i j ( t ) .  The response pattern from the array is
 then a vector ,   X j   which can be analysed using a
 suitable data processing technique . 7   This process is
 known as pattern recognition (PARC) in odour sens-
 ing and in practice usually involves the selection of a
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 Fig .  1 .  Schematic diagram of the processing of signals with an electronic nose

 preprocessing algorithm ,   x i j  ,  e . g .  the normalisation of
 the array output to reduce experimental variation .
 Electronic nose technology is ,  at present ,  application
 specific ,  that is to say each application requires a
 specific experimental protocol and PARC technique .
 To date ,  interest has been concerned primarily with
 the measurement of odours from food and beverage .
 Instruments have been shown to discriminate ,  for
 example ,  between standard and artificially tainted
 beers 5  and dif ferent cof fee aromas , 6   amongst other
 consumer products .  More recently ,  in the field of
 agricultural engineering ,  an electronic nose was shown
 to successfully distinguish between odours from pig
 and poultry slurries 8   at concentrations above 6  3  10 4

 odour units / m 3  in air .
 Mottram 9   proposed that electronic sensors could be

 used to detect ketosis at an early stage by sampling
 the breath of the cow .  A sensor system could either be
 deployed to sample periodically or as a hand-held
 device used by a herdsperson or veterinarian .  A
 programme of work was planned in three stages ,  first
 to develop a repeatable method of gaining samples for
 analysis ,  secondly to evaluate suitable sensor systems ,
 and thirdly to correlate the results of breath sensors
 with blood profiles in a controlled trial .

 The object of the work reported in this paper is to
 report the first part of the programme ,  to devise a
 repeatable method of sampling the breath of a cow
 and to develop a reference method of calibrating
 sensors which does not require the presence of a cow .
 Three problems have been addressed ,  namely ,  vari-
 ability of sampling ,  lack of prior knowledge of chemi-
 cal constituents in the breath ,  and sources of error .

 2 .  Materials and methods

 2 . 1 .  Nasal sampling system

 A prototype hand-held device 9   for sampling breath
 directly from the nostril ( Fig .  2  ) was designed as it was
 assumed that this would avoid cross-contamination
 from odours emitted from the mouth .

 A rigid tube contains a flexible inner tube made
 from poly(terephthalic ester) film (Nalophan NA ,
 Hoechst) which serves as a disposable gas sampling
 bag (capacity of 0 . 55 to 0 . 60 1) .  Nalophan was selected
 because it is impermeable to aromas and water
 vapour ,  neutral in odour ,  and contains no plasticizer .
 At one end ,  the inner tube is sheathed around the lip
 of an all poly(tetrafluoroethene) sampling head which
 in turn has a trim fit to the outer Perspex case .  The
 opposite end of the film is enfolded around the rear
 rim of the cylinder with the latter sealed by a bung ,
 also housing a duct to enable the application of a
 partial vacuum or positive pressure between the inner
 and outer tube .  A breath sample can be drawn into
 and discharged from the disposable ,  inert material
 bag .

 Breath is drawn into the sample bag by evacuation
 of the annular volume between the rigid Perspex
 cylinder and the inflatable tube ,  using a positive
 displacement pump .  The pump is manually controlled
 with a switch positioned in close proximity to the
 poly(tetrafluoroethene) head .  The operator is able to
 move the device in order to retain the inlet port in the
 cow’s nostril even whilst the cow is moving .  As the
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 Fig .  2 .  Exploded diagram of breath sampling de y  ice

 cow exhales (indicated by the animal’s breath mist or
 whisker movement) ,  the pump is activated to fill the
 sample bag with breath .  The bag is discharged by
 pumping air into the annular space between the
 Perspex chamber and the flexible sample tube .  Breath
 sampling times varied although generally an extraction
 of about 0 . 5  l breath could be accomplished in less
 than 30  s .  Gas discharge times were of the order of 10
 to 30  s .

 The inner Nalophan NA film was replaced with a
 new piece of tube prior to each breath sample
 collection ,  thus avoiding any contamination from pre-
 vious specimens .  Likewise the speculi were removed ,
 wiped with a paper towel in order to remove any
 mucus or particulate matter ,  and rinsed in deionized
 water before drying and remounting on the
 poly(tetrafluoroethene) head .

 The device was used for sampling from several
 animals belonging to dif ferent herds (assigned as herds
 A to E) .  Sampling from dif ferent herds was necessary
 as dif ferent analytical instruments were located in
 dif ferent parts of the country .  Not all techniques were
 applied to all five herds .

 2 . 2 .  Odour sensing

 For the purposes of odour monitoring ,  a Fox 2000
 Intelligent Nose (Alpha MOS ,  France) based on an
 array of six commercially available metal oxide gas
 sensors was employed .  Each sensor (Table 1) was
 interchangeable and capable of running at one of two
 operating temperatures ,  controlled by the applied
 voltage .  Further details of the operation ,  sensing
 mechanism and selectivity of these gas sensors have
 been reported by Bartlett and Gardner . 1 0   Data ac-
 quisition and handling was carried out using an Intel
 486-based microcomputer running National Instru-
 ments ‘‘LabVIEW’’ software .  Instrumental interface
 and signal conditioning were obtained through utiliza-
 tion of a National Instruments LPM-16 analogue-to-
 digital converter (ADC) card .

 A small internal pump ensured a continuous flow of
 gaseous sample (0 . 01 to 0 . 7 l / min) across the sensor
 array ,  and out via an exhaust port .  Even when not
 testing ,  a continuous flow of background air was
 passed over the sensors thus defining the baseline
 signal and the conditions for which sensor resistance

 Table 1
 Designation of metal oxide (MOS) gas sensors used in electronic nose (sensor 6 was not

 used in the analysis due to missing data)

 Sensor  Specification

 1
 2
 3
 4
 5
 6

 NFI N43
 STAQ 1A
 NFI 1813
 TGS 825
 TGS 880
 TGS 822

 High sensitivity to ammonia ,  amines
 Air quality
 For detection of various combustible gases
 High sensitivity to hydrogen sulphide ,  5 to 100 p . p . m .
 Food odours and tobacco smoke
 High sensivity to alcohols and other organic solvents  . 50 p . p . m .



 R .   J  .   E L L I  O T T -  M A R T I  N   E T  A L . 270

 was calibrated .  A ‘‘burning-in’’ period of at least 1  h
 was necessary before sampling to allow the sensors to
 reach an equilibrium state under the conditions of air
 flow rate and sensor voltage employed .  After this ,  a
 routine calibration of sensor resistance was carried
 out .  Sensor responses to breath samples were re-
 corded over a period of 120  s .  Complete sensor
 recovery was established within 15 – 20  min before
 subsequent measurements were made .

 Samples presented to the electronic nose were
 collected over five experimental sessions (21 ,  43 ,  64 ,
 85 ,  and 120  ds after calving) in herd E only .  Only at
 this site was it possible to set up the instrument in a
 room which was suf ficiently near to the cows to enable
 rapid transport of the sample to the apparatus .  At
 least three replicate samples were taken for each cow
 in any given test day .  Blood samples ,  analysed by the
 MAFF State Veterinary Service ,  were taken simul-
 taneously with the first breath sample of the day for
 each cow .

 2 . 3 .  GC - MS analysis

 Silica and carbon based adsorbents were used to
 concentrate 0 . 5  l of cow breath (from herds A to D)
 prior to analysis by GC-MS .

 A GC-mass spectrometer [Hewlett Packard 5890 II
 Series gas chromatograph and a 5972A mass selective
 detector (MSD II)] was used to analyse samples
 collected on the adsorbents .  Samples were introduced
 into the GC-MS system with an optic thermal desorp-
 tion unit (Ai Cambridge Ltd . ) ,  at an initial tempera-
 ture of 30 8 C increasing at a rate of 16 8 C / s and held at
 280 8 C for 1  min .  Chromatographic separation was
 performed using a split mode on a 25  m fused silica
 (cross linked with methyl silicone) column (i . d .  of
 0 . 2  mm and a 0 . 34  m  m film) with a 1  m deactivated
 fused silica guard column (i . d .  0 . 25  mm) .  The flow-rate
 was 0 . 40  ml / min .  Electronic pressure control was used
 to of fset the ef fect of increasing pressure resistance
 with increasing GC column temperature to improve
 the chromatography of later eluting peaks .  The GC-
 mass spectrometer interface was at a temperature of
 280 8 C .  The GC oven conditions were ;  initial tempera-
 ture of 30 8 C ,  then increased to 150 8 C at 25 8 C / min .
 The mass spectrometer scanned from 32 to 150 mass
 units every 0 . 18  s to give a sensitivity down to 30  pg .
 Trapped volatile compounds were identified using an
 eight peak probability based matching algorithm and
 the NIST mass spectral library .  Compounds were
 declared unknown if their matching probability was
 less than 0 . 80 (1 . 0 being a perfect match) .

 2 . 4 .  FTIR spectroscopy

 Approximately 30 – 40  l of breath was collected from
 the nostril by discharging 0 . 5  l samples into a
 poly(tetrafluoroethene) gas sampling bag .  FTIR
 spectra were obtained using a variable path length ,
 Biorad FTS165 spectrophotometer fitted with BaF 2

 endwalls .  The path length was set to 10  m giving a cell
 volume of 1 . 75  l ,  which was consequently maintained
 at 40 8 C .  Initially the apparatus was purged with cow
 breath .  Spectra were recorded over the range ,  4000 to
 740  cm 2 1  at ambient pressures .  A total of 64 scans to
 an instrumental resolution of 2  cm 2 1  was carried out
 for each sample .  Due to the need to transport large
 volumes of fresh breath ,  only samples from herds D
 and E were studied by FTIR .

 3 .  Results

 3 . 1 .  GC - MS analysis

 The breath metabolites detected from late lactation
 cows sampled from four dif ferent herds are presented
 in Table 2 .  Various analyte concentrations ,  where
 measured ,  have been included .  The breadth con-
 stituents varied depending upon herd although di-
 methyl sulphide was commonly found in cows at all
 locations .  Dimethyl sulphide and butan-2-one may be
 inferred to be protein and fatty acid breakdown
 products ,  respectively .  The cellulose microbiological
 breakdown product ethanoic acid appeared among
 cows from herds B and C .  Methyl benzene ,  previously
 observed in pig slurry odours , 8   was detected in cows
 sampled from herd C only .  These cows (4 – 7) were
 suspected by the farmer as being ketotic .  An acetone
 concentration of 1 to 10 p . p . m .  in the breath was
 indicative of ketosis which was also confirmed by
 blood analysis .  The absence of volatile organic com-
 pounds (VOCs) in cow 8 could be due to the
 occurrence of condensation in the sampling bag after
 storage prior to analysis .  Water soluble VOCs would
 likewise condense out of the gaseous phase .

 3 . 2 .  FTIR spectroscopy

 The FTIR spectra of three discrete breath samples
 originating from cows in herd D exhibit the charac-
 teristic methane absorption peaks centred around
 3000  cm 2 1  and 1310  cm 2 1  ( Fig .  3  ) .  The characteristic P
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 Table 2
 GC-MS analytes detected in late lactation cows :  the number of experiments are given in parenthesis

 Cow  Analyte  Concentration  / p .p .m .  Herd

 1(1)

 2(3)

 3(2)

 3(2) †
 4(1)
 5(1)

 6(1)

 7(2)

 8(4)

 dimethyl sulphide
 butan-2-one
 dimethyl sulphide
 butan-2-one
 dimethyl sulphide
 ethanoic acid
 di(ethyleneglycol)
 acetone
 ethanoic acid
 ethanoic acid
 methyl benzene
 acetone
 ethanoic acid
 methyl benzene
 acetone
 dimethyl sulphide and other sulphur
 compounds ,  methyl benzene
 No compounds detected

 80 – 100
 70 – 80
 80 – 100
 70 – 80

 —
 —
 —

 saturated
 —
 —
 —
 , 1
 —
 —

 1 – 10
 —

 A

 A

 B

 C
 C
 C

 C

 C

 D

 †  Denotes gaseous sample spiked with acetone

 and R branches on either side of the main peak
 correspond to the molecular rotations associated with
 the molecular vibration .  Two broad absorptions ,  ob-
 served above 3500  cm 2 1  and broad weak bands in the

 range 1870 to 1400  cm 2 1  can be assigned to water
 vapour in the breath .  Finally ,  a carbon dioxide band
 was observed around 2350  cm 2 1 .

 The instrument had previously been calibrated for
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 Fig .  3 .  Typical FTIR spectrum of cow breath sample from herd D o y  er the range  4 0 0 0 – 7 4 0  cm 2 1 . Bands centred around
 3 0 0 0  cm 2 1  and  1 3 1 0  cm 2 1   arise through CH 4   absorption . Bands abo y  e  3 5 0 0  cm 2 1   and in the range  1 8 7 0 – 1 4 0 0  cm 2 1   are due to

 H 2 O . The CO 2   absorption peak is obser y  ed at  2 3 5 0  cm 2 1
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 methane concentration using a mixture of methane
 and nitrogen .  From this ,  it was calculated that two
 cows from herd D exhaled breath with a 500  p . p . m .
 methane concentration .  A cudding cow in the same
 herd produced a breath sample with a 70 p . p . m .
 methane concentration .  Samples from herd E con-
 firmed the presence of high concentrations of methane
 on the breath .

 3 . 3 .  Odour sensing

 A typical sensor response pattern to breath is shown
 in  Fig .  4 .  The individual sensors in the array res-
 ponded dif ferently both in amplitude and rate .  Breath
 sample response signals were recorded at the peak
 values on the response curves as the maximum change
 of either the sensor voltage ( V odour ) or sensor conduc-
 tance ( G odour ) in odour ,  from the corresponding value
 in air ,   V air  or  G air .  A fractional dif ference model (Eqn
 1) can be applied when dilute odours of fixed con-
 centration or small changes in concentration are
 presented to metal oxide sensor arrays . 1 1   However ,
 because large ,  non-linear signals were obtained from a
 0 . 5  l gas specimen ,  the responses were linearised
 (Eqn  2) .  Autoscaling was also used to give an equal
 weighting to each sensor response in the data matrix
 and so remove inadvertent weighting on extremely
 large values 1 2   (Eqn  3) .  The response parameter  x ( k )

 ij

 and sensor probability distribution  N  are defined as
 follows .
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 Fig .  4 .  Typical plot of the output from each of the six sensors
 when responding to a sample of cow ’ s breath . The change in
 sensor  y  oltage is shown with respect to time . The six sensors ,
 CH 1  to CH 6 , correspond to the sensors identified in Table  1 .
 In each case the maximum  y  alue of the change in  y  oltage was

 used in the subsequent analysis to calculate G odour

 Linear model :

 x (1)
 ij  5  ( G odour  2  G air ) / G air  (1)

 Non-linear model :

 x (2)
 ij  5  ln  ( G odour / G air )  (2)

 Autoscaling :

 N ( m i  ,  s  2
 i  )  5  N (0 ,  1)  (3)

 where  m i   and  s  2
 i    are the mean and standard deviation

 of the responses of sensor  i  to all odours ,  respectively .
 The preprocessed array of data was then analysed

 using the methods of principal components analysis
 (PCA) and hierarchical cluster analysis (CA) . 1 2   Figure
 5  shows the first and second principal components of
 the response from a six-element electronic nose for
 breath samples tested for two cows in herd E ,  21 to
 120  d after calving .  Only the first two principal com-
 ponents were required because 98 . 1% of the variance
 was found in these .  The other principal components
 presented a virtually identical picture .  Due to missing
 data for sensor 6 ,  only five out of the six possible
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 Fig .  5 .  Principal components analysis for breath sample
 classification in herd E using fi y  e of the six possible sensors in
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 show considerable  y  ariance
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 sensors were used in the analysis and a similar result
 was obtained using only three sensors .  It was not
 apparent (from a knowledge of the origin of the
 samples) that individual cows produce dif ferent breath
 odours from each other .  This was advantageous here ,
 since variation among healthy individuals would re-
 duce discrimination .  Samples are classified by the state
 of health in each animal investigated ,  the symbol K
 signifying cows with serum 3-hydroxybutanoate ( b  -
 HB) levels outside the normal reference range (0 to
 1 . 2  mmol / l) .  Samples labelled with an H indicate
 healthy levels of  b  -HB .  The dashed diagonal line
 represents a jack-knife hyperplane boundary between
 specimens from healthy and ketonemic cows with an
 89% success rate for classifying ketotic cows (labelled
 K) .  The confusion matrix for the data-set is given in
 Table 3 .  The method correctly predicted 34 out of 38
 which is an accuracy of 89 . 5% .  There was one false
 positive (FP) ,  and three false negatives (FN) .  Table 4
 collates the blood analysis with sample labels used in
 the PCA plot .  In addition to the general separation of
 ketotic and healthy samples ,  it was reasonable to
 suggest that four distinct groups ,  subsets I ,  II ,  III and
 IV ,  had emerged .  The spread of points in these
 clusters had no relationship with the time (after
 calving) of sampling .  The success rates for this arbit-
 rary classification of individual samples are given in
 Table 4 .  However ,  there are incorrectly assigned
 samples within the groups ,  e . g .  one K2 data point
 within subset III which should be all H2 samples .

 4 .  Discussion

 The results from all three analytical techniques
 indicate that there was much variation amongst breath
 samples ,  which is not unexpected since there are a
 number of variable factors that can be influential to
 the sample ,  such as herd ,  health ,  lactation interval ,
 diurnal changes and also cow to cow variation .

 Although we made the assumption that bovines are
 compulsive nostril breathers it is still unknown
 whether the sample was cross-contaminated with

 rumen gases .  Detection of methane by FTIR spectros-
 copy on breath may have been indicative of this (the
 non-polar capillary chromatography column used in
 the GC-MS apparatus exhibits a separating bias which
 excludes detection of hydrocarbons lower than C 3 ) .
 However ,  it is apparent ,  from this study ,  that methane
 will always be present when sampling breath from the
 nostril .  Release of methane could originate from ,
 either the rumen (through belching) ,  or the blood ,
 where gaseous exchange takes place at the surface of
 the lungs ,  or possibly through both processes .  Comis 1 3

 stated that up to 350  l methane per cow per day can be
 produced depending upon diet .  The exact origin of
 methane however was uncertain ,  since measurements
 were made with an array of outdoor sampling tubes ,
 on grazing cattle in a 576  m 2  enclosure .  Methane could
 therefore be a source of experimental interference in
 odour sensing measurements undertaken here ,  as
 metal oxide gas sensors are sensitive to hydrocarbons ,
 and typically we observed that the NFI 1813 sensor
 (Table 1) showed the largest response to breath
 specimens .  The sensor helped discrimination but was
 not essential as discrimination was still possible ex-
 cluding this sensor .  However ,  it is clearly better to
 design an array of sensors that does not react strongly
 with methane .  Gas sensors based on conducting poly-
 mer materials may be advantageous here ,  as they are
 inert to small hydrocarbons .  The detection of ethanoic
 acid may suggest contamination of nasal breath ,  but
 its presence due to normal metabolite excretion via
 the lungs cannot be ruled out .

 Another cause of variation in the samples depends
 upon the breathing behaviour of the cow and inde-
 terminate sampling error .  It was uncertain whether
 the sample was consistently exhaled breath (deep
 breath) or a variable mixture of exhaled breath and
 surrounding air (shallow breath) .  Occasionally the
 exhalation cycle of the cow could not be predicted
 from whisker movement or breath mist if sampling
 took place in a strong breeze .  Obvious improvements
 to the sampling device would include the incorpora-
 tion of a breath flow sensor ,  and this development is
 in progress .

 Table 3
 Sample confusion matrix for two classes :  ketotic and healthy (not-ketotic)

 Class  ‘ ketotic ’  Class  ‘ healthy ’  Total predicted

 Predicted ketotic
 Predicted healthy
 Total in class

 8  (TP)
 1  (FP)
 9  (C 1 )

 3  (FN)
 26  (TN)
 29  (C 2 )

 11  (R 1 )
 27  (R 2 )

 38

 TP true positive ;  TN true negative ;  FP false positive :  FN false negative ;  C 1  class
 positive :  C 2  class negative :  R 1  predicted positive :  R  2  predicted negative
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 Table 4
 Classification of breath samples :  samples labelled in accordance with state of health defined by

 b -HB concentrations in blood serum

 Sample
 label

 b  - HB
 concentration  /

 mmol  l  2 1  Subset

 Success rate for
 discriminating
 groups of data

 %

 Number of
 correct

 samples within
 subset

 Number of
 incorrect

 samples within
 subset

 H1
 H2
 H3
 K1
 K2

 0 – 0 . 5
 0 . 5 – 1 . 0
 1 . 0 – 1 . 2
 1 . 2 – 2 . 0

 . 2 . 0

 —
 III
 IV
 II
 I

 —
 100
 100
 83

 100

 —
 13
 5
 5
 3

 —
 1
 5
 2
 0

 The FTIR and GC-MS findings suggest that some
 of the water soluble breath components were lost
 through condensation or chemical decomposition oc-
 curring during storage of the sample .  The FTIR
 spectrum shown in  Fig .  3  shows lack of water in the
 sample compared with samples collected from herd E .
 It was expected that cows breath would be saturated
 with water vapour .  Although relative humidity was
 monitored ,  no attempt was made to control humidity
 or characterise sensor response to water vapour as it
 was anticipated that this would be conducted in a
 future controlled trial .  Compounds such as butan-2-
 one ,  detected in herd A ,  with GC-MS would be
 expected to give strong absorption bands in the
 region ,  1730 to 1700  cm 2 1  of the FTIR spectra .  Their
 notable absence in all FTIR measurements may have
 been due to condensation processes but alternatively ,
 the absorptions could have been concealed because of
 the very high concentrations of methane in the
 sample .

 The preliminary observations in this work may
 suggest an inverse relationship between concentration
 of acetone and concentration of dimethyl sulphide on
 the breath ,  and further detailed studies are required to
 confirm this .  The absence of GC-MS detectable VOCs
 in herd D could also be due to decomposition of
 samples .  Dimethyl sulphide is chemically unstable in
 air 7  thus highlighting the advantage of rapid portable
 devices for odour measurement .  Concentrations of
 acetone on the breath of clinically ketotic cows were
 previously unknown .  Cow 7 (Table  2) ,  diagnosed by
 the veterinarian as clinical ,  provided concentration
 values that coincided with values obtained from Dutch
 cows ,  in as yet unpublished work ,  in an investigation
 of the correlation between acetone on the breath with
 acetone and acetoacetate in milk for cows with
 induced ketosis . 1 4

 In the PCA scattergram ( Fig .  5  ) there is a significant
 spread of samples designated H1 .  There would appear
 to be overlap of H1 samples with samples labelled H2 ,

 H3 ,  and K2 and we suggest that this was due to sensor
 drift .  Samples of subset III appear to be best assigned
 to a particular group .  These breath samples corres-
 pond to serum  b  -HB values below the lower limit of
 subclinical ketosis (1 . 0  mmol / l) defined by
 Andersson . 1 5  The following chemical equilibrium ex-
 ists in the blood :

 b  -HB  Ü  acetoacetate  Ü  acetone

 It is notable that samples designated H2 (subset III)
 are in closer proxomity than samples H3 (subset IV) ,
 on the PCA plot ,  to samples K1 and K2 (subsets I and
 II) .  Therefore the location of samples on the scatter-
 gram would suggest non-linear correlation of serum
 b  -HB with breath samples ,  analysed by the sensor
 array .  There may be a stage where  b  -HB becomes
 exhausted in the blood ,  as the aforementioned equi-
 librium shifts to the right where increased amounts of
 acetone is manufactured and appears on the breath .
 This may have been the case for samples in the H2
 regime .  It was also of great significance that our only
 classification scheme relies on the biochemical analysis
 of serum ,  where the subsequent post-treatment of
 sample was unknown to us ,  e . g .  time delay between
 bleeding and analysis ,  and temperature changes etc .
 Moreover ,  diurnal changes in the cow’s metabolism
 due to feed 1 5   may result in poor matching between
 breath sample and blood sample analyses .  Although
 the relative humidity and temperature ,  at which the
 sampling took place ,  were recorded ,  they appear to
 have little bearing on the outcome of the odour
 sensing studies .

 The electronic nose is a cheap device ,  which may
 have potential as a tool to support diagnosis of disease
 in dairy cattle .  It may be regarded as portable when
 compared with conventional analytical techniques ,
 and we have shown that it is possible to work under
 non-ideal conditions ,  e . g .  the gas analysis could be
 carried out by operating the apparatus from a mobile
 trailer on a farm .  This method is not restricted to cows
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 and could perhaps be developed for application with
 other livestock ,  e . g .  pregnancy toxaemia in sheep .  In
 theory ,  all pathological disorders could be diagnosed
 when performing breath measurements .  However ,  all
 nasal breath contaminants ,  depending upon ,  age ,  hun-
 ger state ,  and food debris will have an influencing
 ef fect on the environment of the nasal cavity .  Our
 experiment has not permitted strict dietary and en-
 vironmental controls to be executed and thus a more
 controlled trial is needed .

 5 .  Conclusions

 A non-intrusive method of obtaining cow breath for
 chemical analysis using a gas collection device has
 been demonstrated .  The device is portable and sam-
 pling is possible even whilst the cow’s head is in
 motion .  Analysis of samples of cow breath using
 GC-MS show that dimethyl sulphide ,  butan-2-one ,
 ethanoic acid ,  di(ethyleneglycol) ,  methyl benzene and
 acetone are all present .  In the case of ketotic animals ,
 concentrations of acetone on the breath of the order
 of 10  p . p . m .  were observed .  Although more complex
 and expensive to carry out than the electronic nose
 measurements ,  GM-MS analysis may be useful for the
 calibration of gas sensor arrays .  FTIR analysis of the
 breath samples shows that water and methane are
 always present ,  the latter in varying concentrations .

 Small volume (0 . 5  l) breath specimens gave large
 sensor responses in a metal oxide gas sensor array .
 Principal components analysis of the sensor array
 response to breath samples gave an 89% success rate
 for the classification of the cows as healthy or ketotic
 and the confusion matrix for the data-set correctly
 predicted 34 out of the 38 samples .  Discrimination
 between samples in this preliminary trial ,  conducted
 on the farm ,  therefore indicates potential for using an
 electronic nose as a non-invasive technique to support
 the diagnosis of ketosis .  The specificity of the tech-
 nique could be evaluated by using an improved
 sampling device in a more controlled trial and this
 work is in progress .  In addition ,  the application of
 electronic noses based upon arrays of conducting
 polymer gas sensors may of fer an advantage since
 these materials are less sensitive to hydrocarbons such
 as methane .
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