
          

Predicting organoleptic scores of sub-ppm flavour notes.
Part 1. Theoretical and experimental details
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Most existing electronic nose systems have limited commercial application since they only provide a relative
description of the flavour under investigation, rather than one against a universal standard. However, the
development of a set of universally accepted standards for flavour description has been problematic due to the
lack of any comprehensive model relating the molecular structure of an odorant with its flavour-impact during the
act of perception. Instead, industries have tended to develop their own flavour models (flavour terminology
systems) for specific consumer products that are based upon practical experience of a particular foodstuff,
cosmetic, or beverage. We report here on the novel application of chemical multi-sensor arrays to the prediction of
organoleptic flavour notes, as defined under a specific terminology system suitable for describing and
communicating specific flavours. A novel odour mapping scheme is proposed that may be applied generally to
multi-sensor arrays and provides more detailed characterisation of odour quality than is currently achievable. As
part of our study, a flow injection analyser (FIA) system has been developed that combines chemical and
electronic hardware driven by a microcomputer to achieve accurate and independent control over odour-stream
temperature, flow-rate and flow profile, sensor head temperature, and sample times. An array of 24 conducting
polymer sensors (11 different types) is used within the FIA system giving an overall experimental coefficient of
variation below 7%. The application of this odour mapping technique is demonstrated by way of an experimental
study, using the FIA system reported here. The details for this study are given in Part 1, and the computational
analysis of the data is carried out in Part 2 (T. C. Pearce and J. W. Gardner, Analyst, 1998, 123, 2057.

Flavour complexity

Flavour is complex in terms of its many chemical and sensory
components. Prior to the advent of instrumental techniques in
flavour analysis the flavour of foodstuffs was only attributed to
a small group of key impact chemicals. The use of gas
chromatography (GC) and mass spectrometry (MS) analysis
demonstrates that, in fact, most naturally occurring flavours
comprise hundreds of different chemical compounds existing in
a complex mixture.

Aishima and Nakai have described flavour in terms of its
sensory and chemical components in the following equations1

flavour = a1 (aroma) + a2 (taste) + a3 (texture) + a4 (colour)
+ a5 (sound) + a6 (temperature) (1)

flavour = b1X1 + b2X2 + ··· + biXi + ··· + bmXm (2)

where the sensory components are given in terms of the
coefficients, ai, and summed in eqn. (1) to form the overall
subject’s perception of flavour. This linear model has severe
limitations in providing an adequate picture of the quality of
flavour. In particular, the values of ai (i.e., the relative impact of
each of the sensory modalities) are found to vary widely for
different flavours and also for different individuals. Fur-
thermore, no account is taken in the model of the many sensory
confusions that occur between each of the sensory modalities in
normal adults, termed synæsthesia.

Flavour can also be explained in terms of its chemical
components defined in eqn. (2). Here the concentrations, Xi, of
chemical species, i, have a sensory impact determined by the
coefficients, bi, and are summed over m components (typically
m > 100 for complex odours) to provide the flavour mixture.

Again, this linear model does not account for the additive,
synergistic, antagonistic, and compensative effects that can
occur between flavour volatiles existing in such a mixture. The
high dimensionality and inter-dependency of flavour compo-
nents (both sensory or chemically based) are two factors that
have prevented the development of a unified theory of flavour
analysis.

A unified theory of flavour (or odour) analysis would be able
to explain and predict the sensory impact of simple flavours
(odours), both individually and in combination, in terms of their
chemical constituents. Clearly, such a theory would be of
enormous benefit to, amongst others, the food and beverage
industries, permitting the development of unambiguous stan-
dards by which to describe all complex odours and flavours.
Unfortunately, current theories are only able to explain a small
subset of the total possible structure–activity relationships
(SAR) existing between the chemical and sensory do-
mains.2–4

Research in this field has not only been hampered by the
high-dimensionality and inter-dependency of the variables
involved, but also by a number of other contributing factors;
there are real practical difficulties involved in the purification of
the flavour stimuli. It is impossible to carry out control of the
stimulus in a linear or even continuous fashion, and perhaps
more importantly, no single underlying molecular determinant
has yet been isolated for flavour that can account for all, or even
a significant portion of SAR effects during flavour perception
(see Rossiter5 for a current review of SAR studies). Notable past
studies have led to the conclusion that over 20 different
molecular determinants are likely to be involved in the
transduction of odour signals alone.6,7 These factors combined
with the lack of unambiguous vocabulary for describing odours
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and flavours, as well as incomplete knowledge of the receptor
mechanisms and subsequent neural processing implicated in
olfactory information processing, present significant challenges
to be overcome if a unified theory of odour analysis is to be
developed in the future.

Flavour analysis

In view of the lack of any unified theory of flavour (or odour)
two very disparate approaches are currently taken to flavour
analysis—sensory and instrumental analysis. On the one hand,
instrumental techniques [such as GC, LC (Liquid Chromato-
graphy), MS, and NMR (Nuclear Magnetic Resonance)] tend to
be reserved for flavour research, principally due to their high
capital and operating costs. In particular, instrumental tech-
niques are incapable of directly measuring the quality of
flavour, since no account is made of the psychophysical effects
or flavour-impact these compounds will have during perception.
Furthermore, since vastly different sensitivities in humans are
displayed to various flavour active chemicals within a complex
mixture, the estimated concentrations of flavour active com-
pounds, as calculated from chromatogram peaks, mean little
without some qualitative context.

Sensory analysis, on the other hand, still provides the key
technique in flavour analysis today, due to the superb sensitivity
and discrimination of the chemical senses. Sensory-based
flavour analysis is carried out by teams of highly skilled tasters
who work to rigorous testing protocols, such as the triangular
taste test, the three-alternative forced choice test (3-AFC), and
flavour profile analysis (FPA) for the detection of taints, off-
flavours, flavour discrimination and characterisation.8,9 Un-
fortunately, subjectiveness in sensory analysis is particularly
acute in flavour perception, since semantic misconceptions
regarding flavour are common and data are prone to a great deal
of variation from test-to-test and panel-to-panel (typically
± 30–40% or more from one test to the next).10

Neither sensory nor instrumental approaches to flavour
analysis, in isolation, will provide a complete picture of flavour
quality. Motivated by overcoming the limitations of these
approaches, combined with the increased distribution and
affordability of computing resources, there has been a recent
trend towards combined flavour analyses. Combined (in-
strumental and sensory) analyses consider each approach in
combination, by attempting to correlate instrumental data to
sensory properties through the use of chemometric techniques
such as pattern recognition (PARC), and multivariate analysis
(MVA). By taking a combined approach it has been possible to
account for some of the sensory properties of many products in
terms of the chemical inventory generated by GC-based
instrumental data. While such combined analyses have shown
promise in being able to correlate sensory and instrument-based
data, these are often expensive and time-consuming, requiring
sensory panel and instrumental evaluations to be carried out
simultaneously as well as involved statistical calculations. We
propose that the elements comprising an electronic nose make it
well placed to conveniently carry out such combined flavour
analysis. For a more thorough discussion of the role of the
electronic nose in flavour analysis see ref. 11.

There have been very few studies reporting on generating
organoleptic flavour descriptors from chemically sensitive
sensor-arrays.12,13 These studies have focused upon attempts to
correlate the data obtained from sensor arrays with heuristic
sensory descriptors, as opposed to flavour notes defined under
a standardised terminology system underpinned by published
reference compounds. We believe that for such an approach to
be effective, a generalised method needs to be developed for
mapping the non-linear responses obtained from chemical
sensor arrays onto such non-linear organoleptic scores. We

describe in the next section an odour mapping scheme to be
generally applied to the responses obtained from chemically
active multi-sensor arrays to obtain a more detailed character-
isation of odour quality.

Odour mapping

When using instrumental methods for testing odours, some
scheme for the representation of odour quality and intensity
(i.e., a coding strategy used for communicating and recording
odour)  must be made in order to disseminate the data. Current
electronic nose systems typically adopt a 1-of-k odour repre-
sentation scheme, where one class of odour is indicated at the
exclusion of all other classes. Such analyses of odours have
limited application to commerce and industry since they provide
only a comparative description of the odour under investigation
rather than against an absolute standard. While such a simple
odour representation scheme may be useful for discriminating
between different complex odours or detecting the presence or
absence of food taints (when calibrated against some control), it
is not capable of generating any further information about the
odorant, in neither chemical nor sensory terms. We believe
odour sensing instruments will achieve more widespread
application when these are able to carry out detailed and reliable
characterisation of simple and complex odours in organoleptic,
that is, sensory terms.

The ideal system for representing odour quality would be
through the set of “mono-osmatic” or primary odours, that
might naturally arise from a unified theory of olfaction. If it
were to exist, such a system of primary odours could then be
applied universally to all odour stimuli (analogous to chroma,
value and hue/saturation in colour description). Unfortunately
since the development of such a universal odour representation
scheme would rely upon a unified theory of olfaction, a
successful scheme looks unlikely to appear in the near future. In
view of this lack of known sensory primitives in olfaction, we
are limited to describe odours via comparisons with other
prototypical, and often ambiguous odours (for example by using
descriptions such as yeasty, floral, grassy, hoppy).

The development of product specific flavour terminology
systems makes use of comparison to develop a set of rigorously
defined terminology underpinned by readily available reference
compounds. For example, one of the most sophisticated
standards systems is used in the brewing industry, devised by
the American Society of Brewing Chemists (ASBC).14 Known
as the international flavour terminology system for beer, it is
illustrated by the flavour wheel shown in Fig. 1. The system
comprises 14 classes, 44 first-tier terms and 78 second-tier
terms (not shown) that span the sensory modalities of olfaction,
gustation, trigeminal (irritant), and tactile receptors in the
mouth. The terminology system is designed such that each
separately identifiable flavour characteristic has its own name
and there are no terms duplicated. Most importantly, as far as
possible the meaning of each term is illustrated with readily
available flavour standards, avoiding judgmental terms such as
good/bad, young/mature, balanced/unbalanced.14 Terminology
systems such as these standardise the communication of sensory
flavour information used in a particular industry, and are useful
in training and testing of members of sensory panels as well as
in conducting descriptive flavour analysis such as FPA.
Training of tasters is carried out through the demonstration of
individual reference compounds within standard beer which
consequently increases their sensitivity to these. Flavour
terminology is also crucial to conducting FPA, whereby the
perceived intensity of individual flavour notes (under a suitable
terminology system) present in the product are scored by
panelists (usually on a scale of 0 to 10, where 0 corresponds to
“not present” and 10 to “very strong”).
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A flavour terminology system makes an excellent choice as
an odour representation scheme for an electronic nose for a
variety of reasons. Firstly, reference compounds that act as
standards to demonstrate particular flavour notes can be used to
calibrate an electronic nose for a particular application.
Secondly, since these systems are designed to have as far as
possible, independent (non-overlapping) terms they easily form
the basis of an orthonormal Euclidean odour space within which
to represent numerically odour quality. Finally, the numerical
scoring usually adopted for use with flavour terminology
systems naturally supports the application of statistical and
other data processing methods used within electronic nose
systems.

The adoption of this method of odour representation, while
perhaps not universal in its scope, provides more detailed
information relating to the stimulus than currently used odour
representation methods in sensor-based machine olfaction. This
method is presented as a general technique to be adopted in
machine olfaction that supports a more detailed and reliable
characterisation of odour stimuli.

The way in which multi-sensor array data produced by an
electronic nose might be correlated with FPA data produced by
a sensory panel is shown in Fig. 2. Here MVA and PARC
techniques may be used to consider the correlation between
multi-sensor array data, V, and FPA producing the organoleptic
data Y. The matrix Y comprises n repeated sensory trials of
flavour samples, that are scored against p standard flavour terms
derived from the flavour terminology system appropriate to the
sample. This yields a vector, (yi1, . . . yik, . . . yip), for each
sensory trial, i. The matrix V comprises n measurements of the
same flavour samples using an electronic nose, where each
measurement, i, yields a vector (ui1, . . ., uik, . . ., uiR) which
represents the pre-processed response from an R sensor array.

For an unknown sample j, the task is then to predict a set of
organoleptic flavour descriptors (yj1, . . ., yjk, . . ., yjp), given the
array response vector (uj1, . . ., ujk, . . ., ujR), and a knowledge
base of previous measurements Y and V. This becomes a
mapping problem, with the function V = f(Y) being highly non-
linear and underdetermined when R < p. Associative and
mapping neural networks, such as the multi-layer perceptron
(MLP), are capable of approximating a solution after training on
V with up to n training vectors and targeting on Y with up to n
target output vectors.15 These networks have the advantage of
being able to deal easily with the non-linearity of the inverse
mapping function, f21

(4) provided that a differentiable,
bounded, and non-linear activation function is used for each of
the processing elements, and sufficient training data are
available. However, it is often difficult to assign a significance
level to the outputs from such networks, as can always be
obtained from parametric statistical techniques, although the
use of activation functions such as “softmax” are part of an on-
going research initiative to provide a more probabilistic
interpretation of neural network performance.16

An alternative approach is to view the odour mapping process
as one of multivariate calibration, to which have been applied a
variety of well known chemometric techniques, such as
multiple least squares (MLR), partial least squares (PLS),
principal component regression (PCR), and canonical correla-
tion analysis (CCA). Such parametric techniques rely on a linear
causal model for our mapping function, f(4). For example, MLR
uses the following model as its basis

V = YC + e (3)

where C are the linear regression terms (p 3 R matrix) that
relate the organoleptic flavour scores, Y, to the pre-processed
sensor responses, V. The residuals for the regression, e (n 3 R
matrix), represent the errors for the best linear fit, having an
expectation of zero. Given the data for V and Y, it is possible to
solve for C and then e, using the generalised inverse method

C = (YTY)21 (YTV) (4a)

e = (V 2 YC)T (V 2 YC) (4b)

for any dimensionality of C, provided that the inverse matrix
exists. If R < p then the system of equations in eqn. (3) is
underdetermined and an infinite number of solutions exist.
However, Denham and Brown discuss methods that can be
applied to resolve this indeterminacy.17 Having estimated C it is
then possible to make the required prediction of the organo-
leptic scores, Ŷ, for unknown sensor responses, V̂, using

Ŷ = V̂C21 (R = p) (5a)

Ŷ = V̂CT (CCT)21 (R > p) (5b)

Fig. 1 Flavour wheel used to illustrate the international flavour terminol-
ogy system for beer. The system was developed over a five year period,
jointly by the European Brewery Convention (EBC), the Master Brewers
Association of the Americas (MBAA) and the American Society of
Brewing Chemists (ASBC) as a means of standardising the terms used in
descriptive analysis of beer, as well as for instructing and training sensory
panel members. The system consists of 14 classes and 122 separately
identifiable flavour terms. Only those terms carrying a four-digit number are
intended for use as descriptors and only 40 or so are common in most beers.
The remaining flavour notes correspond to flavour-faults or are character-
istic of speciality beers. (Reproduced from ASBC, Methods of Analy-
sis14).

Fig. 2 Correlating organoleptic data as produced by a sensory panel with
the response of a multi-sensor odour array.
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The use of MLR in this context also assumes that each of the
organoleptic scores and sensor responses within Y, V̂ and V,
respectively, are truly independent. If Y, V̂ and V are not of full
rank, then at least one of the columns is a linear combination of
the others within the same matrix. While the design of flavour
terminology systems attempts to make terms as independent as
possible, there is no guarantee that all subsets of flavour scores
will not be collinear. Also most chemical sensors have
overlapping sensitivities to analytes leading to collinearity in
their response. For this reason the use of PLS which forces the
latent variables to be orthogonal and so does not suffer from the
collinearity problem is likely to be of more general use in odour
mapping. Methods such as PLS and PCR are also less sensitive
to noise and make no requirement regarding the relative
dimensionality of the data.

The linearity assumption of these parametric techniques can
be overcome by linearising the chemical-sensor and organo-
leptic responses beforehand. Typically the concentration de-
pendence of many chemical sensors can be approximated as
linear for low concentrations of analyte. For example, by
considering the response of conducting polymer films to be
governed by a Langmuir adsorption process, Gardner et al.
provide a steady-state conductance model, where the fractional
change in conductance is given by18
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and where (b = ka/kd) is the active site affinity constant, C is the
analyte concentration, Gt=∞ is the steady-state conductance,
Gt=0 is the baseline conductance in the absence of the analyte,
and S is an analyte sensitive constant. For low concentrations
(bC81), the fractional change in conductance is approximately
linear with analyte concentration. For higher concentrations,
sensor response may be linearised using eqn. (6).

The intensity or sensory-impact for a specific flavour notes
has been modelled by Steven’s power law of psychophysics19

R = c (C 2 C0)n (7)

where R represents the flavour intensity as reported by the
perceiver and c is a constant of proportionality that is specific to
the individual, and n is an index that varies between 0.2–0.8
depending upon the odorant in question. Consequently, up to
the terminal threshold (the concentration beyond which no
further increase in intensity is reported), perceived flavour note
scores behave log-linearly with concentration and so linearisa-
tion for each note within a particular terminology system is
possible. By linearising both the chemical-sensor and organo-
leptic responses, linear chemometric techniques can be directly
applied to provide an odour mapping that will also yield
statistical measures of performance. However, in practice these
techniques are often outperformed by associative and mapping
neural networks due to their ability to deal with generalised non-
linearity within the data-set, but often at the loss of rigorous
performance metrics.20

Sensor optimisation

The substrates of the conducting polymer resistive odour
sensors were fabricated using microtechnology in a process
developed over a considerable period of time. The photo-
lithography process was made compatible with an initial
cleaning of the gold micro-electrodes by cycling the potential in
2 m sulfuric acid, followed by the electrochemical deposition of
the conducting polymers in either aqueous or organic solutions.
The fabrication process for early sensors used wafers made of
alumina rather than silicon, and is already published by Pearce
et al.21 The electrochemistry and characterisation of the
conducting polymers took place at Southampton University and
have also been reported.22 These studies focused on identifying

the geometrical factors that contribute to the resistance of the
devices and a homogeneous model was produced which gave a
good fit to the experimental data.18 An electrode gap of ca.
10 mm and a film thickness of ca. 1 mm were found to be
practical values to adopt—both in terms of yielding negligible
geometric process error (in a 1.0 mm process) and reasonable
values of the response time and device resistance. More
recently, the fabrication process has been moved to silicon-
based microtechnology to be consistent with the design and
fabrication of resistive sensors employing semiconducting
oxide films.23 In a related study, a full investigation of silicon-
based conducting polymer odour sensors has been carried out
and has shown that, although the sensor responses to odours
were broadly similar to alumina-based devices, the batch-to-
batch reproducibility was enhanced with the device variation
being reduced from about 30% to around 10% or better.24

In this study, our chosen electrode geometry and growth
conditions set the device resistance to lie in the range of 100 to
10 kW which was desirable for input resistance to the interface
electronics. The lead and connection resistances were thus
comparatively small because we used short leads and high-
quality, gold-plated headers. It was observed that the polymer
sensors “drifted” when a voltage of 1 V was applied across the
electrodes, which we attributed to protonation within the
electro-active polymer film over time. Consequently, the
maximum voltage drop across the polymer within a constant-
current circuit was set to ±100 mV. The low bias voltage not
only reduced this effect but also ensured that the I(V)
characteristic was reasonably Ohmic for all of our polymer
films. Furthermore, this low voltage also reduced the effect of
field-induced drift which can occur when there is a high
concentration of the analyte that solvates and hence immobilises
ions within the film. The problem was particularly marked for
some polymers when CO2 was used as the carrier gas and so all
experiments employed nitrogen in which the polymers appeared
to be stable.

The effect of the temperature upon the resistance of
conducting polymers has already been reported and typically
gives a large temperature coefficient of up to ca. 1 3
1022/°C.25,26 The effect of temperature on both the baseline
resistance and response was minimised here through maintain-
ing the sensor chamber at (30 ± 0.1) °C, i.e., to produce a
relative error of less than 0.1%. Finally, it is well known that the
resistance of certain conducting polymers depends strongly on
water vapour (e.g., polyanilines). Recent work indicates that the
effect of water can be described by a competitive binding model
and thus has a predictable and reversible effect on the sensor
response.27 The effect of changing water vapour was minimised
in our experimental work through its control in a fully
automated FIA system, and the use of a closed system isolating
the samples from diurnal changes in ambient conditions.
Despite all of these precautions, there still appeared to be a long-
term drift that was significant when attempting to resolve sub-
ppm taints in samples. This was attributed to a general
poisoning of the polymer because of the nature of the headspace
of lager beers. Its effect was to give a gradual decrease in the
base-line resistance of the polymers over the testing period
rather than reduce the magnitude of the response to the analyte.
Thus we feel that the problem can be addressed by an
appropriate choice of signal processing, perhaps in a similar
way to adaptation in the human olfactory system.28

Experimental

Flow injection analyser

We have previously described a simple instrument for the
evaluation of odours using a conducting polymer array
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combined with a manual headspace injection system.21 A more
sophisticated FIA has also been developed, providing superior
control over the amount of analyte being introduced into the
sensor head and operating temperature. The automated opera-
tion of the analyser also minimises human intervention in the
testing process and thereby reduces experimental error to obtain
more reproducible data.

This system combines chemical and electronic apparatus to
provide microcomputer control of the sampling sequence. The
sampling procedure is software configurable via the interfacing
circuitry shown. Concomitantly, sensor data are acquired from
the rig to provide a real-time system for rig monitoring and
control. A schematic of the odour-sampling system is shown in
Fig. 3, where chemical hardware components are shown as BS
2917/ISO 1219 symbols. The system allows up to three separate
samples to be loaded at any one time into the sample vessels
shown. Two software configurable quad normally closed (NC)
manifold valves (supplied by Neptune Research, model no.
225T07) are used either side of the sample vessels to route flow
to any combination of these elements shown in the centre. Flow
into the rig is controlled via 3 mass flow controllers (MFCs),
shown on the left of Fig. 3. These MFCs (supplied by Brooks
Instrument BV, model no. 5850 TR) are fully programmable
and incorporate a flow-rate control valve, an override stop valve
and a flow-rate meter for system feedback and are used to
control flow independently from 3 pressurised gas sources
within a 0–5 ml s21 range to within an accuracy of 1% FSO. The
PTFE tubing used throughout has an internal diameter of 2.41
mm and permits a maximum flow velocity of 0.912 cm s21.

The three carrier gases used here are nitrogen in line 1, air in
line 2 (both wet), and dry carbon dioxide in line 3, scrubbed by
particulate matter filters (which trap particles with diameter
greater than 35 mm, supplied by Lee Products Ltd., part no.
TCFA1201035A). A non-return valve is also used after each
MFC to prevent pressure differentials causing backwards flow
within the system. A 5-way 0.157 in Boss manifold (supplied by
Lee Products, part no. TMMA 9500190Z) acts as a mixing
chamber at the juncture of the three flows in order to combine
the carrier gases. Hermetically sealed Dreschel bottles (250 ml)
and head fittings are used as sample vessels with the carrier gas
made to percolate through the liquid sample. Glassware and in-
line elements after the sample vessels are maintained at a
constant temperature through the use of heating tape (supplied
by Eurotherm) to prevent condensation of vapour and thereby
causing interference. Wherever possible, Teflon components
have been used as these are inert and avoid significant odour
retention. A miniature two-way solenoid valve (supplied by Lee
Products, part no. LFAA12001L8H) provides a sensor head
bypass to prevent forwards flow interfering with the prevailing

conditions in the sensor head, which is used during cleaning. A
cleaning bypass is also provided to purge the associated tubing
and elements free from contamination after each individual
sampling phase without interfering with the samples. The
purging bypass is used to allow the sensor head to be prepared
in an atmosphere of fresh carrier gas prior to sampling.

The sensor head is capable of housing up to 24 conducting
polymer resistive sensors, mounted on a conical block which
promotes laminar flow across the sensors. The temperature
within the sensor head can be controlled independently from the
rest of the test-rig through the use of a heating mat, thus
allowing temperature effects within the sensors to be investi-
gated easily. A platinum resistance thermometer and a capaci-
tive polymer humidity sensor (supplied by Lee-Integer, part no.
ACH-1000) are mounted within the sensor head in order to
measure temperature and humidity to an accuracy of ±0.1 °C
and ±1% RH, respectively. A number of factors were con-
sidered in the design of the FIA in order to minimise the
possibility of contamination. In particular, inert materials were
used for components after the sample vessels, and the flow path
to the sensor head was minimised.

The electronic hardware for the flow injection analyser has
been incorporated into a standard KM6 Eurorack (supplied by
BICC-VERO Electronics) in Eurocard formfactor modules,
compliant with DIN 41494 part 5, IEC 297 section 3 and IEC
subcommittee SC 48D. The overall schematic diagram for the
rack-system, complete with backplane and external con-
nectivity is shown in Fig. 4. The interfacing to the 24 conducting
polymer sensors within the sensor head is provided by four
cards each providing for six sensors (Module 2) as already
described in ref. 21. Temperature and humidity sensor inter-
facing as well as driver circuitry for the chemical hardware is
provided by two separate Eurocards (Module 3 and Module 5,
respectively). Two system cards (Module 4) are necessary to
mediate between the PC-based data acquisition cards (supplied
by Data Translation, model no. DT-2811 PGH) and the rack
system. These cards also synchronise the data acquisition duty
cycle for the system as a whole.

The custom-designed software of the system provides
facilities for batch data acquisition, a real-time rig monitor, data
storage, sensor array calibration, data pre-processing, data
plotting, rig status reporting, and a chemometric fingerprinting
technique described previously.21 A comprehensive software
controlled batch processing system provides a fully automated
sampling sequence with adjustable testing parameters. The
batch testing process is based upon the sequence shown in Fig.
5. Testing begins with a pre-clean phase necessary to ensure that
no contamination has built up within the rig since last being
used. This phase involves passing a mixture of the three carrier

Fig. 3 Chemical hardware for the flow injection analyser, showing from left to right: gas bottle sources (lines 1, 2 and 3); line filters; MFCs; non-return
valves; two way purging valve; quad normally closed (NC) valves; sample vessels; fuel cell with compressor pump; final flow meter; sensor head bypass
valve; and sensor head: housing temperature; humidity and odour sensors.
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gases (N2, air, and CO2) at a high flow-rate through the clean
sample vessels and through to the sensor head bypass. This
drives impurities from within the glassware, associated piping
and control elements out through the exhaust. A comprehensive
set of diagnostic tests are then carried out on the rig to ensure
correct operation giving better confidence in the data.

An operator is only required to load and unload samples.
During loading, samples pre-heated to 30 °C in a separate
temperature controlled water bath are inserted into the sample
vessels which are then hermetically sealed. During unloading,
these sample vessels are then removed and replaced by empty,
analytically clean vessels. Immediately after the samples have

been loaded, a set-up phase injects a full headspace of operator
selectable carrier gas into each sample vessel. Then the quad
manifold valves are automatically closed to seal the vessels,
providing a fresh headspace to which the odorous sample
equilibrates.

The main testing cycle can now begin, iterating for each
individual sample. With the sample vessels still closed off, the
rest of the rig is cleansed by passing an operator-selectable
carrier gas through the cleaning bypass and out through the
sensor head bypass. This forms the main cleaning phase
between sampling phases. Prior to sampling proper, a purging
phase establishes a gaseous environment within the sensor head.
This provides a reference environment and allows the sensors to
settle to their respective baseline values. Sampling begins by
selecting the quad valves to the appropriate sample vessel and
commencing the pre-set flow profile through the sample vessel.
The odorous headspace, established within the sample vessel
during the previous cleaning and purging phases, is now driven
along to the sensor head and over the sensor array at the initial
flow-rate specified in the flow profile. Data are logged from
each sensor. The flow profile used during sampling is fully
adjustable. After unloading, a post-clean phase, identical to the
pre-clean phase, is carried out to remove any remaining
contaminants from the last sampling phase.

Experimental design

The ability of this FIA system to identify individual reference
compounds has already been reported by the authors in a
preliminary study.29 This work demonstrated the ability to
discriminate diacetyl taint at the sub-ppm level in a background
of 4% v/v ethanol solution from control ethanol solution, using
the FIA system described above combined with an array of 18
conducting polymer devices and an MLP neural classifier.

An experiment was now designed to assess the application of
the odour mapping technique described earlier to multi-sensor
arrays for identifying individual flavour notes within a chem-
ically complex odour background (in this case lager beer). The
particular flavour notes investigated from the ASBC flavour
wheel are summarised in Table 1. In all, three reference
compounds were added to the control lager beer, Bass Carling
Black Label (CBL) at varying concentrations—2,3-butanedione

Fig. 4 Schematic of electronic hardware for the flow injection analyser:
Showing Module 2, 6 channel conducting polymer interface card; Module
3, temperature and humidity interface cards; Module 4, system cards;
Module 5, flow injection rig controller. (A) - analogue signal (D) - digital
signal.

Fig. 5 Flow-chart of the sampling sequence complete with optimised
phase durations.

Table 1 Flavour spikes added to standard Bass Carling Black Label lager
(4% alc. v/v) prepared for FIA study. Table shows the reference compounds
for three flavour notes chosen from the ASBC (International Flavour Wheel
for Beer). The spike concentrations can be compared against the typical
sensory thresholds for these compounds in humans. The corresponding
organoleptic (panel) score results from a sensory panel conducting FPA are
given

Sensory Spike Panel
Flavour threshold/ conc./ Flavour score
spike ppm ppm note (1–10)

2,3-Butanedione 0.07 0.1 No. 0620 Diacetyl 1
2,3-Butanedione 0.07 0.2 No. 0620 Diacetyl 2
2,3-Butanedione 0.07 0.3 No. 0620 Diacetyl 4–5
2,3-Butanedione 0.07 0.4 No. 0620 Diacetyl 6–7

Hop essence 80 100 No. 0170 Hoppy 1
Hop essence 80 200 No. 0170 Hoppy 2
Hop essence 80 300 No. 0170 Hoppy 5–6
Hop essence 80 400 No. 0170 Hoppy 7–8

Dimethyl sulfide 30 ppb 20 ppb No. 0730 Cooked
veg.

0

Dimethyl sulfide 30 ppb 40 ppb No. 0730 Cooked
veg.

1

Dimethyl sulfide 30 ppb 60 ppb No. 0730 Cooked
veg.

3

Dimethyl sulfide 30 ppb 80 ppb No. 0730 Cooked
veg.

5–6
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leading to the butterscotch off note or ‘diacetyl’ note (ASBC
note no. 0620), hop essence leading to the “hoppy” note (ASBC
note no. 0170), and dimethyl sulfide leading to the “cooked
vegetable” note (ASBC note no. 0730). The sensory thresholds
shown in Table 1 represent the concentrations at which the
spikes become flavour active to most sensory-panel members,
given the known background of CBL. All of these reference
compounds are typically present in beers between 0.5–2 times
the average sensory threshold, which are classified as “secon-
dary” constituents. Flavour components within this category are
known to account for differences between beers of the same
type and are the most vital from a quality assurance perspective,
which motivated their use in this study.

The concentration ranges of the reference compounds were
chosen to coincide with the natural organoleptic ranges for each
of the flavour notes. The scores for each note (between 0–10)
were estimated on an empirical basis, using known sensitivities
to these compounds in sensory panel members to CBL.30

Another factor motivating the selection of flavour notes was the
availability of published reference compounds, and a knowl-
edge of the flavour-impact of these compounds within the
context of the control lager. As such, these scores represent
what may typically be reported by a trained sensory-panel
conducting FPA on the samples (although these values will
typically vary by 30–40% over time). As can be seen from Table
1 these scores typically behave log-linearly with spike concen-
tration, as predicted by Steven’s power law of psychophysics,
eqn. (7).

Samples were supplied in 2 l bottles that have a limited shelf-
life of two weeks. This restricted the number of samples that
could be taken within a single batch. Given the 40 min sampling
time required per sample, and pre- and post-cleaning times as
shown in the sampling sequence, Fig. 5, it was possible to
process up to eight samples a day or roughly 80 samples in a two
week period. Therefore six samples of each class (13 classes)
were taken, making 78 samples in all. The samples from each
class were drawn randomly using a latin square design to reduce
any experimental bias in the data.

The experimental conditions used for the preliminary testing
were adhered to, although a number of notable alterations were
required. Firstly, the temperatures for both the sample vessels
and sensor head were reduced to 25 and 30 °C, respectively.
This was done to reduce further the possibility of oxidation of
the beer samples, which may seriously alter the headspace
odour during sampling. An odourless anti-foaming agent
(supplied by Bass Breweries research laboratories) was also
added to each sample to prevent foaming during testing, which
would enter piping and the sensor head to disastrous effect. The
sensor array shown in Table 2 was used to provide an increased
variety of sensor types for the study. As in the preliminary
study, two devices of each type were selected in order to check
the reliability of sensor response. The initial baseline resistances

for each sensor, as measured before the start of testing, are also
given, some of which showed considerable variation for
identical polymers, with an average value of 10–30% being
observed.

Rig optimisation and commissioning

Before testing proper could begin, a number of pilot runs were
conducted in order to optimise the testing parameters associated
with the FIA rig, as identified in Table 3. The parameters fall
into four categories: operator-adjustable; software configurable
(but not operator adjustable); manually adjustable; and non-
adjustable (variables). The manually adjustable parameters are
controlled through the associated chemical hardware. Other
non-adjustable variables are a consequence of the nature of the
sample (e.g., ethanol concentration within the headspace:
variable 11), rig design (e.g., sensor head pressure and sample
humidity: variables 12 and 25, respectively), or are dependent
upon other parameters (e.g., minimum and maximum equilib-
rium times: variables 20 and 21, respectively).

In the optimisation of parameters used for testing, the
following criteria were considered: (1) Optimise response—the
parameter-set should maximise response of the sensor array to
the sample whilst minimising test-to-test variation. (2) Mini-
mise contamination—the parameter-set should minimise run-
to-run and batch-to-batch contamination. (3) Minimise testing
time—phase times should be kept to a minimum in order to
maximise sample throughput. (4) Sample considerations—the
parameters must provide a suitable environment for the sample,
without causing spoiling.

Optimisation of the parameter-set proceeded by considering
each parameter type in turn. The manually adjustable parame-
ters were considered to be sample specific, principally being
constrained by the type of sample (in this case lager beer). For
example, the sample vessel temperature (variable 22) was preset
at 25 °C so as not to affect flavour volatiles with the headspace.
To avoid contamination of the rig, the piping (parameter 23) and
sensor head (parameter 24) were heated to 5 °C higher than the
sample temperature, constraining these both to 30 °C.

Using either wet air ( ≈ 50% RH) or dry CO2 as the headspace
and carrier gas for sampling (parameters 9 and 16) was avoided
due to the possibility of oxidation of the beer samples. The use
of these carrier gases also appeared to cause instability in the
sensor responses, believed to be attributed to immobilised ions
within the polymer film causing field-induced drift. Therefore
N2 was chosen as the set-up and carrier gas agent, giving the
most repeatable sensor response from test-to-test. The set-up
time period (parameter 14) and flow-rates (parameter 15) were
set to 5 min per vessel and 4.8 ml s21, respectively, and were
based upon the deadspace and flow-rates within the system to
ensure at least one full replacement of the headspace above the

Table 2 FIA sensor array

Initial Initial
No. Sensor type resistance/W No. Sensor type resistance/W

1 PPy/TEATS/H2O 77.1 13 PPy/PSA/H2O 16.86 ka

2 PPy/TEATS/H2O 403.1 14 PPy/PSA/H2O 4.96 k
3 PPy/TEATS/PC 231 15 PPy/HpSA/H2O 162.6
4 PPy/TEATS/PC 347 16 PPy/HpSA/H2O 154
5 PPy/pTSA/EtOH 99 17 PPy/HxSA/H2O 693
6 PPy/pTSA/EtOH 67 18 PPy/HxSA/H2O 302
7 P3MT/TEATFB/CH3CN 171.5 k 19 PPy/DSA/H2O 77.1
8 P3MT/TEATFB/CH3CN 74.8 k 20 PPy/DSA/H2O 81.1
9 PAN/NaHSO4/H2O 3.06 k 21 PPy/pTSA/H2O 30.3

10 PAN/NaHSO4/H2O 2.70 k 22 PPy/pTSA/H2O 38.9
11 PPy/BSA/H2O 203.6 23 PPy/DSA/H2O 339
12 PPy/BSA/H2O 460.5 24 PPy/DSA/H2O 183

a Sensor removed during study due to systematic drift causing response beyond ADC scale.
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samples before sealing. Cleaning (parameter 2) and purging
(parameter 5) flow-rates were maximised (4.8 ml s21), in order
to minimise the required cleaning and purging periods. A
purging time of 10 min was found to be sufficient to ensure full
replacement of the sensor-head deadspace.

The remainder of the operator-adjustable and software
configurable parameters were optimised after a series of
comparative studies on the same sample (control CBL lager)
during commissioning of the FIA system. The two flow profiles
(parameter 8) shown in Fig. 6 were used for testing control
CBL, in order to maximise the sensor array response. Both flow
profiles deliver an initial odour pulse which transfers 100 ml of
headspace from the sample vessel directly to the sensor head.
Using the profile shown in Fig. 6a this is achieved in 20 s,
whereas that shown in Fig. 6b requires 40 s. During comparative
testing using these profiles, a similar array response was
observed for both, although using the second method of odour
delivery required more time for the sensors to reach equilibrium
with the sample. Consequently the flow profile shown in Fig. 6a
was adopted for all subsequent testing.

Comparative tests were also carried out to observe the effect
of using bubbling and non-bubbling carrier gas sample
percolation (parameter 26). The magnitude and repeatability of
array response favoured the non-bubbling sampling method and
so was used throughout testing. In order to isolate the effect of
pre/post-cleaning times (parameter 17), flow-rate (parameter
18) and agent (parameter 19) and the effect of cleaning times
(parameter 1), flow-rate (parameter 2) and agent (parameter 3),
upon possible run-to-run and batch-to-batch contamination
within the sampling apparatus, a set of tests were executed. This

involved iterating an alternating sequence of full and empty
samples in the three vessels, as shown in Table 4, whilst
maintaining and monitoring all other variables and parameters
as constants.

By examining the response of the sensor array to the blank
sample tests under various conditions of pre/post-cleaning and
cleaning parameters, it was now possible to assess the efficiency
of these phases in cleansing the apparatus. The response of the
sensor array during the blank samples of tests 1 and 3 was
observed to ensure that sufficient cleaning time had been used
to remove any contaminants from previous samples. Likewise,
the response of the sensor array during the blank samples of test
2 was observed to ensure that sufficient pre-cleaning and post-
cleaning time had been used to remove any contaminants from
previous test batches. This process was iterated whilst varying
cleaning parameters to ensure that no interference between
samples occurred. The final phase times after optimisation are
shown alongside the sampling sequence in Fig. 5.

In Part 2 of this paper we describe the computational analysis
of the data arising from this experiment and so assess the
efficacy of the odour mapping technique described here in
generating organoleptic flavour note information.31
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