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In Part 1 of this paper (T. C. Pearce and J. W. Gardner, Analyst, 1998, 123, 2047) we describe a novel method for
predicting the organoleptic scores of complex odours using an array of non-specific chemosensors. The application
of this method to characterising beer flavour is demonstrated here by way of predicting a single organoleptic score
as defined under the joint EBC/ASBC/MBAA international flavour wheel for beer. An experimental study was
designed to test the accuracy of the odour mapping technique for this prediction of organoleptic scores of added
reference compounds within a chemically complex lager beer background. Using the flow injection analyser (FIA)
system comprising 24 conducting polymer sensors, also described in Part 1, sampling was conducted on spiked
lager beers. A dimethyl sulfide spike was added at the 20–80 ppb v/v level to simulate a range of organoleptic
scores (0–5.5 out of 10) for flavour note no. 0730—“cooked vegetable”. A certain amount of sensor drift was
observed over the 12 d testing period which is shown to account for significant variance in the data-set as a whole.
The effect of the sensor drift was reduced by applying a linear drift model, which may be generally applied when
the between-class variance due to the difference in odours is small when compared with the within-class variance
due to the drift, which increases approximately linearly over time. Careful use of this drift compensation model,
coupled with judicious selection of pre-processing and pattern recognition techniques, maximised the
between-class variance and so improved the overall classification performance of the system. After applying
detailed exploratory data analysis, statistical, and neural classifier techniques, the organoleptic score was predicted
with an accuracy of ±1.4 (out of 10) and 95% confidence. Our results show that it is possible to generate
subjectively defined organoleptic flavour information using multi-sensor arrays and associated data-processing that
is comparable in accuracy to sensory and GC-based techniques.

Background

Since a unified theory of odour analysis does not yet exist,
which would be able to explain and predict the sensory impact
of simple and complex odours, we are left to describe odours in
prototypical terms—by comparison of similar odours. This fact
alone has had a tremendous impact on the evolution of flavour
analysis which has resorted to two very disparate approaches—
instrumental and sensory-based. Unfortunately, the use of these
techniques, in isolation, has been found wanting in terms of
providing an overall picture of flavour or odour quality. A
recent trend towards combined instrumental and sensory
analysis has shown some promise in being able to relate a
chemical description of flavour, on the one hand, with a
perceptual (sensory) description, on the other. As part of this
trend we have described (in Part 1 of this paper, ref. 1) an odour
mapping technique for correlating the response of chemically
sensitive multi-sensor arrays with organoleptic flavour scores as
a method for generating a more detailed characterisation of
odour quality. This approach leverages upon concepts used in
sensory analysis, in particular flavour terminology. The use of
flavour terminology systems as a product specific model of
odour representation is optimal in view of the lack of any
universal standards for odour description (sometimes referred to
as a set of primary odours).

In order to assess the efficacy of this technique in generating
useful organoleptic data we have designed a flow injection

analyser (FIA), based around an array of conducting polymer
sensors, as part of an experimental study described in Part 1.1 In
this study lager beer samples have been spiked with a range of
concentrations of reference compounds derived from the EBC/
ASBC/MBAA international flavour terminology system for
beer, to simulate samples with three varying organoleptic
flavour notes.2 Using data collected from the FIA rig sampling
on the spiked beer samples with flavour note scores estimated
from known sensory-panel sensitivities, the task is then to be
able to predict the intensity of the organoleptic flavour note for
unseen data using the odour mapping technique described
previously. In Part 2 of this paper, we describe the computa-
tional analysis for this study and detail the results. Finally, we
compare this technique with existing flavour analysis technol-
ogies.

Many previous studies reporting upon the application of
sensor arrays for odour analysis have provided minimal detail of
the reasoning used in the selection of statistical and pattern
recognition techniques. Furthermore, there has been little
justification for the order in which these are applied during the
analysis. In this paper, we outline the typical sequence of
operations to be applied and the reasoning behind the use of
each technique. In order to approach this in a systematic
manner, the data analysis for the flavour note characterisation
study was split into three successive stages. Firstly, exploratory
data analysis was conducted in order to gain understanding of
the data-set under investigation, and so guide the subsequent
analysis. Second, a classification of the control lager against the
same lager spiked with the three flavour notes was attempted.
Finally, the prediction of the organoleptic scores for each spiked† For Part 1, see ref. 1.

Analyst, 1998, 123, 2057–2066 2057



beer sample was attempted in order to illustrate the use of an
electronic nose for generating humanly defined odour in-
formation.

Exploratory data analysis

Sensor pre-processing

Firstly, in order to investigate odour class discrimination, only
the highest concentration of each flavour note was considered
(as defined in Table 1 in Part 1, ref. 1). Sensor and array pre-
processing of the data was carried out. So as not to introduce
bias into the analysis a wide variety of pre-processing metrics
were considered at each stage of exploratory data analysis
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where uin
kj and ufi

kj are the initial and final values (resistance or
conductance) attained for each sensor, k, in response to an odour
sample, j. In particular, difference, relative, and fractional
metrics were calculated for both sensor conductance and
resistance using eqns. (1), (2) and (3), respectively. Further
steady-state sensor parameters for consideration were generated
by array normalisation across all sensors
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where R is the total number of sensors in the array. This reduces
the concentration dependence of the signal, as well as sensor
autoranging using

    
¢ =

¢ - ¢( )
¢( ) - ¢( )u

u u

u u
kj

kj j kj

j kj j kj

min

max min
(5)

which is a popular pre-processing metric for use before input to
a statistical classifier in order to maximise the spread of the data
in the input space.

The means and standard deviations (s) for the above metrics
were then plotted (in addition to the values uin

kj and ufi
kj) on a per

class basis in order to screen the data for outliers as well as
illustrate any obvious class differences. For example, the polar
plots of the fractional change in conductance, calculated using
eqn. (3), are shown in Figs. 1 and 2, for the control lager and
control lager with each of the added flavour spikes under
consideration. The values range between 0–9% of baseline,
although the largest response from sensors 9 and 10 (PAN/
NaHSO4/H2O gave highly variable values between 150–230%)
were too large to be displayed. A single dashed line either side
of the mean indicates a confidence interval of 1 s indicating the
repeatability of the sensor response on a test-to-test basis. As
before, this confidence interval is seen to vary depending upon
sensor type. Although the mean response values vary slightly
between different odour classes, (seen by comparing the values
in Fig. 1a with Fig. 1b and Fig. 2a,b) it is clear that these
excursions do not extend beyond the confidence intervals
shown and so a very high degree of overlap in response is
present within the data-set. This is also true of all other pre-
processing metrics treated in a similar fashion.

Principal components analysis

Before applying principal component analysis (PCA) and a host
of other parametric statistical techniques, the data-set must

conform to the requirements of multivariate normality, homo-
geneity of the covariance matrices, and independence of
observations. Multivariate normality was tested by examining
the multivariate scatterplots between all 21 dependent variables
(i.e., sensor values) and histograms. While, not surprisingly, the
sensor readings showed high correlation across the array there
were no non-linear relationships violating the assumption of
multivariate normality, the histograms of the raw baseline
resistance values were highly skewed and non-Gaussian. This is
thought to be a result of the time-dependent sensor drift acting
as a systematic error on the odour measurement (thus spreading
the distribution and causing asymmetry), and is later shown to
be removed in the compensated values. Consequently multi-
variate analyses of variance (MANOVA) carried out on the drift
compensated values are likely to be more meaningful than those
on the raw values. Homogeneity of the covariance matrix was
verified using Bartlett’s c2 test, that showed no significant
differences between the within-group covariance matrices for
each class. Independence of observations was achieved in the
data-set by using a Latin Squares experimental design during
sampling, as well as sufficient recovery time between tests for
the sensors to return to their baseline values (see the
Experimental section in Part 1, ref. 1).

PCA was first applied to all types of pre-processed data in
order to analyse the nature of the sample variance. Firstly, a
scree test of the eigenvalues was used in order to examine the
measurement efficiency (or parsimony) of the problem. The
scree plot shown in Fig. 3a illustrates that most of the total
variance is accounted for by the first six eigenvalues and their
corresponding principal components. Here we used Kaiser’s
stopping rule of extracting components until l < 1.3 This is

Fig. 1 Polar plots of fractional change in conductance metric eqn. (3) (a)
Bass Carling Black Label control lager, (b) control lager spiked with 0.4
ppm 2,3-butanedione. Thick lines represent mean values over six tests and
dashed lines show a single s from the mean for each sensor.
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equivalent to extracting components until the point where the
next component is contributing less variance than that of the
average sensor, which is a reasonable assumption in this context
since we are using PCA as a dimensionality reduction
technique. However, a variety of other stopping rules could
have equally been applied (such as Bartlett’s sphericity test,4
cross-validation methods described by Krzanowski,5 or simply
a percentage of variance criterion) and the choice of how many
components to extract is always subjective. The cumulative
variance explained by these first six principal components is
given in Table 1, accounting for a large portion of the total
(85.3%).

In order to visualise any class separation present in the data-
set, the first three principal components were then plotted, as
shown in the example for fractional change in conductance
values shown in Fig. 3b, which accounts for the majority of the
total variance (66.1%). Class labels have been assigned in order
to illustrate class separation (described in the caption of Fig. 3).
Little, if any, separation was evident between the samples using

PCA. This was also true for a similar treatment of all other
varieties of pre-processing metrics. This result indicated that
further interpretation of the eigenvectors for the problem was
required.

Using an oblique eigenvector rotation method, it was possible
to interpret the set of six principal components in terms of the
original variables. Rotation methods transform the set of q

Fig. 2 Polar plots of fractional change in conductance metric eqn. (3) (a)
control lager spiked with 80 ppb dimethyl sulfide, and (b) control lager
spiked with 400 ppm hop essence. Thick lines represent mean values over
six tests and dashed lines show a single s for each sensor.

Table 1 Variance explained by the first six principal components of the fractional change in conductance metric eqn. (3). Contributing sensors found using
oblique eigenvector rotation

Component No. Variance Cum. variance % Cumulative % Sensors contributing

1 8.70367 8.70367 37.84 37.84 3, 4, 9, 10, 16, 17
2 3.24940 1.19531 14.13 51.97 12, 13, 14
3 3.24366 1.51967 14.10 66.07 1, 22, 23
4 1.84440 1.70411 8.02 74.09 5, 6, 18, 19, 20, 21
5 1.40214 1.84433 6.10 80.19 8, 11
6 1.18069 1.96240 5.13 85.32 7

Fig. 3 Results of PCA applied to the fractional change in conductance
metric eqn. (3) (a) scree plot of eigenvalues showing their relative
importance, and (b) plot of the first three principal components. Class labels
assigned as CO, control lager; A, diacetyl spike; B, dimethyl sulfide spike;
and C, hop essence spike. First number in label indicates spike intensity
(1–4), with 4 corresponding to 0.4 ppm v/v 2,3-butanedione for class A, 80
ppb dimethyl sulfide for class B, and 400 ppm hop essence for class C.
Second number indicates its sequence during sampling (1–6).
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orthogonal eigenvectors (defining a sub-space Rq) to be as
closely aligned with the co-ordinate system for the original set
of R variables (defining space RR) as possible. This results in so-
called simple structure, whereby the eigenvectors may be easily
interpreted in terms of the original variables. While varimax and
quartimax methods preserve eigenvector orthogonality, oblique
methods allow some breakdown in the orthogonality of the new
sub-space in order to obtain a simpler structure for inter-
pretation. After oblique rotation of the first six eigenvectors,
Table 1 includes those sensors that largely contribute to each
component. For example, sensors 9 and 10, which were
removed from the polar plot (Figs. 1 and 2) due to exceptionally
large responses combined with large variance, are by far the
largest contributors to the first principal component.

By comparing the contributing sensors in the PCA analysis
with the confidence intervals given in Figs. 1 and 2, it is clear
that the PCA procedure is largely explaining the within-class
variance, as opposed to the desired between-class variance.
While PCA is fitting the variance in the data-set very well, any
between-class variance is being ameliorated (and thus lost) by
the dominant within-class variance (caused by system noise or
systematic drift in the data-set), thus leading to poor class
separation.

A closer analysis of the original data-set highlighted
significant temporal drift over the eleven days of testing,
accounting for much of the problematic within-class variance.
The drift in the baseline resistance values u in

kj over the period (as
measured before the onset of each test) is quantified in Table 2.
While the drift is typically modest (0.5–3.9% from baseline
over a 14 d period), sensors 7–13 demonstrated poor stability.
Indeed, sensors 9, 10 and 13 drifted off scale and were removed
before any further analysis. As could be expected, sensor pairs
corresponding to each type of polymer show broadly similar
stability properties. These differences in device stability
between different varieties of polymer film could result from
the variety of growth conditions under which the devices were
prepared, or from subsequent polymer-specific interaction with
the test odours.

Parametric drift compensation

By comparing the baseline resistance values from test-to-test it
was possible to characterise the nature of the temporal drift
contributing to the problematic within-class variance. Other
attempts have been made to model drift in metal oxide gas
sensor arrays.6,7 Fig. 4a shows the fluctuation in the baseline
over the course of the test period for each sensor, which show
the days (1–12) of the testing period and resistance value. The
fluctuation in the final values (over all sample classes) is shown
in Fig. 4b. Clearly, these data are well-behaved and linearly
dependent upon time, as indicated by the lines of best fit. The

day histogram shows the density of tests taken over the 12 d
testing period, showing a fairly consistent sampling rate as
expected. The sensor histograms give the density of sensor
resistance values over their range throughout the study. These
are useful for spotting outliers. For example, gross dis-
continuities in the histogram of Fig. 4b for sensors 7 and 16
show outliers in the final values over time, leading to the poor
linear fit for these sensors.

For the case of sensor resistance, it is clear that the drift over
time can be modelled here by

ufi = ufi
o + dufi(t) = ufi

o + afit (6a)

uin = uin
o + duin(t) = uin

o + aint (6b)

where ufi
o and uin

o are the intercepts at t = 0, and afi and ain are
the gradients of the linear fit shown in Fig. 4. The linear fit for
the final values, in eqn. (6a) assumes that the differences in
response of the sensors to the different classes of sample are
negligible compared with the magnitude of the drift over
time.

Similarly, for the difference pre-processing metric defined in
eqn. (1), the drift over time is described by

uA = (ufi 2 uin) = uAo + duA(t) (7)

where uAo is the first difference value observed at t = 0 and
duA(t) is the time-dependent drift term. The drift terms are
related as
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and so the difference values also depend linearly upon time, and
may be removed by a simple linear parametric compensation
scheme. This relationship can be clearly seen by examining the
values of the difference pre-processing metric over time shown
in Fig. 5a.

However, for either the relative or fractional pre-processing
metrics [defined by eqns. (2) and (3)] the drift terms become
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and so the drift in these measures varies nonlinearly (second
order polynomial) with time. This nonlinear relationship is
obvious from the time dependence of the fractional values
shown in Fig. 5b.

Parametric drift compensation using this simple model was
then performed on the initial and final values in order to remove
the problematic within-class variance caused by the sensor

Table 2 Percentage change in sensor baseline resistances uin
kj caused by systematic sensor drift over period of testing

Baseline drift Baseline drift
No. Sensor type (%) No. Sensor type (%)

1 PPy/TEATS/H2O 2.14 13 PPy/PSA/H2O N/Aa

2 PPy/TEATS/H2O 2.5 14 PPy/PSA/H2O 10.7
3 PPy/TEATS/PC 2.6 15 PPy/HpSA/H2O 2.8
4 PPy/TEATS/PC 2.3 16 PPy/HpSA/H2O 1.7
5 PPy/pTSA/EtOH 1.2 17 PPy/HxSA/H2O 3.9
6 PPy/pTSA/EtOH 1.5 18 PPy/HxSA/H2O 2.5
7 P3MT/TEATFB/CH3CN 119.6 19 PPy/DSA/H2O 1.1
8 P3MT/TEATFB/CH3CN 62.5 20 PPy/DSA/H2O 1.9
9 PAN/NaHSO4/H2O N/Aa 21 PPy/pTSA/H2O 0.5

10 PAN/NaHSO4/H2O N/Aa 22 PPy/pTSA/H2O 1.6
11 PPy/BSA/H2O 11.8 23 PPy/DSA/H2O 2.3
12 PPy/BSA/H2O 14.1 24 PPy/DSA/H2O 2.1

a Sensor removed during study due to drift causing response beyond ADC scale.
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instability. The compensated values ũfi
kj and ũin

kj were calculated
by removing the linear drift term defined in eqn. (6)

ũkj = (ukj 2 ati) (10)

where ti is the time at which the ith measurement was taken.
Again, this procedure was carried out on all varieties of pre-

processing metric. An example of the efficiency of the
technique for removing the time-dependent drift is shown by the
polar plots in Fig. 6. As before, polar plots show the mean value
with one s either side of the mean indicating the variance of
samples on a test-to-test basis. While the within-class variance
for the raw baseline resistance values is sizeable, the drift
compensated values are shown to reduce this to negligible
values across the array. After inspection, the poor fit of sensor
4 to linear drift compensation was caused by a single outlier
which was later removed. The compensated and the raw values
will be compared during the forthcoming classification study.

This method can be generally applied as a simple parametric
drift compensation scheme, assuming that the magnitude of the
drift variance is far larger than the variance due to the sample
differences. Also, the drift must be well-behaved, continuous,
and show an approximate linear time dependence.

Multivariate analysis of variance

In order to indicate any differences between the class means
within the data-set, MANOVA was carried out. The resulting
test statistic, Wilke’s Lambda, L, represents the amount of
variance in the data-set not explained by the independent
variables when being used to highlight class separation.

The results of MANOVA as applied to the flavour note data-
set are given in Table 3. For all of the varieties of pre-processing
metric, values for L indicate that a large portion of the variance
is explainable in terms of class separation. Overall, the drift

Fig. 4 Graphs of sensor drift with time over the period of the FIA study
demonstrating a linear time dependence for (a) initial baseline resistance,
uin

kj, and (b) final resistances, ufi
kj. Lines of best fit and histogram over

sampling period are shown for each sensor.

Fig. 5 The effects of systematic sensor drift on pre-processed response
values, (a) array normalised difference in resistance showing linear time
dependence, and (b) array normalised fractional change in resistance
showing non-linear time dependence. Lines of best fit and histogram over
sampling period are shown for each sensor.

Fig. 6 Polar plots of array normalised baseline resistances prior to
sampling control lager, showing the effect of linear parametric drift
compensation in reducing problematic within-class variance, (a) raw values,
and (b) drift compensated values.
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compensated values show far better significance and portions of
explained variance as compared to the raw values. However, for
only one metric is the significance at a suitable level to
demonstrate a clear effect; the array normalised difference in
resistance after drift compensation. With a value of p = 0.078,
the confidence interval of 93% indicates a strong likelihood of
the difference between the means for each class being a result of
class membership. By considering the process of drift com-
pensation used in eqn. (8) and the fact that the difference metric
drifts linearly with changes in initial or final values, it is clear
that it provides the best choice of metric for maximising the
between-group variance within conducting polymer arrays
when subject to linear temporal sensor drift.

Discriminant function analysis

As MANOVA and discriminant function analysis (DFA) are
also parametric techniques, all of the conditions already
justified for PCA must hold. Furthermore, DFA is also highly
sensitive to outliers in the data-set and so screening of the data
was undertaken. During cluster analysis on the array normalised
difference in resistance (compensated) values sample B22 was
found to be a large distance (in cluster space) from any other
data points as identified by particularly late clustering during
the iterations of the algorithm. Although cluster analysis is not
typically used as a method for identifying multivariate outliers
(specific techniques such as Barnett’s8 M-, R-, P-, or C-ordering
could have been used), after a closer examination of the values
for B22, the readings for sensors 6, 10, and 11 were further than
3 s from the mean and so this point was considered to be an
outlier and removed from the data-set. All other points showed
reasonably close proximity in Euclidean space.

While the MANOVA results suggested some class separation
for at least one of the pre-processing metrics, canonical DFA
was used in order to visualise this class separation and isolate

those sensors contributing most to class separation. The results
are given in Table 4 for the three discriminant functions a1, a2,
and a3. Since there are only four odour classes (one control and
three flavour spikes) only three functions were extracted,
accounting for 100% of the total variance in the data-set. The
percentage contribution of each discriminant function was
calculated from its corresponding eigenvalue l as

    

l

lSk k=1
3 (11)

where li is the ith eigenvalue. This parameter indicates the
relative importance of the variables in determining group
separation. An F test also provides a p value (significance level)
for each discriminant function, as given in Table 4. Clearly for
a1 then p < 0.05 indicates a good level of significance.
However, both discriminant functions a2 and a3 have p > 0.05
and so must be considered with caution. By examining the
standardised discriminant coefficients used to generate the
canonical variables in terms of the original sensor values, it was
also possible to identify which sensors contributed most
significantly to class separation, also shown in Table 4.

Due to the low significance of the discriminant functions a2
and a3, the sensors contributing to class separation are
principally, 2, 12, 17, 18, 19, 20, and 22. Interestingly, none of
these sensors made large contributions to the total variance,
which caused the earlier PCA analysis to fail, verifying our
earlier hypothesis that the dominant principal components are
modelling the sensor drift. Finally, the separation of class-
labelled samples is visualised in Fig. 7, by plotting the first three
discriminant functions. The four odour classes are clearly
visible as being separated by linear DFA.

Flavour classification

Having carried out a thorough exploratory analysis of the FIA
flavour note data-set, the next task was to attempt a classifica-
tion of each of the samples into one of the four odour classes.
Prescriptive DFA uses the canonical linear discriminant
functions generated in the previous analysis in order to form a
classification rule that assumes an equal cost of misclassifica-
tion across each class, which is reasonable for this study. The
confusion matrix (shown in Table 5) for such a DFA indicated
an overall correct classification rate of 80.3%. However, this
estimate of the classification error is optimistic, since all of the
available samples were used in generating the classification
rule. A better estimate of the true error (i.e., to new data
samples) is provided by cross-validation methods, thereby
training on a subset of the sample data-set and testing on the
remainder.

Although DFA is clearly able to discriminate between the
trained samples, the classification accuracy after cross-valida-
tion (leave-one-out method) fell to 25% for control, 41% for
diacetyl spike, 42% for dimethyl sulfide (DMS) spike, and 21%
for hop essence. Cross-validation is used here as a technique to
better approximate the true error of the classifier to unseen data.
By making multiple partitions of the entire data-set into training
and testing sets it is possible to obtain a more accurate measure
of the likely performance of the system were it to be used, for
example, in an on-line odour monitoring application. The
classification rates are far lower than those for the non-validated

Table 3 Results of MANOVA for the FIA study. Metric type; D,
difference calculated using eqn. (1), F, fractional calculated using eqn. (3).
Measurement parameter: R, resistance; G, conductance. Normalisation: A,
array normalised calculated using eqn. (4); N, none. Compensation: C,
parametric drift compensation calculated using enq. (10); N, none. (All
other varieties of pre-processing metrics resulted in a singular within-class
residuals matrix and so could not be calculated)

Metric Parameter Normalisation Compensation Wilke’s L p

D R N N .33262 .549
D R N C .21813 .191
F R N N .33136 .541
F R N C .22443 .222
D G N N .32114 .476
D G N C .23495 .279
F G N N .33652 .573
F G N C .22643 .223
D R A N .31440 .433
D R A C .18845 .078
F R A N NA N/A
F R A C .22863 .244
D G A N NA N/A
D G A C .23876 .301
F G A N .32651 .510
F G A C .23418 .275

Table 4 Results of canonical DFA applied to FIA flavour note study

Discriminant Eigenvalue, Contribution Cumulative Correlation, Significance Sensors
function l (%) (%) r level, p contributing

a1 1.28139 49.2 49.2 0.7494 0.0302 2, 12, 17, 18, 19, 20, 22
a2 0.98154 37.7 86.8 0.7038 0.22 3, 4, 23, 24
a3 0.34391 13.2 100.0 0.5059 0.78 16, 17
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DFA results, but are still statistically significant when compared
to chance for the diacetyl and DMS classes given the 61
remaining samples.

Multi-layer perceptron

In an attempt to improve the classification rates, a multi-layer
perceptron (MLP) artificial neural network was applied to the
data-set. The network comprised of 21 input nodes (correspond-
ing to the number of sensors), three hidden processing units in
a single layer, and four output processing units (corresponding
to each odour class). Initially, the default recommended
learning parameters were used [momentum term, m = 0.4,
learning rate, h = 0.3, squashing function s(i) = tanh(i)] and
the data were range-scaled to [21, +1] in order to maximise
coverage of the input value space into the network. The network
error was recorded during training on the entire data-set and
compared for the effect of pre-processing metric on con-
vergence. For this study only the array processed metrics were
considered in order to remove the concentration-dependence of
the data-set (at the expense of increasing noise), and for the drift
compensated values only the resistance metrics were considered
as the sensor drift was found to be linearly dependent upon it. As
shown in Fig. 8, poor convergence was demonstrated by all of
the networks, except for the array normalised conductance
difference model.

By using 3-fold cross-validation on this network, its ability at
classifying unseen samples was tested. A confusion matrix of
the results is given in Table 6, showing classification rates that
were marginally above chance (again at 25%) for diacetyl and
hop essence spike, but statistically significant for the DMS
spike at 54%.

Further improvements in the classification rates were ob-
tained by optimising the network and learning parameters used
in the original MLP. Firstly, the effect of the number of hidden
units on the unbiased estimate of the true error was considered.
An MLP (with default learning parameters) was trained on the
array normalised difference in conductance data (that demon-
strated good convergence in the previous stage of optimisation),
and the error rate observed during variation of the number of
hidden units, as shown in Fig. 9a. Clearly, a single hidden unit
provides by far the most consistent network error during
training. However, the lowest network error was obtained using
two hidden units after only 200 training iterations. These values
were therefore used in future stages of optimisation.

Further experiments in optimising the response showed that
little improvement in network error was obtained by varying the
learning rate, h, and so this was maintained at the default value
of 0.4. However, a marginal effect for the momentum term was
obtained, as shown in Fig. 9b. The best selection of the learning
term m, was seen to be 0.3.

After optimisation of the learning and network parameters
used in the MLP, an attempt was made to reclassify the samples.
Table 7 shows the confusion matrix for the classification using
the optimised network. Clearly, the MLP is making choices
between two classes, diacetyl and DMS. While the classifica-
tion results have improved substantially for both of these
categories, with diacetyl being identified 52.4% and DMS
85.7% of the time (against chance at 25%), it was not possible
to discriminate control and hop essence samples from any other
samples investigated.

Fig. 7 Plot of the first three canonical discriminant variables after DFA
was applied to the array normalised difference in resistance values (after
linear drift compensation). The four separate odour classes are shown.

Table 5 Confusion matrix of classification results of control lager from
control lager with three added flavour spikes using a classification rule
based upon linear canonical DFA variables (no cross-validation used)

Predicted class

Actual class Control Diacetyl DMS Hop essence

Control 4 0 0 0
100.0% 0.0% 0.0% 0.0%

Diacetyl 1 15 1 3
5.0% 75.0% 5.0% 15.0%

DMS 2 1 17 1
9.5% 4.8% 81.0% 4.8%

Hop essence 0 2 1 13
0.0% 12.5% 6.3% 81.3%

Fig. 8 The effect of type of pre-processing metric on the convergence of
an MLP during training. Legend coding: 1st letter; N, no logarithm. 2nd
letter: D, difference; F, fractional; R, relative. 3rd letter: R, resistance; G,
conductance. 4th letter: A, array normalised. 5th letter: N, raw values; C,
parametric linear drift compensation.

Table 6 Confusion matrix of classification results of control lager from
control lager with three added flavour spikes using an MLP with the array
normalised difference in conductance metric (3-fold cross-validation
used)

Predicted class

Actual class Control Diacetyl DMS Hop essence

Control 0 1 1 1
0.0% 33.3% 33.3% 33.3%

Diacetyl 1 6 5 9
0.5 27.9% 23.8% 42.8%

DMS 2 2 12 6
0.9% 0.9% 54.0% 27.2%

Hop essence 0 5 5 4
0.0% 35.7% 35.7% 28.6%

Analyst, 1998, 123, 2057–2066 2063



Flavour note characterisation

The problem of flavour note intensity prediction requires a
mapping function f[A] between sensor space bounded by V and
odour space bounded by Y, such that f : A 7 RR ? Rp. A full
discussion of the theoretical background to the odour mapping
technique is given in Part 1, ref. 1. In this study organoleptic
data were available for the range of concentrations tested for all
three flavour notes defining Y, shown in Table 1 of Part 1 of this
paper (ref. 1), although poor classification was obtained for
diacetyl and, particularly, hop essence. Consequently organo-
leptic mapping was considered for only one of the flavour notes,
namely DMS, that performed best during the odour classifica-
tion study detailed above.

The theoretical organoleptic scores for each flavour note, as
might be expected to result from an FPA trail conducted by a
trained sensory panel, have been given in Table 1, in Part 1, ref.
1. That is, for the DMS concentration ranges of 20–80 ppb, the
expected scores for the cooked vegetable note (ASBC no. 0720
on the flavour terminology wheel shown in Fig. 1 of Part 1, ref.
1) would be 0, 1, 3, and 5–6, respectively. In order to generate

the required mapping function, f[A], between the array data and
the organoleptic scores, the MLP was chosen to be trained upon
the DMS samples only.

Initially an MLP with 21 input units (corresponding to each
sensor), 2 hidden units in a single layer, and 1 output unit was
trained using default learning parameters [m = 0.4, h = 0.3,
tanh activation function] using the target function, t

  
t

I

I
=

Ê
ËÁ

ˆ
¯̃

-1 8 0 9. .
max

(12)

where I represents the perceived intensity of the flavour note or
organoleptic score to varying concentrations of DMS and Imax
represents the flavour score corresponding to the highest
concentration of flavour spike investigated (5–6 for DMS). This
function was used to condition the target values to lie between
[20.9 and +0.9], while still retaining the non-linear relationship
between concentration and perceived intensity that has been
modelled by Steven’s power law of psychophysics9

R = c (C 2 C0)n (13)

where R represents the flavour intensity as reported by the
perceiver and c is a constant of proportionality that is specific to
the individual, C is the concentration and C0 the discrimination
threshold for the analyte, and n is an index that varies between
0.2–0.8 depending upon the odorant in question.

Convergence of the network to a wide variety of pre-
processing parameters is shown in Fig. 10a. Obviously, no array
normalised values were considered for flavour intensity predic-
tion as these remove the concentration-dependence of the data.
All of the pre-processing parameters led to network con-
vergence, except the relative measures that caused paralysis in
learning after only 300 training iterations, probably resulting
from a local minima in the error space. The relative measures
were therefore not considered further.

An unbiased estimate of the true network error (to unseen
samples) was provided by using 6-fold cross-validation on the
remaining six pre-processing metrics under consideration.

Fig. 9 The effect on the MLP network error after 3-fold cross-validation
training on the array normalised difference in conductance data to (a)
variation in the number of hidden units, and (b) variation in the momentum
term.

Table 7 Confusion matrix of classification results of control lager from
control lager with three added flavour spikes using an optimised MLP and
the array normalised difference in conductance metric (3-fold cross-
validation used)

Predicted class

Actual class Control Diacetyl DMS Hop essence

Control 0 0 3 0
0.0% 0.0% 100.0% 0.0%

Diacetyl 0 11 10 0
0.0 52.4% 47.6% 0.0%

DMS 0 3 18 0
0.0% 14.3% 85.7% 0.0%

Hop essence 0 11 3 0
0.0% 78.6% 21.4% 0.0%

Fig. 10 (a) The effect of pre-processing metric on the network error during
training. Legend coding: 1st letter; D, difference; F, fractional; R, relative.
2nd letter: R, resistance; G, conductance. 3rd letter: N, no normalisation. 4th
letter: N, raw values; C, parametric linear drift compensation; (b) the effect
of pre-processing metric on the unbiased estimate of the true error of an
MLP during training on flavour intensity data. Legend coding: 1st letter; N,
no logarithm. 2nd letter: D, difference; F, fractional; R, relative. 3rd letter:
R, resistance; G, conductance. 4th letter: N, no normalisation. 5th letter: N,
raw values; C, parametric linear drift compensation.
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During training, the networks were tested on unseen data to
provide an average RMS error to unseen samples, as shown in
Fig. 10b. Similar to the case for odour classification, the results
demonstrate that the difference in conductance pre-processing
metric (without normalisation) is the most predictive of flavour
note intensity.

Before proceeding to optimise the learning and network
parameters for the network, the data-set was screened for
outliers and extreme values. Box plots of the difference in
conductance pre-processing metric for all sensors are shown in
Fig. 11b. It is clear that a small subset of sensors were leading
to unreliable results, in particular, sensors 7, 8, 9 and 22. The
extreme values ( > 5 s from the mean) were removed from the
data-set, while the outliers were retained for further con-
sideration.

As before, the network and learning parameters were
optimised in order to further improve the prediction perform-
ance. Firstly, the number of hidden units were varied and again
the true error rate estimated by using 6-fold cross-validation.
The results of varying the number of hidden units for an MLP
with default learning parameters and training, on the difference
in conductance metric are shown in Fig. 11a. The effect of the
number of hidden units on the root-mean-squared error is small,
with two hidden units showing marginally better performance in
predicting the unseen samples.

The momentum and learning terms were varied in order to
optimise the prediction performance, as shown in Fig. 12. A
clear effect for both parameters is shown, with the optimum
values obtained when m = h = 0.3. After optimisation, then,
the final MLP network selected for the flavour note prediction
study was therefore a 21 3 2 3 1 MLP with the learning
parameters, m = h = 0.3, and tanh activation function, training
on the difference in conductance values.

Using the optimised MLP network, the organoleptic scores
for each of the samples were then predicted using 6-fold cross-
validation. After removal of the outliers identified using the box
plots earlier, the performance of the MLP network for
predicting the corresponding flavour note scores of the DMS
spike is shown in Fig. 13. Clearly the MLP network is able to
predict the organoleptic scores, although this becomes less
accurate at higher concentrations of flavour spike. This
inaccuracy could result from either the response of the sensor
array to DMS saturating above 60 ppb, or that the neural
network is having difficulty mapping onto the highly loga-
rithmic flavour scores. In the latter case this may be remedied by
the use of a logarithmic post-processing function.

Comparing flavour analysis technologies

Finally, a comparison between the accuracy obtained by FIA
using the electronic nose system reported here with both FPA as

Fig. 11 (a) The effect of the number of hidden units on the unbiased
estimate of the true MLP network error, and (b) box plots of the difference
in conductance pre-processing metric, showing outliers and extreme values.
Labels shown identify each sample: B, indicates DMS spiked samples; 1st
number indicates concentration level (i.e., 1 = 20 ppb, 3 = 40 ppb, 3 = 60
ppb, 4 = 80 ppb); 2nd number indicates sample number in series. Outliers:
B13, B23, B21, B36, B45, B43. Extreme values: B11, B12, B16, B32.

Fig. 12 The effect of varying, (a) m, the momentum term (for h = 0.3),
and (b) h, the learning term (for m = 0.4) on the prediction error for a 21 3
2 3 1 MLP network training on the difference in conductance values.

Fig. 13 Predicted organoleptic scores under the ‘cooked veg’ flavour note
using a sensor array and MLP for lager beer spiked with four different levels
of DMS (20, 40, 60, and 80 ppb), simulating a beer with scores of 0, 1, 3,
5–6.
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conducted by a trained tasting panel and GC-based instrumental
methods is indicated by plotting the 95% confidence intervals
for the data against typical known accuracies for the other
analysis methods in Fig. 14. For higher concentrations ( > 40
ppb) the accuracy of the electronic nose is shown to be
comparable, but lower than both the GC-based and FPA
methods. However, for lower concentrations, expected accu-
racies across all three methods are broadly similar, with results
indicating that organoleptic flavour note prediction using the
electronic nose may be more accurate than GC-MS analysis.
This is an encouraging result, when regarding the cost of the
competing flavour analysis methods and the potential for the
low-cost commercial electronic nose exploiting mass produced
chemical sensors. However, the future economies of scale for
electronic noses will very much depend upon the future
maturation and uptake of the technology in routine odour and
flavour monitoring applications.

Conclusions

A 21-element conducting polymer electronic nose system has
been developed to analyse the headspace of beers, described in
detail in Part 1, ref. 1. In terms of the task of discriminating
between the control lager beer and the same control with three
different flavour spikes added, a certain amount of sensor drift
was observed over a 12 d testing period. This drift has been
shown to account for significant within-class variance in the
data-set, the effect of which was reduced by applying a linear
drift model. Careful use of this drift compensation model,

coupled with judicious selection of pre-processing and pattern
recognition techniques, maximised the between-class variance
and so improved the overall classification performance of the
system. In a related experiment, a novel data-processing method
for sensor-arrays was applied to the same data-set to demon-
strate its efficacy in predicting organoleptic flavour note scores.
Consequently, we have shown that it is possible to predict an
organoleptic score for a sub-ppb beer note present within a
complex odour background of lager beer comprising more than
600 flavour active compounds. It may be possible to improve
the accuracy of this prediction through the use of a fuzzy-based
mapping algorithm, rather than the crisp ones employed here. A
fuzzy approach may more accurately describe the nature of
subjective organoleptic scores taken as an aggregate from a
panel of human tasters.
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Fig. 14 A comparison of sensory-based FPA, instrumental techniques
(GC-based methods) with the electronic nose for the prediction of DMS
spike (at 20–80 ppb) in a background of lager beer. The mean predicted
organoleptic scores generated by an electronic nose (EN) compared
favourably with the theoretical score (arrived at from the known
concentrations of DMS added to the samples), and the GC and FPA
methods. Error bars indicate the 95% confidence intervals for each method.
(GC and FPA data courtesy of Bass Brewers).
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