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Abstract: The field of electronic noses, electronic instruments capable of mimicking the human 
olfactory system, has developed rapidly in the past ten years. There are now at least 25 research 
groups working in this area and more than ten companies have developed commercial instruments, 
which are mainly employed in the food and cosmetics industries. Most of the work published to date, 
and commercial applications, relate to the use of well established static pattern analysis techniques, 
such as principal components analysis, discriminant function analysis, cluster analysis and multilayer 
perceptron based neural networks. The authors first review static techniques that have been applied to 
the steady-state response of different odour sensors, e.g. resistive, acoustic and FET-based. Then they 
review the emerging field of the dynamic analysis of the sensor array response. Dynamic signal 
processing techniques reported so far include traditional parametric and nonparametlic ones 
borrowed from the traditional field of system identification as well as linear filters, time series neural 
networks and others. Finally the authors emphasise the need for a systems approach to solve specific 
electronic nose applications, with associated problems of sensor diift and interfesence. 

1 Introduction 

An electronic nose is an instrument comprising an array of 
electronic chemical sensors with partial specificity, and an 
appropriate pattern recognition system that is capable of 
recognising both simple and complex odours. This defini- 
tion restricts the tenn electronic nose to those types of intel- 
ligent sensor systems that are used to sense odorant 
molecules in an analogous manner to the human nose [I]. 
However, an array of nonspecific gas sensors can also be 
used to detect single components or mixtures of gases/ 
vapours. 

Each individual sensor i within the electronic nose pro- 
duces a time-dependent electrical signal x&t) in response to 
an odour j .  The dynamic sensor signal depends on several 
physical parameters, such as the speed of the flow that car- 
ries the odour from the source to the sensor assay, the 
nature of the odour, the diffusion and reaction of the 
odour within the active sensing material, and ambient con- 
ditions (e.g. pressure, temperature and humidity). It is com- 
mon practice to use only the static (i.e. steady-state) values 
of the sensor signal:: rather than the dynamic (i.e. transient) 
response when applying electronic noses. The sensor out- 
puts are expected to reach constant asymptotic values when 
the input signal is fixed at a constant value. The response 
generated by the sensor array can then he represented by a 
time-independent vector vi = (rlj,  r2j, ..., yg, ..., rrq) where n is 
the number of odour sensors in the array. Then the 
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response to a set of n7 odours can be regarded as a set of !?I 

column vectors, which are best represented by a response 
matrix R 
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Odour sensors do not behave as independent sensors; 
instead, an individual sensor will respond to a vaiiety of 
odours hut with varying cross-sensitivity. So the off-diago- 
nal terms of the response matrix R are usually nonzero. It 
is under these conditions that pattern recognition tech- 
niques are required to process the signals generated by an 
array of sensors and thereby extract the pertinent informa- 
tion in a nontrivial manner (i.e. when in > n) [2]. 

It is only in the last few years that the use of dynamic 
signals from a multisensor system has received any signifi- 
cant attention. There are several reasons why dynamic sig- 
nal processing techniques are important to the field of 
electronic noses: - Recent reports suggest that under certain test conditions 
the dynamic response of solid-state gas sensors contains 
useful information. The dynamic response holds infoima- 
tion about the chemical kinetics of the sensor and these 
vary with both sensor type and analyte. This additional 
information can be extracted from the transient response of 
a sensor to a controlled change in the analyte concentration 
(e.g. concentration modulation) or to a change in the tem- 
perature of operation of the sensor (e.g. temperature modu- 
lation). In some applications an enhancement of the sensor 
array selectivity from these techniques has heen reported 

- Some sensors respond very slowly to weakly interacting 
odours. Non-steady-state measurements are required when 
the environmental changes are on the same time-scale as 
the sensor response. This may help to broaden the ficld of 
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application of intelligent sensor systems (e.g. continuous 
pollution monitoring). 
* The sample delivery system and the sensor array are both 
parts o fa  dynamic system. The time taken by the system to 
reach steady state depends on parameters such as flow rate, 
volume of the sensor chamber, odour diffusion rate and 
sensor reaction rate. When the sensors are modelled using 
steady-state values, the calibration time can be very long, 
especially wheu a multicomponent calibration is performed. 
Thcrcfore, dynamic modelling may significantly reduce the 
time of‘ each calibration experiment [7, 81. - Even when sensors are exposcd to identical gas mixtures, 
they do not give stablc responses over a long pcriod of 
time. In other words, sensor signals tend to show signifi- 
cant temporal variation, typically referred to as ‘long-term 
drift’. This variation may be due to unknown processes in 
the sensor system, like poisoning, ageiug or gradual 
changes in the environment (i.e. temperature and humid- 
ity). Drift may seriously affect calibration. Therefoi-e, when 
an intelligent sensor system is to be operated for a long 
period of time, long-tenn drili should be addressed by the 
pattern recognition algorithms [9, IO]. - Finally, the baseline signal (in air) and response of a sen- 
sor can depend on its immediate prior chemical history. 
These changes can be considered to be like a ‘short-term’ 
drift. For example, a dynamic model that uses the knowl- 
edge of present and past inputs and outputs of the sensor 
would bc able to predict its true baseline. 

m 
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input 
odour 

I 

sensor 
array 

Fig. 1 

2 Static pattern analysis techniques 

The static responses gcnerated by an array of odour sen- 
sors may he processed using a variety of techniques. Fig. 1 
illustrates the basic data-processing structure of an elec- 
tronic nose. When a set of 171 odours is introduced to an 
array of n odour sensors, the sensor outputs are pre-proc- 
essed so that the modified response matrix R can bc fed 
into a pattern recognition (PARC) engine. According to 
eqn. 1, column j in R is the pi-e-processcd response vector 
generated by the scnsor array in the presence of odour j .  
The nature of a PARC engine is usually classificd by the 
ternis parametric or nonparametric and supervised or non- 
supervised. A parametric technique is based on the assump- 
tion that the sensor data can be described by a probability 
density function (PDF) that U po.steriori defines its spread 
of values (in most cases the assumption made is that data 
arc normally distributed with a known incan and variance). 
Nonparametric methods do not assume any PDF for the 
sensor data and thus apply morc generally. In a supervised 
PARC method, a set of known odours ;we systematically 
introduced to the electronic nose, which then classifies them 
according to known descriptors (classes) held in a knowl- 
edge base. Then, in a second siage, an unknown odour is 
tested against the knowledge base and the predicted mein- 
bership class is given. Other PARC methods do not need a 
separate training stage hut learn the different classes from 
the response vectors automatically (unsupervised learning). 

&(.sic . s i r ~ r i i r ~ ~  “ / c l  d m  /mmwinc .?y.~i~w,ii fbr im eiccimiic nose 
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These methods are closer to the way that our brain is 
understood to work. 

2.1 Pre-processing techniques 
It is important to examine the data generated by an array 
of odour sensors so that thc most informed choice of sen- 
sor, pre-processing and PARC method is made. Pre- 
processing of the responsc vectors should be designed to 
help analyse data from a specific problem, such as to line- 
arise the output from the sensors or to compensate for con- 
centration fluctuations in the response vectors by using a 
noimalisation procedure. There is evidence that when ana- 
lysing data from metal oxide odour sensors, the fractional 
change in conductance is generally a good choice with 
PARC methods [ I  I]. The general expression is 

XGdouT ~ X o  
1”’ - (2) 

XP 
z3 ~ 

where Xp is the conductancc of the sensor i in air (i.e. base- 
line signal) and X;i””””’ is the conductance of thc sensor i in 
the presence of odour j .  This procedure helps compensate 
for temperature sensitivity of the sensors and linearises the 
mechanism that generates their concentration depcndence. 
Moreover, when sample concentration is of no interest, but 
fine discrimination between odours is required, it may be 
useful to normalise the length of the response vectors to 
unity [ 111. Then eqn. 2 becomes 

r 
( 3 )  i,, = 2) 6 

The effect of this is to place the end of all response vectors 
on to the surface of a unit hypersphere and hence reduce 
the effect of concentration fluctuations. However, caution 
is needed because the method both assumes concentration 
linearity and enhances the noise in the case of small signals. 

2.2 parametric analysis techniques 

2.2.1 Linear calibration methods: Linear multivari- 
ate calibration methods are often used to process sensor 
array data and obtain the concentrations within a multi- 
component mixture [12]. Two coinmon methods are partial 
least squares (PLS) [I31 and principal components regres- 
sion (PCR) [14], which assume that a linear inverse model 
can be applied to the data. In the model, the concentration 
vector e is related to the response matrix by 

c = R M + e  (4) 
where M is a regression vector containing all the model 
parameters and e is an error vector containing the concen- 
tration residuals. The main difference between PLS and 
PCR is that PLS includes information about the concentra- 
tion vector in the model while PCR does not. 

2.2.2 Discriminant function analysis: In discrimi- 
nail1 function analysis (DFA) it is assumed that the data 
are multinormal-distributed and then the discriminant func- 
tions Z, arc determined. Each discriminant function is cal- 
culated by maximising the F-ratio on the analysis of the 
subject to Zp being uncorrelated with Z1> ... Z ,  I within 
groups. The discriminant functions are linearly related to 
the sensor rcspoiises by thc following equation: 

2, =al,,.l,+aapr~i+ . . .+  a,,r,,+ . . .+  a,,,r’,,3 (5) 

Oncc the regression coefficients have bcen computed on 
the known data (referred to as supervised learning), then 
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they can he used to form the classification functions which 
predict the group membership of unknown response vec- 
tors (referred to as cross-validation). Fig. 2 shows the 
results of applying DFA to the response (fractional change 
of conductance) of 12 tin oxide gas sensors sampling the 
headspace of three different coffees [15]. Plots of the first 
two discriminant functions show reasonable separation of 
the three groups. The observed classification rate was 81% 
when half the data set was used for crossvalidation. 

I W 
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first discriminant function 2. 
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x collcc a 
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2 2 3  Nonlinear calibration methods: Most chemi- 
cal sensors are nonlinear. The use of linear techniques is 
acceptable when the concentration vector is fairly constant. 
In this case, the nonlinear part of the response may be line- 
arly approximated. When a wider region of the response 
space is covered, or the multicomponent gas mixture proh- 
lem is being considered, a nonlinear pattern analysis 
method is required. Nodinedr parametric techniques, such 
as multivariate adaptive regression splines (MARS), have 
been used to analyse simple gas mixtures with some success 
[16]. In a real electronic nose application, complex odours 
can contain hundreds or even thousands of odour mole- 
cules that interact. This leads to a highly nonlinear response 
space, which cannot be described by a straightforward 
PDF. More interest has thus been shown in the application 
of nonparametric techniques, which do not make underly- 
ing assumptions about the probability distribution. We dis- 
cuss some of these in the following Section. 

2.3 Nonparametric analysis techniques 

2.3.1 Principal components analysis: PCA is a lin- 
ear supervised method that has been used to discriminate 
the rcsponsc of an clectronic nose to simple and complex 
odours (e.g. alcohols, beers, coffees). The method consists 
of expressing the response vectors y/ in terms of a linear 
combination of orthogonal vectors. Each orthogonal (prin- 
cipal) vector accounts for a certain amount of variance in 
the data with a decreasing degree of importance. The pth 
principal componcnt can be expressed as 

X ,  = al,rlj+az,raj+. . .+ai,,r,+. . . + ( ~ , , ~ r ~ j  (6) 

The variance of cach principal component is inaxinlised 
under the constraint that the sum of the coefficients of the 
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orthogonal vectors a, = (4, .... q, .... G,) ,is set to unity 
and the vectors are uncorrelated. Since there IS often a high 
degree of sensor collinearity in electronic nose data, the 
majority of the information held in the response can be dis- 
played using a small number of principal components. This 
means that an n-dimensional problem can be described by 
a two- or three-dimensional plot. Fig. 3 shows the results 
of applying PCA to an array of 12 tin oxide sensors. Since 
metal oxidc sensors rcspond in a similar manner, over XO% 
of the variance is described by the first two principal com- 
ponents [ I  1, 171. Three distinct groups are apparent and are 
associated with lagers (A), beers (B) and spirits (C). The 
discrimination between beverages within a group seems to 
be harder, but some succcss has hcen reported for the anal- 
ysis of Japanese beers and whiskies [18]. 

! 
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(Rcpnnted from Cardner, J.\V., er "I . ,  Sms. A n i e r o n  I3 Clzem, 4, pp. 108-116, 
0 1991 Elrevier Science, with permission) 
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23.2 Cluster analysis: CA is an unsupervised tech- 
nique for enhancing the differenas between the response 
vectors in n-dimensional space and identifying clusters or 
groups to which unknown vectors are likely to belong. To 
do so a multidistance metric do is calculated between data 
points i and j according to the expression 

x coir= 

I N , I/n; 

\ k = l  

If N is set to 2, the Euclidean (linear) metric is used. The 
proximity of all points relative to each other is then found 
by computing a so-called scalar similarity value S,, such as 

This is also called complete linkage. Other definitions can 
be considered for the similarity value but the choice of met- 
ric and linkage has a marginal effect on the results. The 
technique has been applied to semiconductor gas sensors 
(both metal oxides and conducting polymers) [19-211. 
Fig. 4 shows the results of a CA (Euclidean metric, com- 
plete linkage) on the response of a metal oxide electronic 
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nose to different alcohols [l I]. The dendrogram connects 
up response vectors with the nearest similarity value. 

Fig.4 Oend~og~am showin iemiis of CA on ye., xmw of ,imenr /its 
oxide eleerronic nose io . s ~ o ~ i i ~ s  of.m,rihmoi (mJ, elhni/  (e), pwpanoi [U). 
buiunoi (6) and mei/ryl-bufund (r) 
Using Ehclidean metric and ~ o m p l ~ t c  linkage 
(Rcp~intid from Gardnei, J.W. er ai., Sms. dci~i~mr.s B. Ci8em., 4, pp. 108 ~116, 
0 199 I Elsevier Science, with penniuion) 

2.3.4 Artificial neural networks: The nature of elec- 
tronic nose data is such that it is often desirable to use a 
more powerful pattern recognition method. More powerful 
methods should be able to cope with nonparametric non- 
linear data, and have further advantages over more con- 
ventional methods (such as learning, self-organisation, 
geneialisation and noise tolerance). This has led to the 
rapid and widespread application of artificial neural net- 
works (ANNs) to the analysis of patterns generated by 
electronic noses. A N N  consist of parallel interconnected, 
and usually adaptive, processing elements. Furtheirnore, 
ANNs are attractive as they, to a certain extent, mimic the 
olfactory system [22]. The processing elements represent the 
biological olfactory cells or neurones, and their intercon- 
nections, the synaptic links. 
iWultilayered feedfior1vur.d networks: Since three-layered net- 
works have sufficient computational degrees of freedom to 
solve any classification problem 1231, most workers have 
adopted this topology. In a network, the processing ele- 
ments are organised in three distinct groups of elements: 
input, hidden and output layer neurones. The number of 
input nodes corresponds to thc number of sensors in the 
array. The number of neurones in the hidden layer is to be 
determined experimentally and the number of odours ana- 
lysed generally determines the number of output neurones. 
The interconnection topology and learning rules of the neu- 
rones determine the performance of a particular network. 

The most popular ANN in odour classification is the 
three-layered fecdfonvard backpropagation trained net- 
work [22, 24, 251. To train the network, it is necessary to 
provide it with a number of sample inputs with their corn- 
sponding outputs (supervised learning). Each neurone adds 
its weighted inputs and performs a nonlinear transforma- 
tion of this sum (generally a sigmoid function is used). The 
calculation is carried out for each layer fecding the values 
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through to the output layer. During the learning phase, the 
weights are adjusted to minimise the difference between the 
actual output and the ideal output. Once the network is 
trained, it can be used to predict the membership of novel 
and untrained samples. Fig. 5 shows the topology of a net- 
work used to identify alcohols and Table 1 the results of 
classification. The results show that the network is able to 
distinguish between these odours. The success of the train- 
ing process, in terms of a fast rate of convergence and good 
generalisation. can be affected by the choice of the architec- 
ture and initial parameters (e.g. initial weights and lcarning 
rate). Since architecture and parameters are to be deter- 
mined experimentally, much time may be spent searching 
for the optimal ANN. An alternative method is to use a 
genetic algorithm (CA) [26, 271 to determine automatically 
a suitable network architecture (e.g. growing and pruning 
the network) and a set of parameters (e.g. Icarning rate, 
momentum term) from a restricted region of design space. 
GAS are heuristic search algorithms based on the mechan- 
ics of natural selection. The structure and parametcrs of the 
neural network (i.e. learning rate, initial weights, number of 
layers, number of neurones in each layer and connectivity) 
are coded using binary strings, which are concatenated to 
form chromosomes. GAS are then applied to search popu- 
lations of chromosomes. Typical genetic operators can be 
defined such as parent selection, crossover and mutation. 
The performance of the network represented by each chro- 
mosome c, is evaluated using a fitness function, 

F(c,) = a ~ ( ~ i )  + b (9) 
where F is the fitness function, U is the objective function 
that we want to optimise, and U and h are transformation 
parameters that are dynamically adjusted to avoid prema- 
ture convergence. The objective function is generally a 
weighted sum of the various performance measures. In the 
sensor data classification problem, the performance meas- 
ures used in the objective function are based on, for exam- 
ple, the network prediction error, spced of convergence, 
sue of the network and degree of generalisation achieved 
P81. 

I=O 

Output Output output Output Output 
1 2 3 4 5 

Chemical species 

Methanol 0.990 0.023 0,000 0.000 0.020 

Butan-1-0 0.001 0.906 0.002 0.000 0.153 

Propan-2-01 0.000 0.011 0.931 0.000 0.071 

2-Methyl-1-butanol 0.000 0.001 0.102 0.949 0.000 

Ethanol 0.002 0.009 0.475 0.000 0.907 

Reprinted from Gardner, J.W., et a/., Meas. Sci. Techno/., 1, pp. 
446451, 0 1990 Institute of Physics Publishing, with permission 
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Conventional networks are trained using random 
weights, and this may he disadvantageous to the overall 
training process. The main problem with this strategy is 
that the search for the best set of weights to classify the 
training patterns and to identify new ones usually starts 
from a poor point which either slowly, or maybe never, 
takes us to the desircd optimal point. On the other hand, a 
suitable starting point, dependent on the kind of training 
data, is desirable. It can speed up training and reduce the 
likelihood of settling: in local minima, resulting in a better 
performance than common hackpropagation networks [29]. 
A type of fuzzy neural network (FNN) can he used to 
make use of possibility distributions to determine the initial 
set of weights [30]. The theory of possibility is more like a 
membership-class restriction imposed on a variable defining 
the set of values it can take. Possibility distributions are 
often triangular and so they are similar in shape to normal 
distributions with the mean values having the highest possi- 
bility of occurrence, which is one. Any value outside the 
min-max range has a possibility of occurrence of zero. The 
possibility that ai is a member of the fuzzy set X = (U , ,  a2, 
..., a,, ..., U,,} is denoted by its membership value M(u,), 
which depends on the mean, minimum and maximum of 
the set X .  Fig. 6 shows a possibility distribution function 
and associated membership function. An introduction to 
the theory of fuzzy logic is given by McNeil and Freiburger 
[311. 

measurement Y 

a 

T 

(Y-BiZ) Y W+B/2) 

measurement v 
h 

Selforganising niaps: Self-organising maps (SOM) applied 
to electronic nose systems contain a two-dimensional single 
layer of neurones in addition to an input layer of branched 
nodes. If the system is left alone in an environment of inter- 
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est, the learning algorithm of the network processes the 
sensor outputs step by step, and constructs an internal rep- 
resentation of the environment [32]. SOMs accumulate a 
lot of statistical information hut in an unsupervised fash- 
ion. There are f n  neurones in the neural layer (typically 
arranged as the knots of a square lattice) and each one has 
a parameter weight vector of dimension n, which is the 
same as the input feature vectors (i.e. the number of sen- 
sors). Each neurone is described by the vector s, whose 
components are the knot co-ordinates in the lattice. The 
weight vectors are randomly initialised at the beginning. 
One input vector x'J is selected from the sample and put 
into the network, and the squared distances between x'J 
and each are computed using 

The minimum distance +is then determined to obtain the 
neurone ? that is the winner over the others. In a winner- 
takes-all strategy, the winning neurone updates its weights 
via 

VG-1 = I/(") + (& - v(l-) 
new old old ) (11) 

where 17 is the step gain (or learning rate). All other neu- 
rones keep their old weight values. In another strategy, all 
the neurones that are close to the winner are updated 

(di) ~ vJ:~ for all s (12a)  

(126) 
/+ is called the excitatory response and is only appreciable 
for the neurone that coincides with T and its neighbours. 0 
is the length scale of the proximities to ? and is generally 
fixed to a value in the range of 2-5 lattice units. It is desira- 
ble that after a number of iterations the weights no longer 
change. Therefore, if the map is to stabihe asymptotically 
in an equilibrium state, q must decrease to zero, typically as 
follows: 

Supervised learning, where the SOM is provided with the 
desired output function, is also possible. This strategy is 
also known as learning vector quantisation (LVQ) [33]. The 
number of training patterns to ensure equal accuracy to 
other approaches could be dramatically decreased because 
the given calibration data set is not the unique source of 
information; it is added to the large amount of information 
collected by the system on its own during unsupervised 
learning. However, an important limitation of this 
approach is that lengthy computation is required when it is 
applied to real problems. 

SOMs have been used with some degree of success to 
classify patterns generated by electronic noses [3436]. 
Fig. 7u shows the outputs of a sensor array in the presence 
of two classes of a gas mixture. In Fig. 7h the spontaneous 
clusteiing of neurones in the SOM network is shown. After 
a short learning period, there exists a strict correlation 
between the weights of the network and the assigned 
classes. The network does not have any direct information 
about the classes, except for the sensor outputs [37]. 
Aduprive resonant theory Adaptive resonant theory (ART) 
was introduced as a theory of human cognition in informa- 
tion processing [38]. It is based on the fact that a human 
brain can learn new evcnts without necessarily forgetting 
events learnt in the past. ART networks are intelligent 
systems that are capable of autonomously adapting in real 
timc to changes in the environment. They have been 

= vd;"d 1 
hs+ = exp (-11s - i"112/20') 

II = vo exp(-t/T) (13) 
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designed to resolve the stability-plasticity dilemma and so 
are stable enough to incorporate new information without 
destroying the memories of previous learning. The inter- 
ested reader is referred to the work of Carpenter [39] for 
details. ART networks have been applied to metal oxide 
sensor based electronic noses. The results are very similar 
to those obtained with multilayer backpropagation trained 
networks (BP), but the training time is typically an order of  
magnitude faster than BP on small data sets [40]. 

3 Dynamic models and system identification: a 
review 

The techniques that are typically used to model the 
dynamic sensor response are borrowed from the field of 
system identification. System identification is the process of 
developing a mathematical represenlation of a physical/ 
chemical dynamic system using experimental input-output 
data. Tbe miljority of methods that have been developed to 
study engineering problems assume linearity and stationar- 
ity. However, almost all real chemical transducers are char- 
acterised by nonlinear dynamics and response drift. This 
Section starts by reviewing some models for the dynamic 
response of odour sensors and proceeds to consider the dif- 
ferent approaches which can be used to select a model. 

3.7 Dynamic models 

3.7.7 Linear models: Linear methods have been applied 
in diverse fields such as econometrics, biological systems 

302 

and control systems. Their application to the identification 
of sensor array systems for gas analysis is recent [41]. The 
objective of the dynamic model is to forecast the output of 
the sensor from knowledge of the input signals in dynamic 
conditions (forward modelling). Only the inversion of the 
model would allow us to identify the input (gaseslaromas) 
given the output signals (inverse modelling). The most com- 
mon models are ARMA (autoregressive moving average), 
ARX (autoregressive with extra input; also autoregressive 
exogenous), ARMAX and Box-Jenkins. These models are 
of interest in digital signal processing because the time 
series can be considered to be the output of a linear filter 
with a rational transfer function. In the following, their 
mathematical expressions are given (x[n], j>[n] and e[n] are 
discrete input, output and residual term or noise signals, 
respectively): 

4 P 

A R ~ v I A ( ~ , ~ ) :  ~ [ n ]  = C ~ , y [ n  - i] + C ~ j e [ n  - j ]  

(14) 
i=l  3=0 

The current value of the output is modelled using y past 
values of the output and the present and p past values of 
the noise. Two different submodels of this one can be con- 
sidered - the autoregressive (AR) and the moving average 
(MA): 

4 

AR(q): y[n] = aiy[n - 21 + e[.] (15) 
i=l 

P 

niIA(pj: y[n] = C,0j3e[n. - j ]  (16) 
j=O 

Moving average models are also known as all-zero models, 

ARX(q, k ) :  ~ [ n ]  = C a , y [ n - i ] + C - ~ ~ z [ l z - k ] + e [ n ]  
4 

The present value of the output is modelled using a linear 
combination of the past y values of the output and the 
present and past I’ values of the input: 

ARMAX(q, k , p ) :  

(18) 
Similar to the previous one but including a moving average 
teim, 

Box-Jenkins ( T ,  p):  y[n] = ykx[n - 51 
k=O 

n 

In this model, the prediction of the output is made without 
the use or past values of the output. It uses present and 
past values of the input in addition to filtered noise. 
Stute-spec inodds: In the state-space form, the relationship 
between the input, noise and output signals is written as a 
system of first-order difference equations using an auxiliary 
state vector 5,. This description of linear dynamical systems 
became increasingly important after Kalman’s work on 
prediction and linear quadratic control [42]. Insights into 
the physical mechanisms of the system can usually more 
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easily he incorporated into space-state models than into the 
models described previously. The state-space model can he 
expressed as: 

<.+I = A ( O ) &  + B(@)Z[IL]  + e,[n] (20)  

y[~zI  = C(% +e&] (21) 
where A ,  B and C are matrices of appropilate dimensions. 
0 is a vector of parameters that typically correspond to 
unknown values of ]physical coefficients. 

3.7.2 Nonlinear models: Chemical sensors are almost 
always nonlinear for high gas concentrations. Most of them 
are inherently nonlinear even at low concentrations. Trans- 
port, adsorption and reaction processes taking place at the 
sensor include intrinsic nonlinear dynamics. Thus, an elec- 
tronic nose instrument can be represented as a nonlinear 
system. 

The analysis of nonlinear systems poses many problems 
that do not appear in their linear counterparts. For 
instance, the law of superposition cannot be applied and 
the addition of two input signals may lead to unknown 
results. Traditionally, the methods used to identify nonlin- 
ear systems are parametric methods that make assumptions 
about the structure of the system. If the structure is not 
accurate enough, the model will not work for all inputs. 
Recently, a few nonlinear time series and other nonlinear 
models have been proposed. Some of them will be reviewed 
briefly below. 

Some of the nonlinear models are 
tion. The rcader is refemed to the 

work of Tong [43] for a more comprehensive survey. 
One of the more important classes of nonlinear models is 

the class of nonlinear autoregression. y[n] is said to follow a 
nonlinear autoregressive mode of order k if there exists a 
nonlinear functionfsuch that 

y[n] = S ( y [ n ~ 1 ] , l / [ n - 2 ] , . . . , ~ [ 7 1 ~ k ] , e [ n ] )  (22 )  
where e[n] is noise. .4s a ‘dual’ to nonlinear autoregressive 
models, we may have nonlinear moving average models 
(e.g. of order q): 

(23) 
q being a vector of parameters. 

Since the most important linear time series model is the 
ARMA model, it seems natural to develop a nonlinear gen- 
eralisation of it. For suitable k and q. 

trL = ( 1 , e [ n  - q + 11,. . . e [ n ] ,  

y[n] = g ( e [ n ] ,  r [ n  - 11,. . . , c[n - 4 , q )  

‘1 ’ 
?/[n - I; + 11;. . . , v [n] )  (24) 

t,, is called a carrier vector. Choosing suitable matrices F, G 
and H, we may achieve the nonlinearisation of ARMA 
models by introducing 

En = F(tn-i)En.-i + G ( t - i ) C n  Y [ ~ L ]  = Htn-1 
(25) 

This is formally equivalent, under suitable choices of F, G 
and H, to 

+ c / q < ’ L - l ) e [ l L  -jl (26) 
.7=0 

The canier vector can be regarded as a state vector and the 
model above as a state-dependent model (SDM) [441. 
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Funcriond expmsions: Functional expansions were studied 
by Volterra [45] and Wiener [46]. They are valid representa- 
tions of nonlinear systems under veiy weak assumptions 
(i.e. stationarity). The concept of a functional was intro- 
duced to describe the input/output relationship of a system 
Assuming that s( t )  is the input and y(t) the output, then 

y ( t )  = F[t;r( t ’ ) : t ’  5 t ]  ( 2 7 )  

The task of modelling consists of obtaining a mathematical 
expression for thc functional F. This is to identify the input/ 
output map of the system, determining the effect of past 
values of the input on the output. In the casc of a nonlinear 
time invariant system, F can he expressed as a Voltelm 
functional expansion of the form 

,,=I J J n u  
. . . l ( t  ~ Tn)d t  (28 )  

The kernels /<?I (fI, ..., 5,) constitute the descriptors of the 
system dynamics. Thc nth kernel attains the efl’ect of the 
crossinteraction of n past values of the input on the output. 
Wiener redefined the basis functionals so that they were 
orthogonal for white Gaussian inputs. 

Block-structured netnork n?odelx: Block-structured network 
models consist of interconnections of two different classes 
of blocks - dynamic linear blocks and static nonlinear 
blocks. This modelling strateby is closely related to the 
functional expansion method, because a close examination 
of the relationship between the Wiener kernels is necessary 
to determine the topology of the network. This method is 
preferred by some authors to functional expansion because 
of the difliculty involved in interpretation of the kernels. 
Furthermore, block-structured models may be related to 
the inner structures of the system. The reader is referred to 
the work of Chen et U/.  [47, 481, where a systematic struc- 
tural classification procedure employing Wiener kernels is 
reviewed. 

Neural networks: In recent years, multilayer perceptrons 
(series-parallel identification method) and time-delay or 
recurrent neural networks (parallel identification method) 
have been proposed for system identification and modelling 
purposes [49]. It has been proved that the output of an 
ANN, whose inputs are delayed values of the input signals, 
can be expressed as an infinite \/olterra series [49]. In this 
case, since the expansion is not limited to the fiist or second 
kernels, the network is able to model highly nonlinear rela- 
tions if there are enough hidden neurones. The output of 
the network is a nonlinear function of q delayed outputs 
and p delayed inputs: 

y [ k + l ]  = f ( y [ k ] : y [ I ; ~ l ] ,  ...,l/[ h ~ ~ ] ,  
z [ k ] ,  . . . ~ z [ k  - p ] )  (29) 

From the point of view of system identification, a multi- 
layer neural network call be assumed to be a nonlinear 
map. The elements on the weight matrices are parameters, 
whose optimum values should he found by training the 
ANN over a training set. Fig. 8 shows the differences 
between the series-parallel and the parallel identification 
methods. The stability of the second mcthod, which uses a 
neural network with feedback. cannot be assured [8&521. 
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3.2 System identification: selecting a model 
The techniques used to identify a model from measured 
data typically consist of parametric or nonparametric 
approaches. With nonparametric techniques, very few 
assumptions about the system to be modelled are required, 
and therefore apply more generally. However, parametric 
techniques can sometimes lead to better results, especially 
when the amount of data is limited (i.e. short time series). 
This subsection reviews the different techniques available 
for model selection. 

3.2.1 Nonparametric approach: time and fre- 
quency-domain methods: A linear time-invariant sys- 
tem can be described by its transfer function or by the 
corresponding impulse response. A nonlinear time-invari- 
ant system can he described using functional expansions 
(Wiener kernels). Transfer functions, impulse responses and 
Wiener kernels may he determined by direct techniques. 
Such methods are often called nonparametric since they do 
not explicitly employ a parameter vector in the search for a 
best description. 
Time-domuin methods: Time-domain methods include 
impulse response analysis, step-response analysis and corre- 
lation analysis. Impulse response analysis is impractical 
because inany processes do not allow impulse inputs of 
such amplitude that the error is insignificant compared to 
the impulse response cocfficients. Step-response analysis 
can furnish some basic characteristics to a sufficient degree 
of accuracy (i.e. delay time, static gain, dominating time 
constants). Using correlation analysis, an estimate of the 
impulse response can be obtained, through the crosscorre- 
lation of input and output signals and the autocorrelation 
of the input. To identify ARMA models, the estimated 
autocorrelation and partial autocorrelation functions of the 
input signal provide valuable infonnation. Autoregressive 
processes of order I ,  2, .._ are fitted successively and the 
residuals calculated. The partial autocorrelation is the cor- 
relation of these residuals and the input signal. If there is a 
sharp cutoff in thc estimated autocorrelation function after 
lag k ,  the model can be identified as an MA(/<). If the auto- 
correlation function tails off but the partial autoconelation 

3u4 

function shows a sharp cutoff after lag q, the model can be 
identified as an AR(q). If both functions tail off, then an 
ARMA model is to be used. If the autocorrclation function 
does not tail off or cut off, then the process is nonstation- 
ary. If this occurs, the data can be successively differcnced 
until the resulting time series appears to be stationary. In 
this case, an ARIMA (autoregressive integrated moving 
average) model is identified. Since to difference the input 
signal increases the noise level, smoothing of the resulting 
signal may he necessary. There are many different criteria 
that can he used to select the order of the model. In gen- 
eral, they do not provide the same model order for the ana- 
lysed series of data. The reader is referred to the works of 
Ljung [53] and Diggle [54] for a more detailed discussion. 

If the system shows a nonlinear behaviour, it is possible 
to use either a linear model (this can be a good check for 
the relative importance of the nonlinear component in the 
system) or a nonlinear model (i.e. Wiener kernels). The 
reader is referred to the work of Lee and Schetzen [SS], 
where a nonparametric method based on correlation tech- 
niques is introduced for the estimation of Wiener kernels. 
This method uses Gaussian white noise as the input to the 
system. The idea of using white noise as a stimulus to iden- 
tify a system is based on the fact that the system is tested 
on all the possible inputs regarding values and frequencies 
(depending on the length of the test). 
Frequency-domuin methodr: The frequency response of a 
system HGu) may be determined from an estimation of its 
transfer function H(s) by setting the complex Laplace s 
parameter to jw. More commonly it can be determined 
from the time-domain signals by taking a Fouiier trans- 
form (continuous or discrete) of the input X ( I )  and output 
y(t)  signals, namely 

where 

Y(jL'J) = - j y(t)e--iwtdt 

X ( j w )  = ~ 1 7 x(t)e-iwtdt 

-m 
6 

(30) 
-m 

Jz;; 
It should be noted that the Fourier transform is a linear 
integral transform and x(/) and y(t)  must be nontrivial (i.e. 
nonzero) to determine the frequency response using this 
method. When the input X ( I )  is a periodic simal, the esti- 
mate of the frequency response is only of significance at the 
frequencies present in the input. When the input is not peri- 
odic (i.e. a realisation of a stochastic process), the quality of 
the estimate falls at those previous frequencies but is a bet- 
ter estimate at the other frequencies. The estimates at dif- 
ferent frequencies are asymptotically uncorrelated. This 
makes the estimate of the frequency response relatively 
crude in practical situations [S3]. 

Spectral analysis for determining transfer functions of 
linear systems was developed from statistical methods for 
spectral estimation. The reader is referred to the work of 
Bdlinger [56] for a detailed account of the method. The 
only way to improve the poor variance properties of the 
transfer function estimate is to assume that the values of 
the true transfer function at different frequencies are 
related. Since the transfer function estimates at neighhour- 
ing frequencies are asymptotically uncorrelated, the vari- 
ance can be reduced by averaging over these (i.e. using a 
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window such as Bartlett, Parzen or Hamming [571). While 
a broad window leads to biased estimates and low vari- 
ance, a narrow window leads to unbiased estimates hut 
high variance (i.e. appearance of spurious peaks). Another 
way of smoothing the transfer function estimate is to split 
the data set into difl‘erent subsets. The estimates over differ- 
ent subsets will be uncorrelated, and averages over these 
can he formed. 

3.22 Parametric approach: In this approach, a set of 
candidate models is selected and parametrised as a model 
structure, using a parameter vector 0. The search for the 
best model within the set becomes a problem of determin- 
ing or estimating 8. To do so, two main strategies can he 
considered: minimising prediction errors and correlating 
prediction errors with past data. 

The first approach employs well known procedures such 
as the least-squares method and the maximum likelihood 
method, and is closely related to the Bayesian maximum U 

posteriori estimation. The second approach is based on the 
correlation between the prediction error and past data. Ide- 
ally, the prediction error of a good model should he inde- 
pendent of past data. A pragmatic way of checking this 
condition is that if the prediction error is correlated with 
the past data, then there was more information available in 
the past data about the actual output than was picked up 
by the model (predicted output). Therefore, the model was 
not ideal. See Ljung [53] for a detailed review of these 
methods. 

The nonparametric approach introduced by Lee and 
Schetzen [55] for the estimation of the kernels that charac 
tense a nonlinear system requires long data sequences for 
optimum performance. Short data sequences lead to signif- 
icant errors in the estimated kernels. Haber [58] introduced 

Table 2 Types of modelling approaches in intelligent sensor systems 

a parametric method to estimate the kernels which reduces 
their variance, leading to a better estimation when short 
data series are available. 

When using block-structured models, accurate kernel 
estimation is crucial for the identification of the topology of 
interconnection. Since the estimation of high order kernels 
is impractical, especially with short data series, the topology 
of the system is usually selected from a set of universal rep- 
resentations [59]. This selection can he based on a previous 
knowledge (or postulation) of the inner characteristics of 
the system or by performing a structural testing procedure 
introduced by Chen ef al. [48]. If the system being studied 
does not satisfy the test criteria, the structure can he 
rejected and another selection can he made. On the other 
hand, if the system satisfies the test it cannot he concluded 
that it has this specific structure. Once the topology has 
been selected, the linear time-variant blocks can he identi- 
fied using crosscorrelation techniques and the static nonlin- 
ear blocks are usually identified by fitting a polynomial 
1601. 

4 Intelligent sensor systems 

In this Section we briefly review the modelling techniques 
in the context of what we refer to as ‘intelligent sensor sys- 
tems’. The models and techniques used so far aim to 
enhance the sensor array selectivity, to reduce the time nec  
essay for calibration (is. forecasting the steady-state 
response using the transient response) and to counteract 
drift. A summaty of the main approaches is shown in 
Table 2. The main ones are discussed in more detail later. 
Before applying any technique to dynamically model the 
sensor system, sensors that are not relevant for the specific 
application, or that do not work properly, should he 

Modelling technique 

Linear filters, and 
state-soaca models 

Functional expansions 
(nonlinear) 

Block-structured 

Neural networks: 

SOM 

Time-delay 

ART 
Other techniques: 

Identification 

Parametric ARMA, 
sensor oriented model 

Parametric ARX, 
sensor oriented 

Parametric BoxJenkins, 
sensor oriented 

Parametric AR, sensor 
oriented 

Parametric state-space model, 
system oriented 

Parametric BoxJenkins FIR, 
sensor oriented 

Nonparametric, correlation 
techniques, sensor oriented 

Parametric, sensor oriented 

Parametric combining correlation 
and polynomial fitting 

Non-parametric, 

system oriented. 

adaptive 

Technology 

Thick-film 
Sn02 
4 QMB 
polymer coated 

10 MOSFETs 
2 thick-film 
Sn02 

6 QMB 
polymer coated 

4 QMB 
polymer coated, 

2 SnO, 
6 BAW 
polymer coated 

6 QMB 
polymer coated 

4 QMB 
polymer coated 

6 QMB 
polymer coated 

Arrays of %OZ. 
MOSFET and 
QMB polymer coated 

Application 

Calibration time reduction 

Sensor response prediction 

Identification of 2 gases. Drift 
rejection 

Identification of 3 vapours 

Quantitative analysis of 
ternary mixtures 

Quantitative analysis of 2 
vapours 

Sensor response prediction 

Sensor response prediction 

Structure identification. 
response prediction 

Gaslaroma 

identification, drift 

reiection 

Ref. 

I71 

I691 

I701 

141.711 

I721 

L731 

173,74,611 

I691 

169.611 

I35,75,691 

(8.73.761. 
I77,62,631 

Ad-hoc models through Parametric, sensor oriented Metal oxides, Sensor selectivity enhancement, l78,79,5,6,80. 
gaslaroma or temperature models or FFT techniques conducting polymers, gaslaroma identification and 4,81-83,84,31 
modulation QMB polvmer coated quantification 
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eliminated. This requires careful exploration or 'pre- 
analysis' of the system. The use of classical techniques such 
as PCA may he very helpful in this preliminaiy stage. 

4.1 Enhancing the sensor selectivity 
To date most of the attempts to usc transient information 
in the sensor signal are based on ud hoc models. These 
models allow for the estimation of parameters that charac- 
terise the transient response, conferring some selectivity on 
the sensors. Generally, an advantage of these models is that 
they account for physical and chemical properties of the 
sensing material (e.g. diffusion, reaction). Therefore, some 
insight into the sensors' dynamic behaviour can be realised. 
Their main weakness is that transient signals are influenced 
by previous measurements (memory effect) and by drift 
(e.g. ageing ol' the sensor, variations in ambient tenipera- 
ture or humidity). Since these aspccts are not considered by 
the models, the initially learnt pattern recognition ability of 
a sensor system can deteriorate after a period of time. 
Fig. 9 shows the PCA results when an array of four thick- 
film metal oxide gas sensors were used to identify different 
volatile organic compounds and their binary mixtures [4]. 
The use of transient signals when the odour concentration 
varies stepwise helps in the identification task. The identifi- 
cation of single components, using a feedfonvard back- 
propagation trained neural network, gave a 76% success 
rate (using static signals only) and a 100% success rate 
(using both static and dynamic signals). The success rate in 
the identification of binary mixtures increased from 75% 
(using static signals) to 86% (using static and dynamic 
signals). 

4.2 Calibration time reduction 
Some applications of sensor response prediction aim to 
reduce the time necessary to calibrate the sensor array for 

2 
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P 
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2 
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c 
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the gasesiodours of interest. Results with ARMA and ad 
hoc multiexponential models applied to the dynamic 
response of tin oxide sensor arrays have been reported [7].  
The dynamic models were used to predict the static 
response of the sensors to small concentrations of nitrogen 
dioxide (0-9 ppm). Table 3 shows the relative errors made 
by the dynamic multiexponential model, which perfoimed 
better in the extrapolation of the gas concentration. In this 
application, the prediction of the static response from the 
initial part of the dynamic response permits B reduction of 
the calibration time by a factor of four. 

Table 3: Relative errors made by a multiexponetial model of 
a thick-film tin oxide gas sensor in extrapolation of concen- 
tration value of NO, at different calibration times 

Time, s 

100 55.2 35.8 13.1 

200 17.1 4.7 7.1 

400 7.8 2.5 3.7 

800 1.3 0.3 0.6 
Reprinted from DiNatale, C., et al., Sens. Actuators 6, Chem., 24- 
25, pp. 578483,O 1995 Elsevier Science, with permission 

Error at 1 ppm, 
Yo % % 

Error at 6 ppm, Error at 9 ppm, 

4.3 Response models 
Dynamic measurements are interesting when the odours or 
the environmental conditions undergo changes with the 
same time-scale as the sensor response times, and also in 
the presence of sensor drift. 

Methods of dealing with noise that allow for calculating 
the impulse response (of linear systems) or the Wiener ker- 
nels (of nonlinear systems), using the correlation approach, 
appear to he useful for constructing models for the sensor 

4 -2 -1 0 I 2 

b 
scores 0" PC 1 

4 0  -20 0 20 40 

d 
scores on PC 1 
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response to different odours. Linear filters that use lagged 
values of the input and the output to characterise the sen- 
sor (sensor oriented models) or the sensor array (system 
oriented models), identified using parametric approaches, 
such as the least-squares method, are also promising. In 
[IO], Box-Jenkins linear fdters were applied to model an 
array of metal oxide and MOSFET odour sensors in the 
presence of four alcohols and water vapour. For each sen- 
sor live models were created (one for each alcohol and one 
for water vapour). The classification was done in prediction 
error space, and the alcohol whose model gave the lowest 
total squared prediction error for all sensors was identified 
as the unknown odour (Bayesian approach). Fig. 10 shows 
the total sum squared prediction error for all sensors and 
for every model when the measured gas was I-propanol. 
The 1-propanol model gives the lowest prediction error in 
almost all cases, leading to a correct classification, almost 
always. However, linear and nonlinear models constructed 
using input-output data (black-box models) do not gwe 
any insight into the inner structure of the sensors. In other 
words, it is not possible to discuss the identified model in 
terms of physical 01 chemical properties of the system. On 
the other hand, block-structured models are more related 
to the intrinsic characteristics of the sensing mechanisms. 

0.30 

0.25 

0.20 
c 

B 5 0.15 
e a 

0.10 

0.05 

" 

Fig. 11 shows the scheme of a two-input block-structured 
model of a polymer-coated quartz-microbalance sensor in 
the presence of n-octane and toluene [61]. The impulse 
response of the two linear blocks, which describe all the 
memory effects of the system, were estimated using the 
crosscoilelation approach. The static input-output nodine- 
arity was estimated by fitting a five-order polynomial. 
However, this method has not been widely applied because 
the identification of the model is complicated. In fact, the 
use of a nonparametric approach, such as the crosscorrela- 
tion method, to estimate the impulse response with low 
errors, requires long data sequences. This can result in 
time-consuming measurements to identify the sensor array 
or, even worse, can be impractical in some applications. 

4.4 Drift counteraction 
Since all of the approaches described above include niem- 
ory effects, they are generally useful to address the problem 
of short-term drift (effects in the present response of the 
system due to measurements in its recent past). Another 
strategy consists of using SOMs with residual plasticity (i.e. 
adding a small constant to the expression of rj in eqn. 11). 
This allows the network to deal effectively with small varia- 
tions in the sensor response [35,62]. 

Long-teim drift caused by sensor poisoning or ageing 
implies that the system under identification is nonstation- 
ary. All the methods, except the neural network approach, 
assume that the sensor system is stationary and thus are 
not suitable to analyse the effects of long-term drift. It has 
been shown that SOMs with residual plasticity can help to 
maintain the pattern recognition ability of a sensor system 
affected by drift [62]. Fig. 12 shows the identification per- 
formances of an electronic nose based on six tin oxide gas 
sensors and static and adaptive SOMs. The gases measured 
were H,, CO, CO2, CH,, and binary mixtures of both H2, 
CO and CH4, CO. It shows that if an adaptive SOM is 
used, the identification ability of the electronic nose 
remains almost unchanged when the drift in the sensor 
responsc is up to 20%. However, SOMs with residual plas- 
ticity require the frequent measurement of all the patteins. 
If this requirement is not fulfilled, patterns that seldom 
occur will be forgotten. 

Very recently, in some preliminary work, ART neural 
networks have been proposed to deal with sensor drift [63]. 
The short-time memory of the network gives it some 
plasticity to adapt to sensor drift, while the long-time mem- 
ory may give the necessary rigidity to avoid forgetting pre- 
viously learnt patterns. ARTMAP (adaptive resonance 
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theory supervised predictive mapping) and fuvy ART- 
MAP are nonparametric, adaptive networks that are well 
suited to solve pattern classification problems [64, 651. With 
other adaptive algorithms, the learning of new events lends 
to wash away the memory traces of previous, but still use- 
ful, knowledge. ARTMAP and fuzzy ARTMAP contain a 
self-stabilising memory that permits accumulating knowl- 
edge to new events in a nonstationary environment [66]. 
Therefore, the use of these seems to be a promising strategy 
to address drift in intelligent sensor systems. 
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5 Outlook and conclusions 

There is no universal sensor system that can solve all odour 
or gas mixture analysis problems. Instead there is a need to 
employ intelligent application-specific sensor systems that 
are appropriate to the application. This means building in 
intelligence through the development of suitable sensor 
structures, sensor materials and pattern recognition meth- 
ods [1]. New pattern recognition methods should make use 
of the transient information in the sensor signal to enhance 
the identification ability of the system. This requires the use 
of dynamic models, for the sensor system, which can 
account for the drift in sensor parameters and thus extend 
the calibration period. 

The importance of many problems associated with cur- 
rent chemical sensor technology is application specific. If 
the system has to analyse low levels of low reactive species, 
sensors tend to perform well. If the system has to analyse 
high levels of reactive species, poisoning of the sensors is 
likely and drift effects become very significant. The baseline 
of sensing devices (e.g. metal oxides, polymeric chemoresis- 
tors and polymer coated QMB) is sensitive to the operating 
temperature, the humidity and type of carrier gas [67]. Very 
often, the sensors require a long recovery time between 
measurements to reach their baseline. In continuous moni- 
toring or repeated measurement applications, the response 
of the sensors is influenced by their previous history (short- 
term memory effect). Under these constraints, the choice of 
a suitable modelling strategy should be considered care- 

- Nonadaptive models can be useful when the application 
implies the analysis of weakly reacting species with systems 
where temperature and humidity are strictly controlled by 
the sample delivery system (i.e. drift is likely to be small in 
such a system). - Adaptive models are required when analysis of strougly 
reacting species is to be performed (i.e. the sensors are 
likely to drift due to poisoning). These inodels can also 
handle drift caused by slight variations in the temperature 
and humidity of the carrier gas. 
* Of the nonadaptive models, ud hoc parametric models are 
interesting because they may give some insight into sensor 
behaviour. The measured parameters can be fed directly 
into well established pattern recognition systems. Linear fil- 
ters and nonlinear models can be used to compensate for 
the short-term drift caused by the memory effect of the 
array when successive measurements are performed. 
* The development of nonlinear, adaptive models in which 
competition between component gases occurs may best be 
solved using neural paradigms. - SOMs with residual plasticity can be a good choice when 
frequent measurements of all the patterns are perrornied. 
When this condition is not fulfilled, the ART approach is a 
promising one. 

These basic ideas are contained in Figs. 13 and 14, where 
the suitability of a specific dynamic model to a particular 
type of problem is shown. In Fig. 13 the sensor responses 
are considered to be linear or quasi-linear in concentration. 
This is generally the case when the species concentration is 
low, e.g. for conducting polymer resistive sensors, or when 
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