Electronic noses: a review of signal processing
techniques
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Abstract: The field of electronic noses, electronic instruments capable of mimicking the human
olfactory systemn, has developed rapidly in the past ten years. There are now at least 25 research
groups working in this area and more than ten companies have developed commercial instruments,
which are mainly employed in the food and cosmetics industries. Most of the work published to date,
and commercial applications, relate to the use of well established static pattern analysis techniques,
such as principal components analysis, discriminant function analysis, cluster analysis and multilayer
perceptron based neural networks. The authors first review static techniques that have been applied to
the steady-state response of different odour sensors, e.g. resistive, acoustic and FET-based. Then they
review the emerging field of the dynamic analysis of the sensor array response. Dynamic signal
processing techniques reported so far include traditional parametric and nonparametric ones
borrowed from the traditional field of system identification as well as linear filters, time series neural
networks and others. Finally the authors emphasise the need for a systems approach to solve specific

electronic nose applications, with associated problems of sensor drift and interference.

1  Introduction

An electronic nose is an instriment comprising an array of
electronic chemical sensors with partial specificity, and an
appropriate pattern recognition system that is capable of
recognising both simple and complex odours. This defini-
tion restricts the term electronic nose to those types of intel-
ligent sensor systems that are used to sense odorant
molecules in an analogous manner to the human nose [1].
However, an array of nonspecific gas sensors can also be
used to detect single components or mixtures of gases/
VapOurs.

Each individual sensor 7 within the electronic nose pro-
duces a time-dependent electrical signal x;{?) in response to
an odour j. The dynamic sensor signal depends on several
physical parameters, such as the speed of the flow that car-
ries the odour from the source to the sensor array, the
nature of the odour, the diffusion and reaction of the
odour within the active sensing material, and ambient con-
ditions (e.g. pressure, temperature and humidity). It is com-
mon practice to use only the static (i.e. steady-state) values
of the sensor signals rather than the dynamic {i.e. transient)
response when applying electronic noses. The sensor out-
puts are expected to reach constant asymptotic values when
the input signal is fixed at a constant value. The response
generated by the sensor array can then be represented by a
time-independent vector ¥, = (ry Fapy woos Fy oo r) where 1 1s
the number of odour sensors in the array. Then the
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response to a set of m odours can be regarded as a set of m
column vectors, which are best represented by a response
matrix R:

11 ri2 o Tim
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R=| T : (1)
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o1 oz - Tam

Odour sensors do not behave as independent sensors;
instead, an individual sensor will respond to a variety of
odours but with varying cross-sensitivity. So the oft-diago-
nal terms of the response matrix R are usually nonzero. [t
is under these conditions that pattern recognition tech-
niques are required to process the signals generated by an
array of sensors and thereby extract the pertinent informa-
tion in a nontrivial manner (i.e. when m > #) [2].

It is only in the last few years that the use of dynamic
signals from a multisensor system has received any signifi-
cant attention. There are several reasons why dynamic sig-
nal processing techniques are important to the field of
electronic noses:

» Recent reports suggest that under certain test conditions
the dynamic response of solid-state gas sensors contains
useful information. The dynamic response holds informa-
tion about the chemical kinetics of the sensor and these
vary with both sensor type and analyte. This additional
information can be extracted from the transient response of
a sensor to a controlled change in the analyte concentration
(c.g. concentration modulation) or to a change in the tem-
perature of operation of the sensor (e.g. temperature modu-
lation). In some applications an enhancement of the sensor
array selectivity from these techniques has been reported
[3-6].

+ Some sensors respond very slowly to weakly interacting
odours. Non-steady-state measurements are required when
the environmental changes are on the same time-scale as
the sensor response. This may help to broaden the ficld of
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application of itelligent sensor systems (e.g. continuous
pollution monitoring).

* The sample delivery system and the sensor array are both
parts of a dynamic system, The time taken by the system to
reach steady state depends on parameters such as flow rate,
volume of the sensor chamber, odour diffusion rate and
sensor reaction rate. When the sensors are modelled using
steady-state values, the calibration time can be very long,
especially when a multicomponent calibration is performed.
Therefore, dynamic modelling may significantly reduce the
time of each calibration experiment [7, 8].

« Even when sensors are exposcd to identical gas mixtures,
they do not give stable responses over a long period of
time. In other words, sensor signals tend to show signifi-
cant temporal variation, typically referred to as Jong-term
drift’. This variation may be duc to unknown processes in
the sensor system, like poisoning, ageing or gradual
changes in the environment (i.e. temperature and humid-
ity). Drift may seriously affect calibration. Therefore, when
an intelligent sensor system is to be operated for a long
period of time, long-term drifl should be addressed by the
pattern recognition algorithms {9, 10].

* Finally, the baseline signal (in air) and response of a sen-
sor can depend on its immediate prior chemical history.
These changes can be considered to be like a ‘short-term’
drift. For example, a dynamic model that uses the knowl-
cdge of present and past inputs and outpuis of the sensor
would be able to predict its true baseline.
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Fig.1  Busic shucture of « data processing spsiem for en electronic nose
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2 Static patterri analysis techniques

The static responses generated by an array of odour sen-
sors may be processed using a variety of techmiques. Fig. 1
illustrates the basic data-processing structure of an elec-
tronic nose. When a set of m odours is introduced to an
array of » odour sensors, the sensor outputs are pre-proc-
essed so that the modified response matrix R can be fed
into a pattern recognition (PARC) engine. According to
eqn. 1, column j in R is the pre-processed response vector
generated by the scnsor array in the presence of odour j.
The nature of a PARC engine is usually classified by the
terms parametric or nonparametric and supervised ot non-
supervised. A parametric technique is based on the assump-
tion that the sensor data can be described by a probability
density function (PDF) that a posieriori defines its spread
of values (in most cases the assumption made is that data
are normally distributed with a known mean and variance).
Nonparametric methods do not assume any PDF for the
sensor data and thus apply more generally. In a supervised
PARC method, a set of known odours are systematicatly
introduced to the electronic nose, which then classifies them
according to known descriptors {classes) held in a knowl-
edge base. Then, in a second stage, an unknown odour is
tested against the knowledge base and the predicted mem-
bership class is given, Gther PARC methods do not need a
separate training stage but learn the different classes from
the response vectors automatically (unsupervised learning}.
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These methods are closer to the way that our brain is
understood to work.

2.1 Pre-processing techniques

It is important to examine the data generated by an array
of adour sensors so that the most informed choice of sen-
sor, pre-processing and PARC method is made. Pre-
processing of the response vectors should be designed to
help analyse data from a specific problem, such as to line-
arise the output from the sensors or to compensate for con-
centration fluctuations in the response vectors by using a
normalsation procedure. There is evidence that when ana-
lysing data from metal oxide odour sensors, the fractional
change in conductance is generally a good choice with
PARC methods [11]. The general expression is

o X XD @
L M X?

where X7 is the conductance of the sensor / in air (i.e. base-
line signal) and X;°%" js the conductance of the sensor i in
the presence of odour j. This procedure helps compensate
for temperature sensitivity of the sensors and linearises the
mechanism that generates their concentration dependence.
Moreover, when sample concentration is of no interest, but
fine discrimination between odours is required, it may be
useful to normalise the length of the response vectors to
unity [11]. Then eqn. 2 becomes

(3)

The effect of this is to place the end of all response vectors
on to the surface of a unit hypersphere and hence reduce
the effect of concentration fluctuations. However, caution
is needed because the method both assumes concentration
linearity and enhances the noise in the case of small signals.

2.2 Parametric analysis technigues

2.2.1 Linear calibration methods: Linear multivari-
ate calibration methods are often used to process sensor
array data and obtain the concentrations within a multi-
component mixture [12]. Two common methods are partial
least squares (PLS) {13} and principal components regres-
sion (PCR) [14], which assume that a linear inverse model
can be applied to the data. In the model, the concentration
vector ¢ i3 related to the response matrix by

c=RM+e (4)
where M is a regression vector containing all the model
parameters and e is an error vector containing the concen-
tration residuals. The main difference between PLS and

PCR is that PLS includes information about the concentra-
tion vector in the model while PCR does not.

2.2.2 Discriminant function analysis: In discrimi-
nant function analysis (DFA) it is assumed that the data
are multinormal-distributed and then the discriminant fune-
tions Z; ar¢ determined. Each discriminant function is cal-
culated by maximising the Fratio on the analysis of the
subject to Z, being uncorrelated with Z, .. Z,, within
groups. The discriminant functions are linearly related to
the sensor responses by the following equation:

Zy = arpTijtagpra; o FapTii . Aanprag (5)

Once the regression coefficients «;, have been computed on
the known data (referred to as supervised learning}, then
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they can be used to form the classification functions which
predict the group membership of unknown response vec-
tors (referred to as cross-validation). Fig. 2 shows the
results of applying DFA to the response (fractional change
of conductance} of 12 tin oxide gas sensors sampling the
headspace of three different coffees [15]. Plots of the first
two discriminant functions show reasonable separation of
the three groups. The observed classification rate was 81%
when half the data set was used for crossvalidation.
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Fig.2  Results of linear DEA o analysis of tvee commercial rousted coffees
using a 12-elenieni tin oxide electronic nose

(Reprinted [romy Gardner, JW., et al, Sens. Aciuators B, Chent, 6, pp. 71.73,
© 1992 Elsevier Sclence, with pennission)
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2.2.3 Nonlinear calibration methods: Most chemi-
cal sensors are nonlinear. The use of linear techniques is
acceptable when the concentration vector is fairly constant.
In this case, the nonlinear part of the response may be line-
arly approximated. When a wider region of the response
space is covered, or the multicomponent gas mixture prob-
lem is being considered, a nonlinear pattern analysis
method is required. Nonlinear parametric techniques, such
as multivariate adaptive regression splines (MARS), have
been used to analyse simple gas mixtures with some success
[16]. In a real electronic nose application, complex odours
can contain hundreds or even thousands of odour mole-
cules that interact. This leads to a highly nonlinear response
space, which cannot be described by a straightforward
PDF. More interest has thus been shown in the application
of nonparametric techniques, which do not make underty-
ing assumptions about the probability distribution. We dis-
cuss some of these in the following Section.

2.3 Nonparametric analysis technigues

2.3.1 Principal components analysis: PCA is a lin-
ear supervised method that has been used to discriminate
the response of an clectronic nose to simple and complex
odours (e.g. alcohols, beers, coffees). The method consists
of expressing the response vectors r; in terms of a linear
combination of orthogonal vectors. Each orthogonal (prin-
cipal) vector accounts for a certain amount of variance in
the data with a decreasing degree of importance. The pth
principal component can be expressed as

Xp = Tyt agprai+. QT+ o Qaphag (6)

The variance of cach principal component is maximised
under the constraint that the sum of the coefficients of the
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orthogonal vectors &, = (¢, ... K - Gyy) IS SEL [0 UBILY
and the vectors are uncorrelated. Since there is often a high
degree of sensor collinearity in electronic nose data, the
majority of the information held in the response can be dis-
played using a small number of principal components. This
means that an »n-dimensional problem can be described by
a two- or three-dimensional plot. Fig. 3 shows the results
of applying PCA to an array of 12 tin oxide sensors. Since
metal oxide sensors respond in a similar manner, over 80%
of the variance is described by the first two principal com-
ponents [11, 17]. Three distinct groups are apparent and are
associated with lagers (A), beers (B) and spirits (C). The
discrimination between beverages within a group seems to
be harder, but some success has been reported for the anal-
ysis of Japanese beers and whiskies [18].

200+

~200 4

principal component X,

400+

-1 0 1 2
principal component X,

Fig.3 Resuiss ?f PCA anialysis of response of 12-element tin oxide electvonic
nose 1o two beers {labelled w and sj, two lagers {lubelled fi und ¢ ) and two spir-
its (labelled t ad b)
(Reprinted from Gardner, LW, ¢ al, Sens. Actuators B, Chem., 4, pp. 108-116,
© [991 Elsevier Science, with permission)
C centroid
X coffee a
® coffee b
O coffee ¢

2.3.2 Cluster analysis: CA is an unsupervised tech-
nique for enhancing the differences between the response
vectors in r-dimensional space and identifying clusters or
groups to which unknown vectors are likely to belong. To
do so a multidistance metric dj is calculated between data
points 7 and J according to the expression

N /N

d@j = z(?"ik — ’f’j};)N (7)

k=1
If NV is set to 2, the Euclidean (linear) metric 1s used. The
proximity of all points relative to each other is then found
by computing a so-called scalar similarity value S, such as

% ®)

I'H&X{dij}
This is also called complete linkage. Other definitions can
be considered for the similarity value but the choice of mei-
ric and linkage has a marginal effect on the results. The
fechnique has been applied to semiconductor gas sensors
(both metal oxides and conducting polymers) {19-21].
Fig. 4 shows the results of a CA (Euclidean metric, com-
plete linkage) on the response of a metal oxide electronic

Sijzl—
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nose to different alcohols [11]. The dendrogram connects
up response vectors with the nearest similarity value.

A

XXX XXX XOOOTDTUoTTTO00TTe oo oaoms 3333333
9]

Fig.4 Dendrogram showing results of CA on re?)onse of 12-element tin
oxide electronic nose 10 samples of methanol (i), ethanol (€), propanof (p),
butanol () and methylbutanol (x)

Using Euclidean metric and complete linkage

(Reprinted from Gardner, LW., et al., Seas. Actwators B, Chem., 4, pp. 108116,
© 1991 Elsevier Science, with permission)

2.3.4 Artificial neural networks: The nature of elec-
tronic nose data is such that it is often desirable to use a
more powerful pattern recognition method. More powerful
methods should be able to cope with nonparametric non-
linear data, and have further advantages over more con-
ventional methods (such as learning, self-organisation,
generalisation and noise tolerance). This has led to the
rapid and widespread application of artificial neural net-
works (ANNs) to the analysis of patterns generated by
electronic noses. ANNs consist of parallel interconnected,
and usually adaptive, processing elements. Furthermore,
ANNE are attractive as they, to a certain extent, mimic the
olfactory system [22]. The processing elements represent the
biological olfactory cells or neurones, and their intercon-
nections, the synaptic links.

Multilayered feedforward networks: Since three-layered net-
works have sufficient computational degrees of freedom to
solve any classification problem [23], most workers have
adopted this topology. In a network, the processing ele-
ments are organised in three distinct groups of elements:
input, hidden and output layer neurones. The number of
input nodes corresponds to the number of sensors in the
array. The number of neurones in the hidden layer is to be
determined experimentally and the number of odours ana-
Iysed generally determines the number of output neurones.
The interconnection topology and learning rules of the neu-
rones determine the performance of a particular network.
The most popular ANN in odour classification is the
three-layered feedforward backpropagation trained net-
work [22, 24, 25]. To train the network, it is necessary to
provide it with a number of sample inputs with their corre-
sponding outputs (supervised learning). Each neurone adds
its weighted inputs and performs a nonlinear transforma-
tion of this sum (generally a sigmoid function is used). The
calculation is carried out for each layer feeding the values
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through to the output layer. During the learning phase, the
weights are adjusted to minimise the difference between the
actual output and the ideal output. Once the network is
trained, it can be used to predict the membership of novel
and untrained samples. Fig. 5 shows the topology of a net-
work used to identify alcohols and Table 1 the results of
classification. The results show that the network is able to
distinguish between these odours. The success of the train-
ing process, in terms of a fast rate of convergence and good
generalisation, can be affected by the choice of the architec-
ture and initial parameters (e.g. initial weights and learning
rate). Since architecture and parameters are to be deter-
mined experimentally, much time may be spent searching
for the optimal ANN. An alternative method is to use a
genetic algorithm (GA) [26, 27] to determine automatically
a suitable network architecture (e.g. growing and pruning
the network) and a set of parameters (e.g. learning rate,
momentum term) from a restricted region of design space.
GAs are heuristic search algorithms based on the mechan-
ics of natural selection. The structure and parameters of the
neural network (Le. learnming rate, initial weights, number of
layers, number of neurones in each layer and connectivity)
are coded using binary strings, which are concatenated to
form chromosomes. GAs are then applied to search popu-
lations of chromosomes. Typical genetic operators can be
defined such as parent selection, crossover and mutation.
The performance of the network represented by each chro-
mosome ¢; is evaluated using a fitness function,

Flc,) =au(c;) + b (9)

where F is the fitness function, u is the objective function
that we want to optimise, and « and b are transformation
parameters that are dynamically adjusted to avoid prema-
ture convergence. The objective function is generally a
weighted sum of the various performance measures. In the
sensor data classification problem, the performance meas-
ures used in the objective function are based on, for exam-
ple, the network prediction error, speed of convergence,
size of the network and degree of generalisation achieved
[28].

inputs

Fig.5 Swuctwe ;)j w fidly comnected thiee-layer backprepagation network
used to process dura from a Y2-element tin oxide clectronic nose for five alcoholic
odours

(Reprinted from Gardner, J.W., ef ol, Meas. Sci, Technol, 1, pp. 446451, @ 1990
Institute of Physics Publishing, with permission)

Table 1: Results of classification for network shown in Fig. 5

Actual outputs {g;,)

Chemical species ?utput Output Output Output Output

2 3 4 5
Meathanol 0.990 0.023 0000 0.000 0020
Butan-1-ol 0.001 0908 0002 0.000 0.153
Propan-2-ol 0.000 0.01M 0.931 0.000  0.07M
2-Methyl-1-butanol ~ 0.000  0.001  0.102 0949  0.000
Ethanol 0.002 0.009 0475 0000 0.907

Reprinted from Gardner, JW.,, et al, Meas. Sci. Technol, 1, pp.
446-451, © 1990 Institute of Physics Publishing, with permission
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Conventional networks are trained using random
weights, and this may be disadvantageous to the overall
training process. The main problem with this strategy is
that the search for the best set of weights to classify the
training patterns and to identify new ones usually starts
from a poor point which either slowly, or maybe never,
takes us to the desired optimal point. On the other hand, a
suitable starting point, dependent on the kind of training
data, is desirable. It can speed up training and reduce the
likelihood of settling in local minima, resulting in a better
performance than common backpropagation networks [29].
A type of fuzzy neural network (FNN) can be used to
make use of possibility distributions to determine the initial
set of weights [30]. The theory of possibility is more like a
membership-class restriction imposed on a variable defining
the set of values it can take. Possibility distributions are
often triangular and so they are similar in shape to normal
distributions with the mean values having the highest possi-
bility of occurrence, which is one. Any value outside the
min-max range has a possibility of occurrence of zero. The
possibility that &; is a member of the fuzzy set X = {a,, a,
o @ ey @y} 18 denoted by its membership value Mgy,
which depends on the mean, minimum and maximum of
the set X. Fig. 6 shows a possibility distribution function
and associated membership function. An introduction to
the theory of fuzzy logic is given by McNeil and Freiburger
[31].

.0 prmmrmmmm e e ooy
i
1
i
® i
c 1
O 1
B 05 [Tmmmm s d H
= ! i
2 ' i
| 1
| 1
| 1
I 1
! i
0 : '
X B Y
measurement v
a
1.0
1
1
1
1
E t
o |
= 1
LIQ i
Los B—s
E i
@ 1 !
& ] ! i
1 | 1
1 | 1
1 I ]
1 | b
1 | 1
0 b | 1
(-B/2) Y (Y+8/2)
measurement v
b

Fllg.6 Possibifity disiribution S(v: X, B, Y) used to determine membership
vahie of a measurement v, and menbership function M reluted io S
Sisgvenby Owhen v X, 2 - 2 Y - XR2 when XY <v5 B, | -20r— P)2A(¥ -
X2 when B<vs Yand 1 whenv> Y

M=1-Sm Y, Y+82 Y+ B whenv>Y,and M =S 8 Y- B2, V) whenr
<Y

(Reprinted from Singh, S., e af., Sens. Actuators B, Chem., 30, pp. 185-190, © 1996
Elsevier Sclence, with permission)

Self-organising maps: Self-organising maps (SOM) applied
to electronic nose systems contain a two-dimensional single
layer of nevrenes in addition to an input layer of branched
nodes. If the system 's left alone in an environment of inter-

IEE Proc.-Circuits Device. s, Vol 16, No. 8, December 1999

est, the learning algorithm of the network processes the
sensor outputs step by step, and constructs an nternal rep-
resentation of the environment [32]. SOMs accumulate a
lot of statistical information but in an unsupervised fash-
ion. There are m neurones in the neural layer (typically
arranged as the knots of a square lattice) and each one has
a parameter weight vector P1? of dimension », which is the
same as the input feature vectors (i.e. the number of sen-
sors). Each neurone is described by the vector s, whose
components are the knot co-ordinates in the lattice. The
weight vectors are randomly initialised at the beginning.
Orne input vector x¥ is selected from the sample and put
into the network, and the squared distances between x@
and each V9 are computed using

T R 2
2 (3) ()
dij*Z(% -V )
k=1
The minimum distance d;« is then determined to obtain the
o . . .

neurone ¢ that is the winner over the others. In a winner-
takes-all strategy, the winning neurone updates its weights
via

1i=1,...,m (10)

viE) =vE 40 (a0 -vE)

where 17 is the step gain {or learning rate). All other neu-
rones keep their old weight values. In another strategy, all
the neurones that are close to the winner are updated:

Vil = Vil b (a9 = VD) foral s (120)
s — %% /207) (12b)

D1« is called the excitatory response and is only appreciable
for the neurone that coincides with ¥ and its neighbours, &
is the length scale of the proximities to ¥ and is generally
fixed to a value in the range of 23 lattice units. It is desira-
ble that after a number of iterations the weights no longer
change. Therefore, if the map is to stabilise asymptotically
in an equilibrium state, 71 must decrease to zero, typically as
follows:

hsi» = exp (—

1 = 1o exp(—£/T) (13)
Supervised learning, where the SOM is provided with the
desired output function, is also possible. This strategy is
also known as learning vector quantisation (LVQ) [33]. The
number of training patterns to ensure equal accuracy to
other approaches could be dramatically decreased because
the given calibration data set is not the unique source of
information; it is added to the large amount of information
collected by the system on its own during unsupervised
learning. However, an important limitation of this
approach is that lengthy computation is required when it is
applied to real problems.

SOMs have been used with some degree of success to
classify patterns generated by electronic noses [34-36).
Fig. 7a shows the oulputs of a sensor array in the presence
of two classes of a gas mixture. In Fig. 7 the spontaneous
clustering of neurones in the SOM network is shown. After
a short learning period, there exists a strict correlation
between the weights of the network and the assigned
classes. The network does not have any direct information
about the classes, except for the sensor outputs [37].

Adeptive resonant theory: Adaptive resonant theory (ART)
was introduced as a theory of human cognition in informa-
tion processing [38]. It is based on the fact that a human
brain can learn new events without necessarily forgetting
events learnt in the past. ART networks are ntelligent
systems that are capable of autonomously adapting in real
time to changes in the environment. They have been
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Fig.7 Two simulated classes of a gas niixture, projected omto the feature
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The net provides mapping between the plane and the neurone weights. The inverse
mapping is presented here to show the strict similarity between the neurone images
and the staiistical distribution of classes

(Reprinted from DiNatale, C., ef af, Sens. Actuators B, Chem., 23, pp. 111--118,
© 1995 Elsevier Scicnee, with permission)

designed to resolve the stability-plasticity dilemma and so
are stable encugh to incorporate new information without
destroying the memories of previous learning. The mnter-
ested reader is referred to the work of Carpenter [39] for
details. ART networks have been applied to metal oxide
sensor based electronic noses. The results are very similar
to those obtained with multilayer backpropagation trained
networks (BP), but the training time is typically an order of
magnitude faster than BP on small data sets [40].

3 Dynamic models and system identification: a
review

The techniques that are typically used to model the
dynamic sensor response are borrowed from the field of
systern identification. System identification is the process of
developing a mathematical representation of a physical/
chemical dynamic system using experimental input-cutput
data. The majority of methods that have been developed to
study engineering problems assume linearity and stationar-
ity. However, almost all real chemical transducers are char-
acterised by nonlinear dynamics and response drift. This
Secticn starts by reviewing some models for the dynamic
response of odour sensors and proceeds to constder the dif-
ferent approaches which can be used to select 2 model.

3.1 Dynamic models

3.1.1 Linear models: Linear methods have been applied
in diverse fields such as econometrics, biological systems
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and control systems. Their application to the identification
of sensor array systems for gas analysis is recent [41], The
objective of the dynamic model is to forecast the output of
the sensor from knowledge of the input signals in dynamic
conditions (forward modelling). Only the inversion of the
model would allow us to identify the input (gases/aromas)
given the output signals (inverse modelling). The most com-
mon models are ARMA (autoregressive moving average),
ARX (autoregressive with extra input; also autoregressive
exogenous), ARMAX and Box-Jenkins. These models are
of interest in digital signal processing because the time
series can be considered to be the output of a lincar filter
with a rational transfer function. In the following, their
mathematical expressions are given (x[n], y[#] and e[x] are
discrete input, output and residual term or noise signals,
respectively):

1 P

ARMA(q, p): y[n] = Z azyln — 1) + Z Bieln —H

i=1 3=0
(14)

The current value of the output is modelled using g past
values of the output and the present and p past values of
the noise. Two different submodels of this one can be con-
sidered — the autoregressive (AR) and the moving average
(MA):

AR(gyyln] = Y awlh — i +el]  (15)

i=1
P
MA(p): yln] = Bie[n — j] (16)
=0
Moving average models are also known as all-zero models,

ARX(q,k): y[n] = Zazy[n—i]Jri yex[n—k]+en]
i=l £=0

(17)

The present value of the output is modelled using a linear
combination of the past g values of the output and the
present and past » values of the input:

ARMAX(q, k,p):
q r P
y{n]zz a;y[n — ] +Z"fk${'n — k] +Z Bie[n — 4]
i=1 k=0 i=0

(18)
Similar to the previous one but including a moving average
term,

Box-Jenkins (r, p): y{n] = Z meafn — k]
k=0

+ Zﬁje[n -] Q9)

In this model, the prediction of the output is made without
the use of past values of the output. It uses present and
past values of the input in addition to filtered noise.

State-space models: In the state-space form, the relationship
between the input, noise and output signals is written as a
system of first-order difference equations using an auxiliary
state vector &,. This description of linear dynamical systems
became increasingly important after Kalman’s work on
prediction and linear quadratic control [42]. Insights into
the physical mechanisms of the system can usually more
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easily be incorporated into space-state models than into the
models described previously. The state-space model can be
expressed as:

Enr1 = A(9)n + B(O)z[n] +ey[n] (20

y[n] = C(0), + enn] (21)
where A, B and C are matrices of appropriate dimensions.

0 is a vector of paramelers that typically cerrespond to
unknown values of physical coefficients.

3.1.2 Nonlinear models: Chemical sensors are almost
always nonlinear for high gas concentrations. Most of them
are inherently nonlinear even at low concentrations. Trans-
port, adsorption and reaction processes taking place at the
sensor include intrinsic nonlinear dynamics. Thus, an elec-
tronic nose instrument can be represented as a nonlinear
System.

The analysis of nonlinear systems poses many problems
that do not appear in their linear counterparis. For
instance, the law of superposition cannot be applied and
the addition of twe input sighals may lead to unknown
results. Traditionally, the methods used to identify nonlin-
ear systems are parametric methods that make assumptions
about the structure of the system. If the structure is not
accurate enough, the model will not work for all inputs.
Recently, a few nonlinear time series and other nonlinear
meodels have been proposed. Some of them will be reviewed
briefly below.

Nonlinear time series: Some of the nonlinear models are
introduced in this Section. The reader is referred to the
work of Tong [43] for a more comprehensive survey.

One of the more important classes of nonlinear models is
the class of nonlinear autoregression. y{u] is said to follow a
nonlinear autoregressive mode of order & if there exists a
nonlinear function fsuch that

ylnl = f(yln — 1 yin =2, y[n — K], eln]) (22
where ¢[n] is noise. As a ‘dual’ to nonlinear autoregressive
models, we may have nonlinear moving average models
(e.g. of order g

yln} = g {eln], e[n — 1),
¢ being a vector of parameters.

Since the most important linear time series model is the

ARMA model, it scems natural to develop a nonlinear gen-
eralisation of it. For suitable & and ¢,

En={le[ln—g+1],... en],

y[n—k+u,---,y{nn’ (24)

£, is called a carrier vector. Choosing suitable matrices F, &
and H, we may achieve the nonlinearisation of ARMA
models by introducing

En = F{En1)bn1 + Glén1)n y[n] =

cen—ql,q) (23)

H f n—1

(25)
This is formally equivalent, under suitable choices of F, G
and H, to

q

lnl = X:az(fnfl)y[n — i+ x[€n-1]

=1
®
+ 3 Bi(Enm1)eln — 4] (26)
7=0

The carrier vector can be regarded as a state vector and the
model above as a state-dependent model (SDM) [44].
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Functional expemsions: Functional expansions were studied
by Volierra [43] and Wiener [46]. They are valid representa-
tions of nonlinear systems under very wcak assumptions
(i.e. stationarity). The concept of a functional was intro-
duced to describe the input/output relationship of a system
Assuming that x(¢) is the input and y{#) the output, then

y(t) = Flt;x(t), ¢ < 1] (27)

The task of modelling consists of obtaining a mathematical
expression for the functional F. This 1s 1o identify the input/
output map of the system, determining the effect of past
values of the input on the output. In the case of a nonlinear
time invariant system, F can be expressed as a Volterra
functional expansion of the form

)’L

ylt] —i/oo

n=1 0

/ knlry, ... . To)z(t — 71 )df
i

w(t—)de (28)

The kernels kn (f, ..., T,) constitute the descriptors of the
system dynamics, The nth kernel attains the effect of the
crossinteraction of r past values of the input on the output.
Wiener redefined the basis functionals so that they were
orthogonal for white Gaussian inputs.

Block-structured network models: Block-structured network
models consist of interconnections of two different classes
of blocks — dynamic linear blocks and stalic nonlinear
blocks. This modelling strategy is closely related to the
functional expansion method, because a close examination
of the relationship between the Wiener kernels is necessary
to determine the topology of the network. This method is
preferred by some authors to functional expansion because
of the difficulty involved in interpretation of the kernels.
Furthermore, block-structured models may be related to
the inner structures of the system. The reader is referred to
the work of Chen et af. [47, 48], where a systematic struc-
tural classification procedure employing Wiener kernels is
reviewed.

Nevral networks: In recent years, multilayer perceptrons
(series-parallel identification method) and time-delay or
recurrent neural networks (parallel identification mcthod)
have been proposed for system identification and modelling
purposes [49]. It has been proved that the output of an
ANN, whose inputs are delayed values of the input signals,
can be expressed as an infinite Volterra series [49]. In this
case, since the expansion is not limited to the first or second
kernels, the network is able to model highly nonlinear rcla-
tions if there are enough hidden neurones. The output of
the network is a nonlinear function of ¢ delayed outputs
and p delayed inputs:

ylk+1] = f @ikl wlk—1], .. ylk — 4],
o[kl alk ) (29)

From the point of view of system identification, a multi-
laver neural network can be assumed to be a nonlinear
map. The elements on the weight matrices are parameters,
whose optimum values should be found by training the
ANN over a training set. Fig. 8 shows the differences
between the series-parallel and the parallel identification
methods. The stability of the second method, which uses a
neural network with feedback, cannot be assured [S0-52].
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3.2 System identification: selecting a model

The techniques used to identify a model from measured
data typically consist of parametric or nonparametric
approaches. With nonparametric techniques, very few
assumptions about the system to be modelled are required,
and therefore apply more generally. However, parametric
techniques can sometimes lead to better results, especially
when the amount of data is limited (i.e. short time series).
This subsection reviews the different techniques available
for model selection.

3.2.1 Nonparametric approach: time and fre-
quency-domain methods: A linear time-invariant sys-
tem can be described by its transfer function or by the
corresponding impulse response. A nonlinear time-invari-
ant system can be described using functional expansions
(Wiener kernels). Transfer functions, impulse responses and
Wiener kernels may be determined by direct technigues.
Such methods are often called nonparametric since they do
not explicitly employ a parameter vector in the search for a
best description.

Time-domain  methods: Time-domain methods include
impulse response analysis, step-response analysis and corre-
lation analysis. Impulse response analysis is impractical
because many processes do not allow impulse inputs of
such amplitude that the error 15 insignificant compared to
the impulse response coefficients. Step-response analysis
can furnish some basic characteristics to a sufficient degree
of accuracy (i.e. delay time, static gain, dominating time
constants). Using correlation analysis, an estimate of the
impulse response can be obtained, through the crosscorre-
lation of input and output signals and the autocorrelation
of the mput. To identify ARMA models, the estimated
autocorrelation and partial autocorrelation functions of the
input signal provide valuable information. Autoregressive
processes of order 1, 2, ... are fitted successively and the
residuals calculated. The partial autocorrelation is the cor-
relation of these residuals and the input signal. If there is a
sharp cutoff in the estimated autocorrelation function after
lag &, the model can be identified as an MA(%). If the auto-
correlation function tails off but the partial autocorrelation
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function shows a sharp cutoff after lag g, the model can be
identified as an AR(g). If both functions tail off, then an
ARMA model is to be used. If the autocorrelation function
does not tail off or cut off, then the process is nonstation-
ary. If this occurs, the data can be successively differenced
until the resulting time series appears to be stationary. In
this case, an ARIMA (autoregressive integrated moving
average) model is identified. Since to difference the input
signal increases the noise level, smoothing of the resulting
signal may be necessary. There are many different criteria
that can be used to select the order of the model. In gen-
eral, they do not provide the same model order for the ana-
lvsed series of data. The reader is referred to the works of
Ljung [53] and Diggle [54] for a more detailed discussion.

If the system shows a nonlinear behaviour, it is possible
to use either a linear model (this can be a good check for
the relative importance of the nonlinear component in the
system) or a nonlinear model (ie. Wiener kernels). The
reader is referred to the work of Lee and Schetzen [55],
where a nonparametric method based on correlation tech-
niques is mtroduced for the estimation of Wiener kernels.
This method uses Gaussian white noise as the input to the
system. The 1dea of using white noise as a stimulus to iden-
tify a system is based on the fact that the system 1s tested
on all the pessible inputs regarding values and frequencies
(depending on the length of the test).

Frequency-domain methods: The frequency response of a
system H(jw) may be determined from an estimation of its
transfer function H{(s) by setting the complex Laplace s
parameter to jex More commonly it can be determined
from the time-domain signals by taking a Fourler trans-
tform (continuous or discrete} of the input x() and output
(1) signals, namely

Y {jw)
HUw) = %050
where

V(o) = \/% f y(t)e Tty

—0o
oo

X (juw) = \/Lz_ﬁ / elhe= . (30)

It should be noted that the Fourier transform is a linear
integral transform and x(r) and y{f} must be nontrivial (i.c.
nonzero) to determine the frequency response using this
method. When the input x(¢) is a periodic signal, the esti-
mate of the frequency response is only of significance at the
frequencies present in the input. When the input is not peri-
odic (i.e. a realisation of a stochastic process), the quality of
the estimate falls at those previous frequencies but is a bet-
ter estimate at the other frequencies. The estimates at dif-
ferent frequencies are asymptotically uncorrelated. This
makes the estimate of the frequency response relatively
crude in practical situations [53].

Spectral analysis for determining transfer functions of
linear systems was developed from statistical methods for
spectral estimation. The reader is referred to the work of
Brillinger [56] for a detailed account of the method. The
only way to improve the poor variance properties of the
transfer function estimate is to assume that the values of
the true transfer function at different frequencies are
related. Since the transfer function estimates at neighbour-
ing frequencies are asymptotically uncorrelated, the vari-
ance can be reduced by averaging over these (i.c. using a
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window such as Bartlett, Parzen or Hamming [57]). While
a broad window leads to biased estimates and low vari-
ance, a narrow window leads to unbiased estimates but
high variance {i.e. appearance of spurious peaks). Another
way of smoothing the transfer function estimate is to split
the data set into different subsets. The estimates over differ-
ent subsets will be uncorrelated, and averages over these
can be formed.

3.2.2 Parametric approach: In this approach, a set of
candidate models is selected and parametrised as a model
structure, using a parameter vector . The search for the
best model within the set becomes a problem of determin-
ing or estimating @. To do so, two main strategies can be
considered: minimising prediction errors and correlating
prediction errors with past data.

The first approach employs well known procedures such
as the least-squares method and the maximum likelihood
method, and is closely related to the Bayesian maximum ¢
posteriori estimation. The second approach is based on the
correlation between the prediction error and past data. Ide-
ally, the prediction error of a good model should be inde-
pendent of past data. A pragmatic way of checking this
condition is that if the prediction error is correlated with
the past data, then there was more information available in
the past data about the actual output than was picked up
by the model (predicted output). Therefore, the model was
not ideal. See Ljung [53] for a detailed review of these
methods.

The nonparametric approach introduced by Tee and
Schetzen [55] for the estimation of the kerels that charac-
terise a nonlinear system requires long data sequences for
optimum performance. Short data sequences lead to signif-
icant errors in the estimated kernels. Haber [58] introduced

a parametric method to estimate the kernels which reduces
their variance, leading to a better estimation when short
data series are available.

When using block-structured models, accurate kernel
estimation is crucial for the identification of the topology of
interconnection. Since the estimation of high order kernels
1s impractical, especially with short data series, the topology
of the system is usually selected from a set of universal rep-
resentations [59]. This selection can be based on a previous
knowledge (or postulation) of the inner characteristics of
the system or by performing a structural testing procedure
introduced by Chen et al. [48]. If the system being studied
does not satisfy the test criteria, the structure can be
rejected and another selection can be made. On the other
hand, if the system satisfies the test it cannot be concluded
that it has this specific structure. Once the topology has
been selected, the linear time-variant blocks can be identi-
fied using crosscorrelation techniques and the static nonlin-
ear blocks are usually identified by fitting a polynomial
[60].

4 Intelligent sensor systems

In this Section we briefly review the modelling techniques
in the context of what we refer to as ‘intelligent sensor sys-
tems’. The models and techniques used so far aim to
enhance the sensor array selectivity, to reduce the time nec-
essary for calibration (ie. forecasting the steady-state
response using the transient response) and to counteract
drift. A summary of the main approaches is shown in
Table 2. The main ones are discussed in more detail later.
Before applying any technique to dynamically model the
sensor system, sensors that are not relevant for the specific
application, or that do not work properly, should be

Table 2: Types of modelling approaches in intelligent sensor systems

Modelling technique Identification Tachnology Application Ref,
Linear filters, and Farametric ARMA, Thick-film Calibration time reduction [71
state-space models sensor oriented model Sn0O,
Parametric ARX, 4 OMB Sensor response prediction [69]
sensor oriented polymer coated
Parametric Box-Jenkins, 10 MOSFETs Identification of 2 gases. Drift [70]
sensar oriented 2 thick-film rejection
SI’IOZ
Parametric AR, sensor 6 QMB Identification of 3 vapours [41,71]
oriented polymer coated
Parametric state-space model, 4 QMB Quantitative analysis of [721
system oriented polymer coated, ternary mixtures
Parametric Box-Jenkins FIR, 28n0, Quantitative analysis of 2 73]
sensor oriented 6 BAW vapours
polymer coated
Functional expansions Nonparametric, correlation 6 OB Sensor response prediction 173,74, 61]
{nonlinear) techniques, sensar oriented polymer coated
Parametric, sensor oriented 4 CMB Sensor response prediction {69]
polymer coated
Block-structured Parametric combining correlation 6 QMB Structurs identification, [69, 61]
and polynomial fitting polymer coated response prediction
Neural networks:
SOM Non-parametric, Arrays of SnQ,, Gas/aroma {35, 75, 69]
Time-delay system oriented, MOSFET and identification, drift {8,73,78)],
ART adaptive QMB polymer coated rejection [77, 62, 63]
Other techniques:
Ad-hoc models through Parametric, sensor otientad Metal oxides, Sensor selectivity enhancement, [78, 79, 5, 6, 80,
gasfaroma or temperature maodels or FFT techniques conducting polymers, gas/aroma identification and 4,81-83, 84, 3]

modulation

QMB polymer coated

quantification
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eliminated. This requires careful exploration or ‘pre-
analysis’ of the system. The use of classical techniques such
as PCA may be very helpful in this preliminary stage.

4.1 Enhancing the sensor selectivity

To date most of the attempts to use transient information
in the sensor signal are based on ad hoc models. These
models allow for the estimation of parameters that charac-
terise the transient response, conferring some selectivity on
the sensors. Generally, an advantage of these models is that
they account for physical and chemical properties of the
sensing material (e.g. diffusion, reaction). Therefore, some
insight info the sensors’ dynamic behaviour can be realised.
Their main weakness is that transient signals are influenced
by previous measurements (memory effect) and by drift
{(e.g. ageing of the sensor, variations in ambient tempera-
ture or humidity). Since these aspects are not considered by
the models, the nitially learnt pattern recognition ability of
a sensor system can deteriorate after a period of time.
Fig. 9 shows the PCA results when an array of four thick-
film metal oxide gas sensors were used to identify different
volatile organic compounds and their binary mixtures [4].
The use of transient signals when the odour concentration
varies stepwise helps in the identification task. The identifi-
cation of single components, using a feedforward back-
propagation trained neural network, gave a 76% success
rate (using static signals only) and a 100% success rate
(using both static and dynamic signals). The success rate in
the identification of binary mixtures increased from 75%
(using static signals) to 86% (using static and dynamic
signals),

4.2 Calibration time reduction

Some applications of sensor response prediction aim to
reduce the time necessary to calibrate the sensor array for
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the gases/odours of interest. Results with ARMA and ad
hoc multiexponential models applied to the dynamic
response of tin oxide sensor arrays have been reported [7].
The dynamic models were used to predict the static
response of the sensors to small concentrations of nitrogen
dioxide (0-9 ppm). Table 3 shows the relative errors made
by the dynamic multiexponential model, which performed
better in the extrapolation of the gas concentration. In this
application, the prediction of the static response from the
initial part of the dynamic response permits a reduction of
the calibration time by a factor of four.

Table 3: Relative errors made by a multiexponetial model of
a thick-film tin oxide gas sensor in extrapolation of concen-
tration value of NO, at different calibration times

Time, s ,I;Drror at 1 ppm, cl;arror at 6 ppm, ‘I;:ror at 8 ppm,
100 55.2 35.8 131

200 17.1 47 7.1

400 78 25 3.7

800 1.3 03 0.6

Reprinted from DiNatale, C., et al, Sens. Actuators B, Chem., 24~
25, pp. 578-583, © 1995 Elsevier Science, with permission

4.3 Response models
Dynamic measurements are interesting when the odours or
the environmental conditions undergo changes with the
same time-scale as the sensor response times, and also in
the presence of sensor drift.

Methods of dealing with noise that allow for calculating
the impulse response (of linear systems) or the Wiener ker-
nels (of nonlinear systems), using the correlation approach,
appear to be useful for constructing models for the sensor
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(From Llobet, E., ¢7 o, Proceedings of IEEE Solid-State Sensors and Actuators Corderence, Transducers, 2, pp. 971-974, © 1997 IEEE, with permission)
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response to different odours. Linear filters that use lagged
values of the input and the output to characterise the sen-
sor (sensor oriented models) or the sensor array (system
oriented models), identified wsing parametric approaches,
such as the least-squares method, are also promising. In
[10], Box—Jenkins Hnear filters were applied to model an
array of metal oxide and MOSFET odour sensors in the
presence of four alcohols and water vapour, For each sen-
sor five models were created (one for each alcohol and one
for water vapour). The classification was done in prediction
error space, and the alcohol whose model gave the lowest
total squared prediction error for all sensors was identified
as the unknown odour (Bayesian approach). Fig. 10 shows
the total sum squared prediction error for all sensors and
for every model when the measured gas was 1-propanol.
The 1-propanol model gives the lowest prediction error in
almost all cases, leading to a correct classification, almost
always. However, linear and nonlinear models constructed
using input-output data (black-box models) do not give
any insight into the inner structure of the sensors. In other
words, it is not possible to discuss the identified model in
terms of physical or chemnical properties of the system. On
the other hand, block-structured models are more related
to the intrinsic characteristics of the sensing mechanisms.
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0.10
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570 580 600
measurement number

Fig. 10 Prediction ervors for afl 5 madzls when measured gas was 1-propanol
(Reprinted from Helmberg, M., ef af,, Sens. Actuators B, Cheni., 35-36, pp. 528
335, © 1996 Elsevier Science, with permission)
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Fig. 11 shows the scheme of a two-input block-structured
model of a polymer-coated quartz-microbalance sensor in
the presence of n-octane and toluene [61]. The impulse
response of the two linear blocks, which describe all the
memory effects of the system, were estimated using the
crosscorrelation approach. The static input-output nonline-
arity was estimated by fitting a five-order polynomial.
However, this method has not been widely applied because
the identification of the model is complicated. In fact, the
use of a nonparametric approach, such as the crosscorrela-
tion method, to estimate the impulse response with low
errors, requires long data sequences. This can result in
time-consurning measurements to identify the sensor array
or, even worse, can be impractical in some applications.

4.4 Drift counteraction

Since all of the approaches described above include mem-
ory effects, they are generally useful to address the problem
of short-term drift (effects in the present response of the
system due to measurements in its recent past). Another
strategy consists of using SOMs with residual plasticity (i.e.
adding a small constant to the expression of 1 in eqn. 13).
This allows the network to deal effectively with small varia-
tions in the sensor response [35, 62].

Long-term drift caused by sensor poisoning or ageing
implies that the system under identification is nonstation-
ary. All the methods, except the neural network approach,
assume that the sensor system is stationary and thus are
not suitable to analyse the effects of long-term drift. It has
been shown that SOMs with residual plasticity can help to
maintain the pattern recognition ability of a sensor system
affected by drift [62]. Fig. 12 shows the identification per-
formances of an electronic nose based on six tin oxide gas
sensors and static and adaptive SOMs. The gases measured
were H,, CO, CO,, CH,, and binary mixtures of both H,,
CO and CH,, CO. Tt shows that if an adaptive SOM is
used, the identification ability of the electronic nose
remains almost unchanged when the drift in the sensor
response 1s up to 20%. However, SOMs with residual plas-
ticity require the frequent measurement of all the patterns.
If this requirement is not fulfilled, patterns that seldom
occur will be forgotten.

Very recently, in some preliminary work, ART neural
networks have been proposed to deal with sensor drift [63].
The short-time memory of the network gives it some
plasticity to adapt to sensor drift, while the long-time mem-
ory may give the necessary rigidity to avoid forgetting pre-
viouslty learnt patterns. ARTMAP (adaptive resonance
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theory supervised predictive mapping) and fuzzy ART-
MAP are nonparametric, adaptive networks that are well
suited to solve pattern classification problems [64, 65]. With
other adaptive algorithms, the learning of new events tends
to wash away the memory traces of previous, but still use-
ful, knowledge. ARTMAP and fuzzy ARTMARP contain a
self-stabilising memory that permits accumulating knowl-
edge to new events in a nonstationary environment [66].
Therefore, the use of these seems to be a promising strategy
to address drift in intelligent sensor systems.
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Fig.12  Comparison of iu'ent;‘ﬁcwian erformaices of novdaptive and adep-
tive SOMs in presence of simuluted n’r{f; in response of a tin oxide gas sensor
array

(From Marco, $., ef af, Proceedings of IEEE Instrumentation and Measurement
Technelegy Conference, pp. 904-507, © 1997 TEEE, with permission)
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5 Outlook and conclusions

There is no universal sensor system that ¢an solve all odour
or gas mixture analysis problems. Instead there is a need to
employ intelligent application-specific sensor systems that
are appropriate to the application. This means building in
intelligence through the development of suitable sensor
structures, sensor materials and pattern recognition meth-
ods [1]. New pattern recognition methods should make use
of the transient information in the sensor signal to enhance
the identification ability of the system. This requires the use
of dynamic models, for the sensor system, which can
account for the drift in sensor parameters and thus extend
the calibration period.

The importance of many problems associated with cur-
rent chermical sensor technology is application specific. If
the system has to analyse low levels of low reactive species,
sensors tend to perform well. If the system has to analyse
high levels of reactive species, poisoning of the sensors is
likely and drift effects become very significant. The baseline
of sensing devices (e.g. metal oxides, polymeric chemoresis-
tors and polymer coated QMB) 1s sensitive to the operating
temperature, the humidity and type of carrier gas [67]. Very
often, the sensors require a long recovery time between
measurement s to reach their baseline. In continuous moni-
toring or repeated measurement applications, the response
of the sensors is mfluenced by their previous history (short-
term memory effect), Under these constraints, the choice of
a suitable modelling strategy should be considered care-
fulty:

* Nonadaptive models can be useful when the application
implies the analysis of weakly reacting species with systems
where temperature and humidity are strictly controlled by
the sample delivery system (i.e. drift is likely to be small in
such a systemn).

* Adaptive models are required when analysis of strongly
reacting species is to be performed (ie. the sensors are
likely to drift due to poisoning). These models can also
handle drift caused by slight variations in the temperature
and humidity of the carrier gas.

+» Of the nonadaptive models, ad hoc parametric models are
interesting because they may give some insight into sensor
behaviour. The measured parameters can be fed directly
into well established pattern recognition systems. Linear fil-
ters and nonlinear models can be used to compensate for
the short-term drift caused by the memory effect of the
array when successive measurements are performed.

* The development of nonlinear, adaptive models in which
competition between component gases occurs may best be
solved using neural paradigms,

* SOMs with residual plasticity can be a good choice when
frequent measurenments of all the patterns are performed.
When this condition is not fulfilled, the ART approach is a
promising one.

These basic ideas are contained in Figs. 13 and 14, where
the suitability of a specific dynamic model to a particular
type of problem is shown. In Fig. 13 the sensor responses
are considered 1o be linear or quasi-linear in concentration.
This is generally the case when the species conceniration is
low, e.g. for conducting polymer resistive sensors, or when

nen-adaptive adaptive
ad hoc linear nonlinear: linear nonlinear:
parametric filters Wiener kernels filters SOM, ART

time-delay networks Wiener kernels

frequent
measurements

low reactive
species non-frequent

measurements

frequent

high reactive measurements

species non-frequent

measurements

v
application

Fig.13  Selection of a dynamical PARC method for iincar or quasi-lnear problems
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Fig. 14  Selection of a dynamical PARC method for nonlinear problems

the concentration range is small and so is step-wise approx-
imately linear. If the sensor response i nonlinear in concen-
tration in a well defined manner, a pre-processing
linearisation algorithm can be used [68]. On the other hand,
in Fig, 14 the selection assumes that the nonlinear part of
the sensor response is important and must be accounted for
in the models. The first attempts to use the dynamic sensor
signals in electronic noses have essentially consisted of the
development of aef hoc sensor-oriented parametric models.
To develop a new generation of electronic noses, there is a
need to extend these models taking into account the effects
of environmental variables such as temperature and humid-
ity, and to implement improved adaptive models to coun-
teract sensor drift and poisoning.
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