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Abstract: The authors report on the use of a sampling devitz to collect the breath from individual 
members of a herd of dairy cattle during a two-week period. The response of an array of six 
semiconducting oxide gas sensors to the breath samples has been recorded and subsequently modelled 
by a time-dependent, linear, second-order system. Four characteristic sensor parameters have been 
estimated using a neural network, and these parameters have been used to train a predictive 
multilayer perceptron network. The results show that either a static response parameter (based on the 
difference in the signal from zero time) or a single time constant can be used to predict reasonably 
well the health of the cow as judged against blood samples. In both cases, the identification rate of 
unknown samples being about 76%. Further improvements may be possible through the use of 
network compensation of variations in sample temperature and humidity. 

1 Introduction 

Ketosis, or acetonaemia, is a condition associated with the 
inefficient use of cattle feed in the dairy industry. It not 
only compromises the health of the cow, but is also associ- 
ated with an economic loss in an industry estimated to be 
worth &I 000 Million per year [I]. Ketosis is traditionally 
identified at its clinical stage by a vet from symptoms such 
as a loss of appetite and the sweet smell of propanone (ace- 
tone) on the cow’s breath [2]. Sub-clinical ketosis is harder 
to identify and is usually diagnosed by analysis of blood 
and milk samples in the laboratory; a procedure that is 
both time-consuming and expensive. Consequently, there is 
a potential market for a simple non-invasive monitor that 
can analyse the breath of a dairy cow in order to predict its 
health, and thus be used to optimise its feeding regime. 
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Device used for sumpling breath of h i r y  cattle 

A preliminary investigation has been carried out [3], in 
whch a small portable breath-sampling device was devel- 
oped by Silsoe Research Institute in conjunction with the 
Universities of Warwick and Southampton (Fig. 1). The 
results were encouraging, and they showed that butan-2- 
one and propanone were present at elevated levels in the 
breath of ketotic dairy cattle relative to the levels of meth- 
ane and dimethyl sulphide. In this paper, we report on the 
results of a more comprehensive study. 

2 Materials and methods 

Seven cows in early lactation were brought into a tie stall 
barn and each fed a ration of SOkg fresh cut grass and Skg 
of concentrate per day. On the third day the grass was 
reduced to 30kg and the concentrate to 1 kg, and the milk- 
ing frequency was increased to four times per day for five 
intervention cows; the other two control cows remained on 
the original food regime and were milked twice each day. 
Samples of blood, milk and breath were taken at least two, 
four and six times per day, respectively. Analyses were 
recorded with reference to a common start time. Feed 
reduction began after 52 hours. 

A hand-held sampling device (Fig. 1) was used to capture 
samples of a cow’s breath and to discharge approximately 
140ml through an electronic nose instrument. The elec- 
tronic nose was a FOX 2 000 (Alpha MOS SA, France), in 
which the pipe-work and sensors were modified to fit the 
application. The six commercial Taguchi-type gas sensors 
employed are specified in Table 1. The Taguchi sensor was 
invented in the 1970s and consists of a pair of electrodes 
monitoring the resistance of a thick stannic oxide film. The 
sensing element is maintained at a constant temperature of 
around 380°C through the use of a platinum heating coil 
driven at 5.0V DC. Many million Taguch-type gas sensors 
have been manufactured and their behaviour is well docu- 
mented 1:4]. 

The electrical responses from the odour sensors returned 
to their base-line values in approximately 1 5min. The elec- 
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Table 1 : Commercial solid-state sensors employed in electronic nose instrument 

Sensor Description Manufacturer Sensor Description Manufacturer 

1 TGS880 - Food/smoke Figaro 5 STAQIA - Air quality FiS 

2 NFIN43 -Ammonia FiS 6 TGS822 -Alcohols Figaro 

3 NF11813 - Hydrocarbons FiS 7 LM35DZ - temperature National 

4 TGS825 - H2S Figaro 8 Minicap2-humidity Panarnetrics 
Heater voltage was set to 5 V DC for all six gas sensors 

Semiconductor 

tronic nose was kept at ambient conditions, and so experi- 
enced an external temperature range of 12 to 28°C; 
however, the temperature of the sensor chamber varied by 
a few degrees around 40°C. The relative humidity ranged 
from 50% to 75% during the measurements. The electronic 
nose was flushed before and after each sample with zero 
grade air raised to about 500/0 r.h. 

The reduction in the feed for the intervention cows pro- 
duced the predicted result of elevated acetone in the breath, 
elevated ketone bodies in the milk, elevated Phydroxy- 
butryate levels in the blood, depressed glucose and eventu- 
ally reduced milk yield, and some clinical signs of ketosis 
(these data will be reported elsewhere). The most common 
clinical sign of ketosis, inappetance, was not apparent until 
the cows were in a weak state. A comparison was made 
between the breath sample and the nearest temporal blood 
sample. The blood analysis allowed the cows to be classed 
as healthy, sub-clinically ketotic and ketotic on the basis of 
the Phydroxybutryate levels. 

3 
samples 

Analysis of response of odour sensor to breath 

3. I Parametric model of dynamic sensor 
response 
Fig. 2 shows a typical plot of the time response of an array 
of semiconducting oxide gas sensors to a sample of cow 
breath delivered using the sampling device illustrated in 
Fig. 1. Conventional analysis of electronic nose data 
involves the determination of the base-line signal in air, 
Vdlr, and the maximum signal in the odour, Pdour, fol- 
lowed by the definition of a suitable static pre-processing 
algorithm, such as the fractional change [5]. 
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Previous work suggests that the dynamic response of a 
semiconducting oxide sensor may be described by a multi- 
exponential model of the system [6], and also that the 
dynamic response contains useful information [7]. Conse- 
quently, we propose a basic dynamic model of the sensor 
system, in which we assume that the input signal (i.e. odour 
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pulse) is an ideal step function at time t equal to zero and 
that the transfer function is a second-order polynomial 
equation. 

We also found that it was necessary to include a variable 
time delay di between the introduction of the odour pulse 
at t = 0 and the response of the sensor i. This time delay 
represents the variation in the time taken for the sampling 
device to be manually discharged, the mixing time of the 
odour pulse in the chamber containing the array of sensors, 
and the open-loop control of the carrier gas pumping 
speed. Thus, the equation used to model the time-depend- 
ent response yxt) of an odour sensor i to an odour is 

YZ(t) = 

KZ 1 - 1 ai exp[-(t - d,) /a ,]  - bi exp[-(t - d i ) /b , ]  
(ai - bi) 

(1) 
[ 

where ai > b,; Ki is the static response term and is strongly 
correlated with the odour intensity; di is a time delay and is 
related to the physical dynamics of the sampling system; 
and the coefficients ai and bi are characteristic time con- 
stants of the system dynamics for sensor i. 

The time constants ai and bj contain both physical and 
chemical information. The dominant feature is assumed to 
be dependent on the nature of the odour, sensing material 
and flow system. For example, there have been reports of 
the effect of odour intensity on the response time of a tin- 
oxide gas sensor [8] as well as the chemical species under 
analysis [9]. The time constant hi represents the initial rapid 
increase in the sensor output when the odour pulse enters 
the sensor chamber. The larger time constant ai represents 
the more gradual decrease in the sensor output for longer 
times when the breath sample has finished entering the 
chamber and it starts to slowly flush out of it. It has been 
shown that it is the first part of the dynamic signal of MOS 
sensors that is most useful for discriminating odours 
because it relates to the chemical rate reaction which is spe- 
cies dependent [ 1 01. 

Note that our chosen, parametric algorithm is a differ- 
ence one (i.e. Pdour - P I r ) ,  in that the response is recorded 
relative to the base-line or zero gas signal. The adoption of 
a difference model is advantageous when the base-line 
signal is known to vary in magnitude because of changes in 
ambient conditions, such as the temperature and humidity. 
The static response parameter Ki and time constants ai and 
bi still have some correlation with ambient conditions, but 
customanly to a reduced level. 

3.2 Estimation of dynamic model parameters 
Our basic sensor model (eqn. I) has four unknown param- 
eters that need to be estimated from each sensor's data. 
Fig. 3 shows a typical least-squares fit of the four-parame- 
ter model to one sensor's data for t > di; in this case, Ki 
takes a value of 6.95V, ai of 15.9s, bi of 1.0s and di of 
13.4s. It can be seen that the overall fit is reasonable; the 
quality of the fit is poorer near the start of the odour pulse 
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because the mixing time is ignored, and for longer times 
when the odour intensity begins to diminish. 
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However, a semi-manual curve-fitting procedure of ths  
nature is rather impractical for the large number of data 
files generated in our experiments (over 200), and a least- 
squares technique is the most well behaved of techniques; 
so an artificial neural network was constructed to estimate 
the parameters in a fully automated, gradient-descent pro- 
cedure (Fig. 4). The four-layer neural network generates an 
output given by 

exp B(t  - d,) 
(2) 

where the new neural parameters of A ,  B, K,, and Kb are 
related to the earlier model parameters by 

yql ( t )  = h', + Ka, exp A(t - d,) + 

Kb, = -~ K'bz and B =  - l / b ,  
(at - b,) 

(3) 
K, and Kh are two constants introduced here that represent 
the static sensor response, and they are set to the values 
given by eqn. 1. The neural network is trained on the time- 
dependent sensor data, using the common back-propaga- 
tion technique, so that the four parameters (al, b,, K, and d,) 
may be estimated for each of the six odour sensors. 

The static response parameter K, was calculated for each 
of the six sensors, and the values have been plotted in 
Fig. 5 to show the sensor interdependencies. From these 
graphs and further error analysis not described here, it was 
evident that sensors 4 and 6 are highly correlated not only 
with each other, but also with sensor 5, and so contribute 
negligible additional variance to the data. Consequently, 
the responses of sensors 4 and 6 were omitted at this stage, 
to leave an array of only four sensors to characterise the 
breath samples of the dairy cows. 
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(Refer to Table I for details of sensors) 

4 
parameters 

There have been several reports on the successful use of a 
multilayer perceptron (MLP) to predict odour class from 
electronic nose data [1&12]. Consequently, we decided to 
construct a basic MLP network, with the input nodes being 
the values of the sensor parameters, a single hidden layer, 
and the target outputs representing the class (e.g. health) of 
the cow. The method of gradient descent was used to train 
a network using half of the data set; the other half was 
used to test the network (i.e. two-fold validation). N-fold 
cross-validation error estimation is usually deemed accurate 
and less computationally intensive than the leaving-one-out 
method [13]; however, a higher fold may give some mar- 
ginal improvement to the classification rate. 

The optimal values of the learning rates, and the number 
of hdden neurones were determined experimentally for 
both a single-output neurone layer and three-output neu- 
rone layer. The single-output network used one output neu- 
rone to categorise the state of health of the cow into one of 
three classes: healthy, sub-clinically ketotic or ketotic, based 
on the three target classes defined by the body fluid data 
within the range of [-1, +1]. On the other hand, the three- 
output network allocated one neurone in the output layer 
per class for the state of health of the cow. 

Table 2: Sensor and neural network parameters used to 
analyse breath samples and classify state of health of cows 

Sensor Network Learning Size of 
parameter(s) outputs rate hidden layer 

Prediction of cow health from estimated sensor 

Ki 1 1 x 10-2 5 
3 4x104  6 

b; 1 4x1(r3 6 
3 1x104 6 

K; and b, 1 3 x l c r 4  4 
3 1x10-3 4 

K;, biand d; 1 1x104 8 
3 3x10" 6 
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Table 2 shows the sensor model parameters selected as 
inputs to the one-output and three-output networks, with 
their experimentally derived values for the optimal learning 
rate and number of units in the hidden layer. 

5 Results 

Table 3 shows a three-class confusion matrix for the predic- 
tion of the state of health of the cows based on one-output 
and three-output neural networks, using only an estimate 
of the static response parameters Ki for an array of four 
sensors. The network was only trained for 1 000 epochs; a 
number experimentally determined to be a suitable point to 
optimise generalisation performance on this data set. For 
both networks, the static response parameter Ki could be 
employed to predict correctly 84% of the clinically ketotic 
cows. However, none of the sub-clinically ketotic cows was 
correctly identified. In the case of the one-output network, 
all three were identified as ketotic. Thus, the state of health 
of 23 out of 34 states (i.e. 68%) was correctly predicted by 
the one-output network in a three-class test, or 76% when 
only discriminating between either healthy or sick (i.e. sub- 
clinical or clinical) cow states in a simplified two-class test. 

Table 3: Confusion matrix for prediction of state of health of 
cows using only sensitivity parameter K, as input to one- 
output MLP 

Actual condition 

Diagnosis Healthy Sub-clinical Clinical 

Healthy 7 (4) 0 (1) 3 (3) 
Sub-clinical 0 (0) 0 (0) 0 (0) 

Clinical 5 (8) 3 (2) 16 (16) 

Class size = 34 12 3 19 
Results for the three-output MLP are shown in brackets 

Table 4 Confusion matrix for prediction of state of health of 
cows using only characteristic time constant parameter bi 
as input to one-output MLP 

Actual condition 

Diagnosis Healthy Sub-clinical Clinical 

Healthy 4 (4) 2 (2) 3 (3) 
Su b-clinical 0 (0) 0 (0) 0 (0) 

Clinical 8 (8) l ( 1 )  16 (16) 

Class size = 34 12 3 19 
Results for the three-output MLP are shown in brackets 

The MLP networks were then trained on the shorter 
time constant parameters b ,  which is an estimate of the ini- 
tial transient response of the sensors to the odour pulse. 
The results are shown in Table 4. It is evident that the per- 
formance of both the one-output and three-output net- 
works are identical and only slightly worse than that for 
the static response parameter K,. The overall three-class 
success rate is (4 + 0 + 16)/34 or 59%, whereas the two- 
class rate is down from 76% to only 62%. However, these 
results suggest that there is si&icant classification infor- 
mation within the dynamic sensor signals, as reported else- 
where [9]. 

MLP networks were then trained using both the static 
response parameter Ki and the characteristic time constant 
bi as inputs. The classification results are summarised in 
Table 5. The results are slightly better than only using the 
time constant bi; with an overall classification of (6 + 0 + 
IEE Proc.-Sci. Meas Technol., Vol. 146, No. 2, Murch 1999 

16)/34 or 65% correctly predicted by the one-output net- 
work in a three-class test, and 68% for the two-class test. 
Therefore, it is evident that the addition of the dynamic 
parameter did not improve the discrimination, but rather 
slightly reduced the sucess rate from 76% to 68%. This 
result may be due to the difference in the size of the two 
networks, with the two parameter network having more 
weights to learn. The introduction of the time delay di pro- 
duced, as expected, no discernible improvement in the dis- 
crimination power of the sensor array. 

Table 5 Confusion matrix for prediction of state of health of 
cows using both static sensitivity parameter Kj and dynamic 
parameter bias input to one-output MLP 

Actual condition 

Diagnosis Healthy Sub-clinical Clinical 

Healthy 6 (5) 2 (2) 3 (3) 
Sub-clinical 0 (0) 0 (0) 0 (0) 
Clinical 6 (7) l ( 1 )  16 (16) 

Class size = 34 12 3 19 
Results for the three-output MLP are shown in brackets 

6 Conclusions 

We have shown that it is possible to predict the health of a 
cow from its exhaled breath using an electronic nose and a 
neural networking technique. Our pattern recognition 
approach differs from others, in that we have designed a 
second-order linear model with a time lag to predict the 
generalised dynamic response of a semiconducting oxide 
sensor to odour pulses. Our four-parameter model has 
been fitted to all of the signals obtained from the response 
of an array of commercial gas sensors to samples taken 
from the exhaled breath of cows in the first study of its 
kind. Using either the set of estimated static response terms 
{K,} or time constants {b{},  it is possible to predict the state 
of health of a cow from its breath with an accuracy of up 
to 76%. These results are encouraging because they were 
obtained employing a ‘difference response’ of an array of 
only four MOS sensors, in which the background air was 
monitored in the field over a two-week period and was thus 
subject to considerable environmental variations, in terms 
of ambient temperature and humidity. Even so, the predic- 
tion accuracy would be improved by a few percent with 
either better temperature control of the sensor chamber 
(current systems now employ closed-loop control to f O .  1 “C 
[14]) or parametric compensation via an input to the neural 
network. 

In practice, we believe that the most sigmfkant source of 
error is from the way in which the samples are manually 
gathered, rather than the repeatability of the electronic nose 
instrument per se (the repeatability of this type of electronic 
nose has been investigated elsewhere [I41 and is less than 
the sampling error estimated here). This must lead to con- 
siderable variation in the levels of odour and water vapour 
present in the sample, estimated to be k20%, which could 
be reduced through a fully automated sampling system. 
Moreover, the classification of the true state of health of 
the cow was based on the body fluid results, which are also 
subject to error. 

Currently, no simple non-invasive monitor of a cow’s 
breath exists. We now believe, on the basis of this work, 
that such a monitor shows considerable promise and would 
help farmers not only to monitor the health of their cows, 
but also to optimise the yield of their milk. 
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