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Abstract. An electronic nose based system, which employs an array of inexpensive
commercial tin-oxide odour sensors, has been used to analyse the state of ripeness of bananas.
Readings were taken from the headspace of three sets of bananas during ripening over a
period of 8–14 days. A principal-components analysis and investigatory techniques were
used to define seven distinct regions in multisensor space according to the state of ripeness of
the bananas, predicted from a classification of banana-skin colours. Then three supervised
classifiers, namely Fuzzy ARTMAP, LVQ and MLP, were used to classify the samples into
the observed seven states of ripeness. It was found that the Fuzzy ARTMAP and LVQ
classifiers outperformed the MLP classifier, with accuracies of 90.3% and 92%, respectively,
compared with 83.4%. Furthermore, these methods were able to predict accurately the state
of ripeness of unknown sets of bananas with almost the same accuracy, i.e. 90%.
Finally, it is shown that the Fuzzy ARTMAP classifier, unlike LVQ and MLP, is able to
perform efficient on-line learning in this application without forgetting previously learnt
knowledge. All of these characteristics make the Fuzzy-ARTMAP-based electronic nose a
very attractive instrument with which to determine non-destructively the state of ripeness of
fruit.

Keywords: non-destructive testing, fruit ripeness, electronic nose, Fuzzy ARTMAP, neural
networks, tin-oxide sensors

1. Introduction

One of the most important objectives in the food industry is
that of achieving a uniform quality both of raw materials
and of the final product. One of the main concerns of
the fruit industry is the systematic determination of fruit
ripeness under harvest and post-harvest conditions, because
a variability in ripeness is perceived by consumers as a lack
of quality.

Most of the traditional methods that have been used
to assess fruit ripeness are destructive and thus cannot
be so readily applied. Some of these methods rely on
the measurement of fruit firmness, which is correlated to
ripeness, by using a penetrometer [1] or an impact force
[2]. Other strategies include measuring levels of chemical
species and parameters that are correlated to ripeness such as
pH, titratable acidity [3], soluble-solids contents (i.e. sugars)
[4] and ethylene contents [5].

The measurement of these chemical species and
parameters generally requires once again the destruction
of the fruit together with complex analytical techniques,
such as gas–liquid chromatography (ethylene) and titration

(acidity) [6].
More recently, non-destructive methods of determining

fruit ripeness have been proposed. These methods include

(i) nuclear magnetic resonance (NMR) [7] and proton
magnetic resonance (PMR) [8] to determine levels of
soluble solids,

(ii) vision systems to determine skin colour of fruit (colour
has been shown to be correlated to sugar contents) [9]
and

(iii) acoustic methods to determine fruit firmness [10].

However, there are problems inherent to these approaches.
NMR and PMR techniques rely upon expensive equipment.
Acoustic methods present the problem of how to reproducibly
couple the acoustic impedances of the emitter and the fruit
to be tested. Fruit colour is, in some cases, only weakly
correlated to fruit ripeness.

An attractive and alternative strategy for determining the
state of ripeness of fruit consists of sensing the aromatic
volatiles emitted by fruit using electronic artificial nose
systems [11, 12]. Electronic-nose systems appear to be very
promising for non-destructively determining fruit ripeness
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Figure 1. The experimental set-up used to analyse the headspace of bananas.

for a number of reasons. The main ones are that they
are based on inexpensive, non-specific solid-state sensors,
which are sensitive to ethylene (the ripening hormone in
climacteric fruit, such as apples, peaches, bananas, etc.) and
to other volatile compounds emitted by fruit during ripening.
Furthermore, once an electronic nose has been ‘trained’, it
does not require a skilled operator and can obtain the results
in a few seconds.

In electronic-nose equipment, the sensor signals are
processed by a pattern-recognition engine that allows the
system to analyse complex aromas. Neural networks have
been used extensively to perform pattern recognition and
good results have been reported for the classification of
foodstuffs, such as beverages [13], coffees [14], fish and
meat [15, 16]. The back-propagation-trained multilayer
perceptron (MLP) paradigm is the most popular pattern-
recognition method in aroma analysis today. However, it
has recently been shown [17] that, in some cases, the Fuzzy
ARTMAP paradigm [18–20] outperforms MLP in aroma-
classification problems. Another promising technique is
learning vector quantization (LVQ), which is a supervised
technique based on the self-organizing-map (SOM) paradigm
[21]. In this paper, we report on the use of an electronic nose
employing an array of four tin-oxide sensors, in combination
with a pattern-recognition engine (Fuzzy ARTMAP, LVQ and
MLP neural networks), to classify the ripeness of bananas.

2. Experimental procedures

2.1. Materials

Three sets of bananas were purchased in turn from a local
supermarket. For each set and without any additional
manipulation, the bananas were placed into standard plastic
food vessels (of volume 5 l). Figure 1 shows the experimental
set-up. The vessels had two small holes in their covers,
to allow the headspace to be analysed with the electronic-
nose equipment. The ambient conditions (temperature and
humidity) of the room in which the bananas were kept were
monitored throughout the test procedure. Each time that a
new set of bananas was analysed, new plastic vessels were
employed.

2.2. Test procedures

The sensor system comprises four tin-oxide odour sensors
from four different manufacturers (see table 1) housed in a
sensor chamber. The electrical conductances of the sensors
vary in the presence of reducing/oxidizing gases. In general,
the conductance of sensors was found to increase as the
bananas ripened. A thin plastic tube was connected from the
input to the sensor chamber to one of the holes in the cover of
the appropriate plastic vessel. A diaphragm pump (Vacuum
Pump Manufacturing Co Ltd, UK) was used to facilitate
sampling of the headspace of the vessel. The headspaces
of the vessel containing the bananas (seven bananas) and the
reference vessel were sampled in sequence as follows.

(i) For the banana vessel, a sample measurement typically
took 10 min to complete. The flow rate was 2 l min−1.
The air removed from the fruit vessel by the pump was
replaced by air from the room.

(ii) For the reference vessel, the tube from the input to the
sensor chamber was connected to an empty plastic vessel
(the reference vessel) and air from the room was then
pumped into the sensor chamber from the vessel. In
this way the sensors were allowed to return to their
baseline over a period of some 50 min after sampling
the headspace of the banana vessel. This was to make
sure that the electronic-nose system was responding to
the banana aromas rather than to any residual smell of
the plastic vessel.

One measurement comprises taking, alternately, a headspace
sample from the banana vessel and one from the reference
vessel.

During the measurements, a sample of each sensor
resistance was taken every 100 ms and stored in a data
file for subsequent processing. The acquisition and storage
system was controlled using LabVIEW© software (National
Instruments Inc) [22].

2.3. The use of banana-skin colour as a class reference

Skin colour has been shown to be related to pigment changes
within the skin of the banana [23]. Furthermore, skin colour
has been shown to be correlated quite well to the sugar
contents, development of flavour and textural characteristics
of the pulp. The ripeness of bananas can be assessed by
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Table 1. Commercially available metal oxide sensors used in the electronic nose.

Sensor Manufacturer Sensitive to

TGS 822 Figaro Engineering Inc, Japan Volatile organic compounds
SP-11(P1) FIS, Japan Hydrocarbons, combustible gases
MGS 1100 Motorola, USA Carbon monoxide
AAS14 Capteur Ltd, UK Volatile organic compounds

comparing the colour of the skin with standardized colour
charts [23]. We therefore elected to use skin colour as a scale
for the non-destructive classification of the various states of
ripeness of the bananas. Twice a day, a picture of the bananas
was taken as a visual record of the various states of ripening.
Using the test procedures described above, three data sets
were gathered as follows:

(i) set 1: 49 measurements were performed with the
electronic nose over a period of 8 days;

(ii) set 2: 35 measurements were performed over seven
consecutive days; and

(iii) set 3: 91 measurements were gathered over a period of
14 consecutive days.

The bananas used for collecting each data set were
initially as fresh as possible, i.e. as green as possible,
but exhibited slight differences in their state of ripeness
(according to their colour). They would also have
experienced all sorts of variations prior to arrival in our
laboratory. However, all bananas of a given set ripen
simultaneously. The numbers of days, samples, etc.
were limited by practical circumstances. Additionally, for
example, no data were collected overnight (for the three data
sets) and over the weekend (for the first data set).

3. Data analysis

3.1. Signal pre-processing

The choice of the data pre-processing algorithm has been
shown elsewhere to affect the performance of the pattern-
recognition stage. In this case a difference model (i.e. the
static change in sensor resistance) was used:1R = Rair −
Rodour . The complete banana data set was then normalized,
by dividing each1R by the maximum value, to set their range
to [0, 1]. This is necessary when the Fuzzy ARTMAP neural
network is used; and, for consistency, the same normalization
was used for the MLP and LVQ. All of the neural networks
were simulated using the NeuralWorks Professional II/Plus
software from NeuralWare Inc, USA [24].

3.2. Clustering of data

The use of PCA, SOM and Fuzzy-cluster analysis to
assess clustering within the data sets is now discussed.
Several classification methods were applied to verify that the
categories established by each method were not arbitrary.
The objective of using these methods was to establish classes
according to the state of ripeness of the bananas.

PCA is a linear method that has been shown to be
effective for discriminating between the responses of an
electronic nose to simple and complex odours [25]. The
method consists of expressing the response vectors in terms of

(a)

(b)

Figure 2. (a) Results of the principal-components analysis of the
response of a four-element tin-oxide sensor based electronic nose
to the bananas’ aromas. Seven clusters or categories appear. These
correspond to seven states of ripeness. (b) A detailed expansion of
an area of (a), showing the boundaries corresponding to categories
e, f and g.

a linear combination of orthogonal vectors. Each orthogonal
(principal) vector accounts for a certain amount of variance
in the data, with a decreasing degree of importance.

PCA was used to investigate how the response vectors
from the sensor array cluster in multisensor space. The
objective of this analysis was to establish simple categories
for the state of ripeness of the bananas. The results of
the PCA, using the data normalized as described in section
3.1, are shown in figures 2(a) and (b). Figure 2(b) is an
enlargement of an area in figure 2(a) to better show the
clusters formed. Two principal components were kept, which
accounted for 99.7% of the variance in the data (PC 1
and PC 2 explained 88.2% and 11.5% of the variance,
respectively). Seven categories appear to be evident. These
categories are summarized in table 2. Most of the variance
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Table 2. Categories of the state of ripeness of the bananas for the
three data sets studied. The numbers in the table indicate the day
on which the measurements were performed. Data set 1 was
gathered towards the end of September, data set 2 in October and
data set 3 in November.

Category Set 1 Set 2 Set 3

a 1, 2 1, 2
b 1–3 3
c 4, 5
d 4 6, 7 3
e 6–8 4, 5
f 6–8
g 9–14

in the data is explained by considering the two first principal
components, which implies that the sensor responses were
highly correlated; this is generally the case with metal-oxide
gas sensors. The loadings associated with figure 2 were
(0.5195,−0.5705) (0.302, 0.2032) (0.5502,−0.3313) and
(0.6530, 0.7236) for sensors 1, 2, 3 and 4, respectively. The
loadings for PC 1 of sensors 1, 3 and 4 were rather similar.
However, since the loadings for PC 2 were quite different,
none of the sensors was omitted.

Table 3 shows the correspondence between the
categories established and banana-skin colour determined
from the photographs. In the context of table 3, it must
be borne in mind that there will be some effect due to the
fact that the bananas in the three sets had been purchased at
different times. Therefore, they will be in different states of
initial ripeness.

According to tables 2 and 3, the ripening process varied
from one set to another. In particular, bananas in the third set
ripened faster than did bananas in the first and second sets.
This may be due to the fact that humidity and temperature
were not constant in the laboratory during the period within
which the experiments were performed. Since there is a
reasonable correlation between categories and skin colours,
it can be assumed that the categories established by PCA are
consistent with there being different states of ripeness.

From left to right in figure 2(a), the categories appear
ordered according to increasing ripeness. However, the inter-
category boundaries are complex in shape (see figure 2(b))
and some patterns that belong to different categories have
very similar scores. This effect may have been magnified
by our experimental approach, which was focused on
practicality of implementation. The occurrence of complex
boundaries suggests that a nonlinear classification method is
needed in order to obtain a good performance in terms of
pattern recognition, rather than linear PCA.

The clusters corresponding to categories a, d and e
exhibit a significant spread in a direction which is almost
perpendicular to the direction of increasing ripeness (see
figure 2(a)). Generally the samples in these categories with
lower values of the scores in PC 2 belong to data sets 1 and
2, and the samples with higher values of the scores in PC 2
belong to the third data set. This suggests that the spread
may be due to drift in the sensor response (the three data sets
were gathered sequentially over a period of some two and a
half months). The categories established by the PCA cluster
together measurements gathered with different banana sets.

Figure 3. The SOM network after training with the three banana
data sets together. Each neurone (or group of neurones) represents
a state-of-ripeness category, which is consistent with the results
obtained by applying PCA.

Furthermore, these categories exhibit a good consistency with
banana-skin colour over the three banana sets. It can be
concluded that the clustering is due to changes in the state of
ripeness of fruit rather than to changes due to sensor drift.

A SOM network is able to accumulate statistical infor-
mation about the environment without any supplementary
information other than that provided by the sensors [26, 27].
A 3× 3 square SOM network was created and trained using
the three banana data sets together. Once the training pro-
cess had finished, each sample was associated with one of the
neurones in the network. Samples that are associated with
the same neurone have been identified as belonging to the
same category. Figure 3 shows the SOM after the training
process. The neurones in figure 3 are labelled according to
the category that they represent. The labels are consistent
with those derived from the PCA.

Fuzzy c-means clustering (FCM) is a data clustering
algorithm in which each data point belongs to a cluster
according to its degree of membership [28]. FCM splits a
data set intoc fuzzy groups and finds a cluster centre for
each group such that a dissimilarity function is minimized.
In FCM, an initial estimate of the number of clusters is needed
before the algorithm can be applied. The results obtained by
applying FCM are shown in figure 4.c was selected to be
equal to 7, to establish seven categories. The results show
that category a was split into two clusters (a1 and a2) and
categories f and g have merged into the same cluster.

In conclusion, it was found that the categories established
and the number of patterns belonging to each category were
very similar for the three techniques. Furthermore, these
categories represent particular states during the ripening
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Table 3. Correspondences between categories in table 1 and banana-skin colour.

Category Set 1 Set 2 Set 3

a Green–yellow Green–yellow
b Yellow, trace of green Yellow, trace of green
c Completely yellow
d Yellow–green tips Yellow flecked with brown Yellow–green tips
e Yellow flecked with brown Yellow flecked with brown
f Yellow flecked with brown
g Yellow, blackening

Figure 4. Results of the fuzzyc-means clustering (withc equal to 7). Each cluster represents a state-of-ripeness category. The results are
consistent with those of PCA and SOM.

of fruit, according to standardized skin-colour charts [23].
Therefore, the seven categories established by PCA were used
as the basis on which to apply supervised neural-network
classifiers. The results of the analysis are presented and
discussed in the following sub-sections.

3.3. Neural networks

The data sets were analysed using the Fuzzy ARTMAP,
LVQ and the back-propagation trained multilayer perceptron
paradigms. Fuzzy ARTMAP and LVQ carry out supervised
learning, as does the back-propagation MLP. However,
unlike back-propagation, Fuzzy ARTMAP and LVQ are self-
organizing and self-stabilizing. Fuzzy ARTMAP has also
been shown to be suitable for incremental learning [18].

Fuzzy ARTMAP generally performs better at learning
than does MLP, for example when there is an uneven number
of patterns of each category in the training set. Other
properties of Fuzzy ARTMAP which make this method
promising for electronic nose systems, include the following
facts [19, 20].
(i) Fuzzy ARTMAP can rapidly learn a rare event that

predicts different consequences from those for a cloud
of similar events within which it is embedded.

(ii) It contains a self-stabilizing memory that allows the
accumulation of knowledge in response to a non-
stationary environment, that is until the memory capacity

is full (the memory capacity can be chosen arbitrarily
large).

(iii) Fuzzy ARTMAP is able to adjust its scale of
generalization automatically to match the morphological
variability of the data. It conjointly maximizes
generalization and minimizes prediction error using only
information that is locally available under incremental
learning conditions.

(iv) Individual recognition categories play the role of hidden
units in the back-propagation model [20]. Unlike the
back-propagation model, Fuzzy ARTMAP discovers,
on its own, the number of categorical ‘hidden units’
that it needs for a specific problem. Conversely, in the
cases of the MLP and the LVQ, the optimal numbers
of neurones in the hidden layer and in the competitive
layer, for a given application, are usually found by trial
and error.

Figure 5 shows the topologies of Fuzzy ARTMAP, LVQ and
MLP neural networks.

3.4. Analysis of the three banana data sets together

For this analysis, the data (175 response vectors from the
three banana data sets) were divided into four folds. Three
folds consisted of 131 training vectors and 44 test vectors,
whereas the fourth one consisted of 132 training vectors
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Figure 5. Architectures of the networks studied. (a) MLP. For
simplicity, only the connections from a neurone in the input layer
(I) to the hidden layer (H) and a neurone in the hidden layer to the
output (O) are shown. (b) LVQ. The inputs are connected to every
neurone in the competitive layer. The neurones in the competitive
layer are inter-connected in a rectangular mesh (not shown) and
connected to one of the output neurones (categories). (c) Fuzzy
ARTMAP network. It basically consists of two ART modules
interconnected by an associative memory (or map field) and some
internal control structures that regulate learning and information
flow. Inhibitory paths are denoted by a minus sign; other paths are
excitatory.

and 43 test vectors. Test vectors were selected at random
without replacement. Since the number of vectors per
category was uneven (e.g. eight replicates in category c and
35 replicates in category e), each category was represented
both in training sets and in testing sets in proportion to its
number of replicates. Table 4 shows the composition of the
test folders.

The networks used had four inputs (one per sensor in the
array) and seven outputs, since a one-of-seven code was used
to code the seven different ripeness categories.

(c)

Figure 5. (Continued)

Table 4. Composition of the test folders, indicating the number of
replicates per category.

Category Fold 1 Fold 2 Fold 3 Fold 4

a 6 6 6 6
b 7 7 8 7
c 2 2 2 2
d 7 7 6 6
e 9 9 8 9
f 6 6 6 6
g 7 7 8 7
Total tested 44 44 44 43
Total for training 131 131 131 132

3.4.1. For Fuzzy ARTMAP. The network had four input
and seven output neurones. The number of neurones in the
category layer was set to 50 (a maximum of 50 nodes could
be committed). However, the number of committed nodes
after each training process was always below the maximum.

(i) The baseline vigilance was set to 0. This is the
recommended value for the vigilance since it allows for
very coarse categories and the match-tracking system
will refine these categories only if necessary.

(ii) The recoding rate was set to 0.5. This value allows
the established categories to be modified if there is a
persistent attempt to do so (slow recoding).

(iii) The values of the choice parameter and error tolerance
(if the output error is greater than the tolerance, then
a reset signal is triggered) were varied. Values of 0.1
and 0.01, respectively, were found to be optimal for this
experiment.

Fuzzy ARTMAP was able to correctly classify 90.3% of the
response vectors. During the training process 25 nodes were
committed.

3.4.2. For LVQ. The networks had four input and seven
output neurones and a variable number of nodes in the
competitive layer.
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Table 5. Results of the state of ripeness classification with Fuzzy
ARTMAP, LVQ and MLP, in terms of numbers of patterns
correctly classified (numbers of patterns to be classified) and
overall performance.

Method Fold 1 Fold 2 Fold 3 Fold 4 Overall

Fuzzy
ARTMAP 38 (44) 41 (44) 39 (44) 40 (43) 158 (175)
LVQ 40 (44) 41 (44) 39 (44) 41 (43) 161 (175)
MLP 36 (44) 36 (44) 34 (44) 40 (43) 146 (175)

(i) Initially the network was trained with a learning rate
equal to 0.06 and the conscience factor was equal to 1.
With this last option, the class winner is always moved
towards the input vector (if it is in the right class) or
moved away from the input vector (if it is in the wrong
class).

(ii) In the second stage, once a ‘relatively good’ solution
had been found, this solution was further refined
by modifying the boundaries between zones where
misclassifications occurred. The learning rate was set
to 0.03.

(iii) The number of neurones in the competitive layer was
changed. It was found that 35 was the optimal number
of neurones for this application.

LVQ was able to correctly classify 92% of the response
vectors.

3.4.3. For MLP. A back-propagation network (with a
learning rate equal to 0.3 and a momentum term equal to
0.4) with four input, six hidden and seven output neurones
was able to attain an 83.4% success rate in classification.

3.4.4. Summary. The back-propagation network required
typically 40 000 training cycles, LVQ required 4000
iterations and Fuzzy ARTMAP required only 150 training
iterations. Thus, the time necessary to train Fuzzy ARTMAP
is more than an order of magnitude smaller than those for the
other two. The numbers of patterns correctly classified are
summarized in table 5. Table 6 shows the confusion matrices
for Fuzzy ARTMAP, LVQ and MLP techniques.

3.5. Assessment of network performance

3.5.1. Student’s t test. A t test was performed to
assess whether Fuzzy ARTMAP and LVQ were performing
significantly better than the MLP in terms of the total number
of patterns correctly classified. The null hypothesis H0

demonstrated that there was no significant difference between
the mean numbers of patterns misclassified by the Fuzzy
ARTMAP and LVQ and the MLP. The hypothesis H0 was
rejected at 5% significance level (t = 2.45 for Fuzzy
ARTMAP; t = 4.49 for LVQ) because the criticalt value
at 5% significance level and three degrees of freedom is 2.35.

3.5.2. Sensitivity and specificity. Other metrics that
are helpful in evaluating the performance of trained neural
networks are the sensitivity and specificity [29]. Here
the sensitivity of a neural network indicates the likelihood
of a category being detected given that it is present.

The specificity of a network is the likelihood that the absence
of a category will be detected, given that it is absent. These
performance metrics are defined as follows:

Sensitivity= nTP

nT P + nFN
(1)

Specificity= nTN

nTN + nFP
(2)

where numbern subscripts are: TP (true positive) means
that the recognition of a category coincides with the actual
category according to the target standard; FN (false negative)
means the non-recognition of a category according to the
target standard; TN (true negative) is the non-recognition of
a category in agreement with the target standard and FP (false
positive) means that a category is recognized incorrectly.
Ideally, both the sensitivity and the specificity should be
equal to unity and their values must be in the range 0–1.
Table 7 shows the values of these parameters for the trained
Fuzzy ARTMAP, LVQ and MLP networks. Even though
the specificity of all the networks are very similar (Fuzzy
ARTMAP and LVQ are slightly better than the MLP), the
sensitivities of Fuzzy ARTMAP and LVQ are clearly better
than that of the MLP, especially for categories c and f.

3.6. Generalizability

The objective here was to study how effectively the networks
were able to predict the state of ripeness of one of the banana
data sets, when the set bad not been used for training the
original neural network; in other words, to assess whether the
networks were able, once they had been trained, to acquire
the knowledge necessary to classify the state of ripeness of
any new bananas. This was performed in two stages.

3.6.1. Stage 1. The patterns in sets 2 and 3 were used
for training (126 patterns, in which the seven categories
were represented) and the patterns in set 1 were used to
test the networks, 49 patterns corresponding to classes b
(21 patterns), d (eight patterns) and e (20 patterns). This
was a difficult problem to solve because the three categories
in the training set (b, d and e) were represented by only eight,
18 and 15 patterns, respectively. Thus, for classes b and e,
there were more patterns in the test set than there were in the
set used for training.

Under these conditions, Fuzzy ARTMAP attained a
performance of 61.2% in the classification of the test patterns,
LVQ gave a performance of 67.3% and the MLP provided a
success rate of 57.1%. The MLP gave an especially poor
performance in the identification of class e (only two out
of 20 patterns were correctly classified). These results are
shown in table 8.

3.6.2. Stage 2. The patterns in sets 1 and 3 were used
to train the networks (140 patterns). All the categories,
except category c, were represented in the training set. The
patterns in set 2 were used for testing. Set 2 contained 35
patterns corresponding to the classes a (ten), b (eight), c
(eight) and d (nine). In the training set, the categories a, b and
d were represented by 14, 21 and 17 patterns, respectively.
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Table 6. Confusion matrices of the banana-ripeness-classification problem with Fuzzy ARTMAP, [LVQ] and (MLP).

Actual category

Predicted a b c d e f g

a 23 [23] (24) (1) 1
b 27 [28] (28) (1) 1 (4) 1 [2] (1)
c 5 [7] (1)
d 1 [1] 2 [1] (1) 1 (2) 23 [23] (22) (2) 1
e 2 [1] (2) 1 [2] 33 [31] (28) 2 [1]
f (1) 1 [2] (4) 21 [21] (14) 2 [1]
g 1 [2] (10) 26 [28] (29)

Table 7. Sensitivities and specificities of the trained Fuzzy ARTMAP, [LVQ] and (MLP) networks for every ripeness category.

Category
Performance
metric a b c d e f g

Sensitivity 0.958 0.931 0.625 0.885 0.943 0.875 0.897
[1.000] [0.966] [0.875] [0.885] [0.886] [0.875] [0.965]
(1.000) (0.966) (0.125) (0.846) (0.800) (0.583) (1.000)

Specificity 0.993 0.986 1.000 0.966 0.964 0.980 0.993
[0.993] [0.986] [1.000] [0.986] [0.972] [0.980] [0.986]
(0.993) (0.959) (1.000) (0.966) (0.986) (0.967) (0.932)

There were no patterns corresponding to category c in the
training set.

This led to performances of 68.6% in the classification of
the test patterns for Fuzzy ARTMAP and the MLP and 74.3%
for the LVQ. The performance was increased to nearly 90%
both for Fuzzy ARTMAP and for MLP and to 96% for LVQ
if only the classification of the patterns in the test set that
belonged to categories represented in the training set was
considered (see table 8).

The results from stages 1 and 2 suggest the conclusion
that all the networks have the ability to apply the previously
learnt knowledge to the classification of new, unknown, sets
of bananas. Even though the numbers of samples correctly
classified by MLP, Fuzzy ARTMAP and LVQ were very
similar, the two latter methods are preferred since they
classified seven out of the eight patterns of class c as either
class b or class d. These are the nearest categories, in terms of
the state of ripeness, to the true category which were present
in the training set. On the other hand, the MLP classified only
three out of eight patterns of class c into the nearest available
categories.

3.7. Incremental learning

The fact that Fuzzy ARTMAP is reported to be able to
perform on-line learning without forgetting previously learnt
patterns makes this approach very attractive compared with
the standard MLP (standard MLPs are trained ‘off-line’)
or the LVQ. This is important because, from a practical
standpoint, in terms of an instrument being used in industry,
the data set used to train the network may be increased during
the development phase by adding new measurements. This
would require the network to be re-trained using the complete
data set in the case of the MLP. This can result in a time-
consuming and costly process. The evaluation of the abilities
of Fuzzy ARTMAP, LVQ and MLP in terms of incremental
learning was performed separately as follows.

3.7.1. Fuzzy ARTMAP. In order to study the ability of
Fuzzy ARTMAP to learn new knowledge without forgetting
previous knowledge, a Fuzzy ARTMAP network was trained
with the first banana data set (see table 2). Then the value
of the recoding parameterβ was set to a small value (0.1).
In this way, a previously learnt category will be slowly re-
coded and a significant change will occur only if a persistent
attempt to modify the category is made during new learning.
Afterwards, the network was further trained using only the
patterns in the second banana data set (see table 2) and tested
with the patterns from the first and second data sets. The
aim was to check that Fuzzy ARTMAP was able to learn the
patterns in the second data set without forgetting the patterns
in the first one. Finally, the network was further trained using
the patterns in the third data set and tested with the patterns
in the first, second and third data sets.

It was found that the Fuzzy ARTMAP performed very
well in this experiment. After each new learning process, the
previous knowledge was not significantly degraded and the
overall performance in learning remained almost constant in
the range [94.6%, 98%]. These results are summarized in
table 9.

3.7.2. MLP. The same process as that described above
was repeated using a MLP. Although the network was able
to learn the new patterns in each successive learning process,
the previously learnt knowledge was significantly degraded
(see table 9). In particular, when a previously learnt category
is not present during a new learning cycle, the knowledge
about this category is forgotten (e.g. category e during the
learning of set 2 and categories b and c during the learning
of set 3). A poor performance in the classification of the
state of ripeness is provided by the MLP (63.4%) after the
incremental learning.

3.7.3. LVQ. The process was repeated again using LVQ.
The network was able to learn the new patterns in each
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Table 8. Results of the study of the generalizability of Fuzzy ARTMAP, [LVQ] and (MLP) networks in ripeness classification, in terms of
patterns correctly classified/numbers of patterns.

Category
Overall Restricted set

Training/tested sets a b c d e performance performanceb

2, 3/1 16/21 8/8 6/20 30/49
[15/21] [8/8] [10/20] [33/49]
(18/21) (8/8) (2/20) (28/49)

1, 3/2 8/8 7/9 0/8a 9/10 24/35 24/27
[8/8] [9/9] [0/8]a [9/10] [26/25] [26/27]
(8/8) (7/9) (0/8) (9/10) (24/35) (24/27)

a Fuzzy ARTMAP and LVQ classify seven out of eight patterns of class c as class b or class d.
b Restricted-set performance when the results in classification of class c, which is not in the training
set, are not considered.

Table 9. Incremental learning on the three banana data sets with Fuzzy ARTMAP, [LVQ] and (MLP). For Fuzzy ARTMAP, the recoding
rate was fixed toβ = 0.1. Data are expressed as numbers of patterns correctly classified/total numbers of patterns in the category.

Category
Performance

Learning/tested sets a b c d e f g (%)

1/1 21/21 7/8 20/20 98.0
[20/21] [8/8] [19/20] [95.9]
(20/21) (8/8) (18/20) (93.8)

2/1 and 2 10/10 28/29 7/8 16/17 19/20 94.6
[9/10] [22/29] [8/8] [15/17] [18/20] [85.7]
(9/10) (27/29) (8/8) (15/17) (0/20) [70.2]

3/1, 2 and 3 24/24 28/29 7/8 25/26 33/35 23/24 29/29 96.0
[21/24] [28/29] [8/8] [14/26] [23/35] [23/24] [23/29] [80.0]
(23/24) (0/29) (0/8) (25/26) (15/35) (21/24) (27/29) (63.4)

successive learning process and, in some cases, was able to
keep the previously learnt knowledge. When no patterns of
a previously learnt category were present in a new learning
process, the knowledge of the category was not degraded
(see category c in table 9). On the other hand, when some
new patterns of a previously learnt category were present,
the weights of the neurones corresponding to this category
are recoded. This results in a degradation of the overall
performance (see categories d and e in table 9).

3.7.4. Summary. In overall terms the performance of
Fuzzy ARTMAP (an average of 96.0%) compares very
favourably with those of the MLP and LVQ, as shown in
table 9.

3.8. Noise rejection

To analyse how the different networks were able to deal with
uncertainty, which is a key factor in any measurement system,
various levels of Gaussian noise (1, 5, 10 and 20%) were
added to the sensor responses and the classification process
was repeated. Figure 6 shows the accuracies in classification
attained by the three networks in the presence of noise. It
was found that noise affected all the networks in a similar
way. However, it was found that, in this application, the
performances of Fuzzy ARTMAP and the MLP were less
resilient to low values of noise than was the performance of
LVQ (see figure 6).

Figure 6. Accuracies in classification of the state of ripeness of
bananas attained by Fuzzy ARTMAP, LVQ and MLP in the
presence of 0, 1, 5, 10 and 20% of added Gaussian noise.

Finally, the incremental learning process was repeated
when 1, 5, 10 and 20% of Gaussian noise had been added
to the sensor signals. It was found that Fuzzy ARTMAP
performed well, even in the presence of noise, and that it
clearly outperformed both LVQ and MLP. These results are
summarized in table 10.

4. Discussion

From table 6, we conclude that there are two main reasons
for the classification performances of the Fuzzy ARTMAP
and LVQ techniques being superior to that of MLP.
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Table 10. Incremental learning on the three banana data sets with
Fuzzy ARTMAP, [LVQ] and (MLP). Data are percentage
accuracies in classification when 1, 5, 10 and 20% of Gaussian
noise was added to the sensor responses.

Gaussian noise added (%)

Learning/tested sets 1 5 10 20

1/1 100 98.0 100 100.0
[98.0] [95.9] [95.9] [89.8]
(91.8) (81.6) (79.2) (77.6)

2/1 and 2 97.6 95.2 91.7 97.6
[84.5] [85.7] [83.3] [78.5]
(69.0) (67.9) (65.3) (63.1)

3/1, 2 and 3 98.3 96.0 92.0 90.9
[80.6] [76.6] [74.8] [72.0]
(64.5) (50.8) (46.8) (44.0)

(i) Fuzzy ARTMAP and LVQ are able to adapt themselves
to the distribution in databases for which the number of
patterns per category is uneven. Thus, whereas Fuzzy
ARTMAP and LVQ are able to classify most of the
patterns corresponding to class c, the MLP classifies only
one pattern correctly. MLP is less able to adapt to the
uneven distribution of samples.

(ii) Fuzzy ARTMAP is able to adjust its scale of
generalization (increasing the vigilance parameter) to
match the morphological variability of the patterns and
thus achieves a better performance than does MLP in the
separation of the classes e, f and g (see figure 2(b)).

(iii) In the LVQ algorithm, when a relatively good solution
has been found, this solution can be further refined
by modifying the boundaries between zones where
misclassifications occur.

Furthermore, there is another property of Fuzzy
ARTMAP and LVQ networks that may explain their
performance.

(iv) Because they are self-organizing, the number of training
patterns and the number of training iterations needed to
match, or exceed, the performance of MLP is lower.

5. Conclusions

Odour patterns from three different sets of bananas were
gathered with an electronic nose instrument. First, seven
different ripeness categories were identified with the help of
principal-components analysis, SOM and Fuzzy clustering
of the sensor responses. This observation is in good
agreement with the seven known classes of banana ripeness
from skin-colour analysis. Then, Fuzzy ARTMAP and
LVQ neural networks were applied to the classification of
the state of ripeness of bananas. An accuracy of 90.3%
was reached in the classification using Fuzzy ARTMAP
(92% was obtained using LVQ). It was found that these
performances compared favourably with that achieved with
back-propagation trained MLPs (83.4%). Furthermore, the
sensitivities and specificities of the trained Fuzzy ARTMAP
and LVQ networks to the established categories were higher
than those of the MLP.

Finally, the training time of Fuzzy ARTMAP was found
to be typically more than an order of magnitude less than
those for back-propagation MLP and LVQ.

The generalizability of the trained networks to the
prediction of the state of ripeness of new, unknown, bananas
was investigated. It was found that the networks had a good
performance, providing 90% accuracy in the classification of
patterns belonging to previously trained categories. If a new
category for which the network had not been trained occurred
during testing, Fuzzy ARTMAP and LVQ associated these
patterns with classes which were the nearest to the actual
state of ripeness and which were already known.

Fuzzy ARTMAP was shown to perform slightly better
than LVQ in the presence of noise. Finally, Fuzzy ARTMAPs
superior ability to perform incremental learning without
forgetting previously learnt patterns was demonstrated in
this application, when it significantly outperformed LVQ and
MLP, even in the presence of added noise.

All these characteristics make the Fuzzy ARTMAP
network very attractive for pattern classification in the context
of real instruments. However, further work to assess the long-
term reliability of the system is needed. In particular, the
effects of sensor drift on its accuracy should be investigated.
The use of a commercial headspace autosampler would
help to ameliorate any inherent limitations in the sampling
process and thus improve system performance, resulting in
a system that is more suitable for commercial applications
to continuous monitoring of fruit ripeness. Nevertheless,
we believe that a Fuzzy ARTMAP-based electronic nose
provides an attractive means of identifying the ripeness of
commercial fruit.
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