Classification of the strain and growth phase of
cyanobacteria in potable water using an electronic nose

system
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Abstract: An electrenic nosc comprising an array of six commercial odour sensors has been used to
monitor not anly different strains, but also the growth phase, of cyanobacteria which is normally
called bluc green algal. A series of experiments were carried out to analyse the nature of two closely
related strains of cvanobacteria, Microcystis aeruginosg PCC 78006 that produces a toxin and PCC
7941 that docs not. The authors have consirucied a measurcment system [or the testing of the
cyanobacteria in water over a period of up to 40 days. After some pre-processing to remove the
variation associated with running the electronic nose in ambicnt air, the two different strains, and
their growth phase, were classified with principal components analysis, multilayer perceptron (MLP),
learning vector quantisation (LVQ), and fuzzy ARTMAP. The optimal MLP network was found to
classify correctly 97.1% of unknown non~toxic and 100% ol unknown toxic cyanobacteria. The
optimal LVQ and fuzzy ARTMAP algorithms were able to classify 100% of both strains of
cyanobacteria. The accuracy of MLP, LVQ and fuzzy ARTMAP algorithms with the Tour different

growth phases of toxic cyanobacleria was 92.3%, 95,1% and 92.3%, respectively.

1 Introduction

The releasc of various chenical pollutants from industry,
aulomobiles and homes, into the environment probably
causes global cnvironmental problems, such as acid rain,
the greenhouse effect, ozone layer depletion, water enrich-
ment [1]. The enrichment of waler by inorganic plant nutri-
ents is fast becoming another severe problem in the quality
ol water and a common source of odour poliution in the
environment [2, 3]. In 1989, widespread foxic cyanobacte-
rial (blue-green algac) blooms occurred in lakes within the
United Kingdom, with associated animal poisonings and
human health problems. When present in large concentra-
tions in lakes and reservoirs, the cyanobacteria blooms
cause serious nuisance. They clog up water trcatment fil-
ters, impart unpleasant tastes to drinking water, and pro-
duce offensive smells resulting from bloom decay. One of
the major problems associated with cyanobacteria is that
they can produce toxins that are eflective against cattle,
wildfowl, fish, and human beings. A wide programme of’
research on cyanobacteria was commissioned m 1990 [4],
So far water analysis has been carried out mostly by the
use of analytical instruments that are based on liquid chro-
matography or optical microscopy in the liquid phase.
These instruments may give precise analytical data, but in
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most cases they need long times for sample analysis. Such a
disadvantage makes clear the importance of the clectronic
nose approach, i.e. employing gas sensors as their counter-
part and the need for new trials to see whether gas sensors
can detect, and classify, odour components in water. The
cleetronic nose technology has been applicd within the food
and drink industry [S] over the past 10 years. In recent
years research has been directed towards heaith and salely.
Previous atiempts Lo identify micro-organisms with an clec-
tronic nose were made by Craven et al. [6] and Gibson er
al. [7].

In this paper the use of an electronic nosc based on 4 6
MOS sensor array s described for the analysis of cyano-
bacteriz cullures grown in water. The strain and growth
phascs of cyanobacleria were classified using principal com-
ponent analysis (PCA), multilayer perceptron (MLP) neu-
ral network, learning vector quantisation (LVQ), and furzy
ARTMAP paradigms.

PCA is a uscful classical pattern recognition technique to
show clearly the groupings of data-sets on a dimensionless
PCA plot. In PCA, a set of lincarly corrclated variables is
transformed into & set of uncorrclated variables (principal
components) such thal the first few components usually
explain most ol the variation in the data-sct.

Artificial neural networks (ANNs) have been widely
applied to data analysis in electronic nosc systems since a
back-propagation neural network was first applied to the
output of an clectronic nose in 1990 [8]. ANNs which
mimic the architecture of the biological olfactory system do
not require an explicit description of how the problem is to
be solved. They learn from the dala and are configured
during a training period. They can cope with highly non-
lincar data and so unlike PCA can be made (o cope with
noisy or drifting sensor data. This is especially true ol the
MLP ANNs trained using back-propagation (BP). Multi-
layer nctworks are more powetful than single-layer
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networks  although more computational intensive, The
MLP nctwork is one of the most popular ncural network
architectures and is suited to a wide range of applications.
It consists of & set of sensory units that constitute the input
layer, one or two hidden layers, and an outpul layer. Neu-
ralWorks Professional H/Plus sollware provides @ compre-
hensive  framework  for  rapidly implementing  ncural
networks, traiming methods, and flexibility to build new
functions. It includes a comprehensive set of network archi-
tecture and training rules tor the design of the network that
best fits the application,

Learning vector quantisation (LVQ) is an improved
supervised fearning technique with a sclf-organising feature
map, The 1L.VQ methed has also been extended by
Sakuraba et af. [9} to handle (urzzy data. The neural net-
work architecture of LVQ is cssentially the same as that ol
the Kohonen nctwork (Fig. 1). The hidden layer in this net-
work is a Kohonen layer, and it carrics out the learning
and classilying. The LVQ scheme consists of LVQI and
LVQ2 algorithms. LVQI, is the basic LVQ learning algo-
rithm that helps all PEs (Processing clements) to take an
active part in the learning. LVQ2 is a fine tuning mecha-
nism, which refines class boundarics. Thercfore the output
from LVQ2 is . the final encoded version of the original
input signal applied to LVQIL.

output layer

Kohonen layer

input layer

Fig.1 Sehentic divgram of a £LVQ with Kokonen fayor

Finally, fuzzy ARTMAP carries out supervised learning,
like the back-propagation MLP does. But unlike back-
propagation, it is scll-organising, scll-stabilising and suita-
ble for incremental learning. Fuzzy ARTMAP is able o
deal with uncertainly, which is a key element in any meas-
urement system, and generally shows superior performance
in lcarning compared with ML Tig. 2 shows the sche-
matic architecture of a luzzy ARTMAP neural nelwork
that consists of two ART modules interconnected by an
assoclative memory and internal control structures. The
orienting subsystem and the gain control are the two major
subgystems, The orienting subsystem is responsible for gen-
crating a reset signal and the gain control sums the input
signal. Inhibitoy paths are denoted by a minus sign and
other paths arc excitatory, One of the main advantages of
fuzzey ARTMAP is that it is able to perform online learning
without forgetting previously learnt patterns. This is very
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important from a practical viewpoint because the real data-
set used to train the network may be inercased during the
development phase by adding new measurement when the
system is applied in an industrial setting.

orienting subsystem

gain centrol
Fig.2  Avchitectre of u fizzy ARTMAP newvad network

2  Experimental procedures

For the measurement of cyanobacteria samples, it was nec-
essury Lo grow blue green algac. The growth medium used
was BG-1 1, which allows us to grow the blue green algac
found in rivers. The medium was made using analytical
grade chemicals and double distilled water, and sterilised by
autoctaving at 15 1b inch 2 for 30 minutes. Table | shows
the composition of a BG-t1 medium.

Table 1: Composition of the BG-11 medium

Chemicals gl
NaNCs i 15
K;HPO,-3H,0 0.04
MgS0,7H,0 0.076
€aCly2H,0 0.036
Citric acid 0.006
FelNH, citrate 0.006
NayMg-EDTA 0.001
NayCO;y 0.02
Trace metal mix Ag+Co* 1(ml I

*Trace metal mix Ag+Co

HaB0, 2.86
MNCly-4H;0 1.81

Zn80, 7H,0 0.222
Na,Mo-0,2H,0 0.390
CuS0,-5H,0 0.079
Co{NQ5)2-6H,0 0.049

Cyanabacteria produce toxic substances when the cyano-
baterial population forms a bloom. There are many lactors
leading to blooms ol cyanobacteria such as physical fac-
tors, temiperature, light and the nutrient. Planktonic cyano-
bateria are very similar to most photosynthetic plankton in
that they require a certain minimun average light intensity
for prowth. Light is usually provided in the laboratory by a
bank of fluorescent tamps (cool white, daylight, or warm
white). The intensity for stock culture maintendance can
vary ecnormously, but a lower intensity than 500 lux is
approprialc o cyanobacteria [10]. The optimum tempera-
ture for cyanobacteria is generally suggested lo be between
1530 C. Rales of nutrient supply may be of more impor-
tance than acival nutrient concentrations. Actually, the
requirements for nutrient substances are variable depending
on the cyanobacteria species. In this experiment, 3.5 1 of
medium (1.5 1 of head-space) was placed in a standard 5 1
glass jar. A small number of cells (contained in 100 ml of
inoculumy) rom the refercnee store (master culture) were
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inogiilated into the meditm. The maintenance of a particu-
lar cyanobactetia culbiire is very lmpmlfml becatise the buc-
teria culture will be seless if 4l the cells die, do not grow
well, or if the eallur is conlariinated with dilfererit micro-
organisms.

The number of éells and cell size dec sensitive indicators
of the physiol og:wal statils of cells. They charige ds the cells
go through fHe different stiges of growth. Thits cell size
and number ¢an be used 10 dedrmine optimum cultire
conditions or growth phase. Small samples of liquid were
extracted and analysed by the commiercidl Celllacls instru-
ment (Mic.‘robial Systent Lid.), dand then it wiis possible (o
meastire the size and distribution of bacteria: The CollF acts
instrument uses electrical Mow unpadanu, deleimination
both to count and sizs priieles and cells in weiter quickly
and easily by using real-time onling sampling techriquies.
Cyariobacteris cells aic passed through & 30mm orilice in
an clectrolytic {luid, the displacoment creating  voltage
pitlses that can be medstired and cownited. The rdange of cell
volume is 0.1 to 450mm? dand information dbout individual
cells i 4 populition cin be gathered dnd dutomatically
down-loaded to # personal compiiter.

Fig. 3 shows th¢ Liyout of the medsirement systeni for
the testing of the eyanobacterii (bluc-green algae) in water.
The system consisted of three main stages: the odour sam-~
pling system, a customised FOX 2000 unit {Alphd MOS
SAj and the CellFdcts iristrument. The sampling system
and the modified F'OX 2000 dre contrelled through custom
designed sofiware writien in LabVIEW «nd run on an
IBM PC compritible computer.

Liqoid samples were extrdcted and andlysed by the coni-
mercial CellFicls instriiivient dand gas samples fiom edch
headspice were introdiiced (o the cleclronic nosc syslem.
Gas flow wiis dirécted throtigh enc of thiee routcs by the
action of three solendid vilves. Fach vessel had d solenoid
vidlve (Lee Company, Manufl, No. LEAAT200118H) asso-
ciated with it. Al any onc time, only onc valve was pow-
ered up. Software run on the PC ultimately controlied the
solenoid valves by dn /O card (National Instruments
LPM-16) and therefore corntrolled gas flow. This subsystem
therefore had thiée channgls [or gas to flow through from
the input to the output with one vessel per channel. The
gas pathways for all channels were designed to bé of equial
length and it wis important to preserve identical gas llow
chiaracteristios across all ¢hidnnels in order to reduce dry
inter-channgl vatiztion. The sampling system was operated
in a cyclic fashion, wherehy 4 sei sequeiice of tivied valve

actudtion was repedted for a predeteriinicd wtimber of

times. It consists of sampling the head space of thrice identi-
cal vessels which contidin referénce (medium) dnd odotr
samples. The relerence vessel, whar selected, allowed the
sensor array to stabilise its response to d kiiown odour.

Next, one of the sarple vesscls was sclected and the change
in sensor response was observed and récorded, It was possi-
ble to set up the sdmipling system (o dctivite any channel al

madiuim (+cyanobiacteria) lamip,

switching valves

a specific time using a LabVIEW program, The sequence
of ¢hannel activation thil was adopted i the LabVIEW
program for cach cydle was; channcl 1 (reference), channgl
2, channel |, channel 3.

The clectronic nose systeni also has a gas volumetric
low-rate sensor, a diaphragm vacuum pump (KNEF Neu-
berger, Manul, No. NMP30KNDC) and some analoguc
op-amp interficing circuitry, that converts the resistance of
the gas sensors into a DC voltage (0 to 10V) for input to
the NI data aequisition ¢ard in a PC. The clectrical signals
[rom the six commerciadl gas scnsors {Alpha MOS SA) were
conditioned and then led info a 12-bit ADC in the LPM-16
card and recorded by d LabVIEW program. The target
gases for six gads sensors (model No.)y were as follows: non-
polar compounds (FIS SP12), hydrocarbons (FIS SPI1),
polar compounds (F18 SP31, FIS SP AQ2), aleoholic com-
pounds‘ (FIS ST MW2) and heteroatomiichloride/aldehyde
(FIS ST41).

3 Results and discussion

3.1 Classification of cyanobacteria strain
Ldch measurement cycle is based on four elements
(medium sample - cydandbacteria A medium — cyanobac-
tetia B). The dverage valugs per cycle and per clement were
taken to reduce the large number of data points over sev-
eral hundred cycles. Tig. 4 shows the lypical shott-lerm
responses ol the sensor drray from the inifial stage of
cyanobacteria  samples. Sensor responses showed some
diurnal variation with the room temperature (but nol sen-
sor chamber temperatore) and perhaps giv humidity, The
target temperature of the sensor chamber was set to 45 C
and the temperdture fluctuation of the main chamber was
arcund —0.3 C during the test @ind it seemed satisfactory to
perform the biological experiment. The temperature and
the humidity of the sensor chamber were stable cvery
cxperiment, thus these vilues can be excluded rom the
data clissification process.

o toxic nontoxic: 52

mc.d:um medlum i -
e 50

g_

temperature, °C

4 a6

outputvoltage, v

{44

tomperature

1 1 1 1 42
0 500 1000 1500 2000 2500
elapsed time, s
Fig:4  Typical sensor rdsporises fromi medivm, toxic eyandbocteria, mediwm
el jontoxic cyandbectena with cicles

Numerous signal pre-processing algorithms have been
eniployed m the application of électronic noses [11-15].
Severdal of the niost promiising pre-processing lechniques

I g preq g q
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Fig.3  Schematic diagram of electronic nose meastrement systen o eollect deta front vwater scamples
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were employed here in order (o optimise the classification
process in this cxperiment. Table 2 shows the sensor signal
pre-processing algorithms, which have been applied. Each
sensor, #, produces a time-dependent signal, xg(s), in
response (o odours as shown in Fig. 4 and it is oflen con-
venient to remove the time dependence of the signal out-
put. We settled upon the difference and  [fractional
difference algorithms with autoscaling and normalisation
techniques. Autoscaling and sensor normalisation  give
equal weighling to cach sensor and thus compensate [or
differences in the magnitudes of the signals. The resulting
pre-processed data were used for PCA, MLP, LVQ and
fuzzy ARTMAP neural networks. All the neural network
analyses were performed using the software package, Neu-
ralWorks Professional 11/Plus (NeuralWare Inc., USA)
[Lo].

Table 2: Examples of signal processing algorithms used in
experiment

Signal processing algorithms Formula

Difference signal
(signal from cyanobacteria a -
signal from medium &

X=X~ Xbj

Relative signal Xij= X5l X B

Xy= \XG — Xpig

k= (ij - Xi[,min)l‘(xii,max = Xigmin
k;‘= {X,'J:‘ )—(,'i)/‘s,‘

Fractional difference
Normalisation of sensor range
Autoscaling

f=sensor, j = odour, s = population standard deviation,
X = average value

0.4
03 4

02 L "

second principal component

.03 . L Lo s . .
0 0.2 04 086 0.8 1.0 1.2 1.4 18

first principal component
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01| Tl ‘f. %
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04 s
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second principal componernt
=
=

P . L e
0.4 0.6 0.8 1.0 1.2 1.4 1.6
first principal component

Fi(g.5 Results of PCA on cyanohacteria samples, PCC 7800 {toxie) and
PCC 7041 (non-toxie)

A PCC 7806

 PCC 7941

a normalised difference model

h narmalised fractional difference model, that separales the data into two distinet
groups.

Fig. 5 shows two examples of PCA results [or cyanobac-
teria samples. The featurc-sets employed were the normal-
ised differcnce model and the normalised fractional
difference modcl, which showed good results for the classi-
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ficalion ol standard chemicals in previous experiments,
Fig, Sa shows that PCA is unable to separate out the two
cyanobacteria Lypes. The targel clusses are indicated by dif-
fevent captions. But this is dramatically improved through
the use ol & normalised fractional difference algorithm,
which is able 1o produce two distinet clusters of the toxic
and non-loxic cyanobacteria (Fig. 5h), The stretched clus-
ters mdicate that sensor drifl occurs over time and is
mainly in the first component. Despile the sensor drifl the
PCA ol the normalised {ractional diference algorithm
exhibited good classilication performance without any
overlap between the two clusters,

input layer
(6 units)

hidden layer
{4 units)

output layer
{1 uni)

Fig.6  Sthenitic diagram of fillly connected threeduyer MLP nehvork with
6 mptt, 4 hicden nevones aid T owipitt

The MLP ANN was used to cope with the nonlinear and
‘drifting” data. The training echnique used s the BP delta
[carning rule. The BP is a commonly used supervised train-
ing algorithm and MLPs arc usually trained using BP. The
architecture of this neural network was a three-layer MLP
network with six inputs, four units in the hidden layer and
one oulpul, The neural nctwork was trained using the data
set which had been pre-processed using the difference
mode! and the fractional difference model. Fig. 6 shows
schemalically the fully conneeled three layer MLP network
uscd. For brevity the network of Fig. 6 is relerred to as a
6-4-1 nelwork. Inputs and output were considered as a
layer alternatively which constitute the network architee-
ture. A tanh function was uscd for the transfer function in
the network because some inputs and outputs have nega-
tive values. The target values were scl to provide binary
outpul, ic. +1 for toxic bacteria and -1 for non-toxic
bacteria. The network traming  paramelers were sl
throughoul to values of learning rate 0.3 and the number
of epochs was 16. An epoch here is the number of sets of
training data presented to the network (learning cycles)
between weight updates. The best MLP sel of parameters
was lound to classify correctly 97.1% of the unknown non-
toxic bacleria samples and 100% of the unknown toxic
bacteria samples on the basis of a sct of 378 training
vectors and 202 test vectors (35% of cross validation) as
shown in Fig, 7.

The LVQ method was applied to the same clectronic
nose data to classity type and growth phase of cyanebacte-
ria {sec next Section 3.2). The target values were sel 1o pro-
vide 1 for toxic bacleria and 0 lor non-loxic bacteria. The
same training and (est sets used for the MLP were applied
to LVQ algorithms. Initially the network was trained with
a learning rate of 0,06 and the conscience factor equal to 1.
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The best LVQ set was found to classily correctly 100% of
the unknown nen-toxic bacteria samples and 100% of the
unknown toxic bacteria samples on the basis of a sct of 378
training vectors and 202 test vectors as shown in Fig. 8.
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a
5
£ 40
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1 2 3 4 5 6
processing algorithm code

Fig.7 B chart showing the percenicge of corsearly clussified 1oxic and non-
toxic hacteria for 6 pre-processing algorithniy

I: difference; 2: dilference autoscaling; 3: difference normalisation: 4: relative;
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Fig.8  Bur chart showing the MLP, LVQ and fizzy ARTMAP classification
probabilty (%5} of correctly dussified toxic and non-toxic hacteria for 2 repre-
sentative pre-processing wigorithms

1+ difference normalisation; 2! fractionat dilference normalisation

B loxic

L| non-toxic

The fuzzy ARTMAP network was trained with cyano-
bacteria dataset like the MLP analysis. The value of the re-
code parameter b was set o 0.5 and a previously learnt
category has been slowly re-coded. This allows the estab-
lished catcgorics to be modified if there is a persistent
altempt to do so. The bascline vigilance was set to 0, which
allows for very coarse categories and the match-tracking
system will refine these categories only if necessary. The
luzzy ARTMAP was able to classify 100% of the cyano-
bacteria samples. During the training process 25 ‘internal
nodes” were commitied.

3.2 Prediction of the cyanobacteria growth
phases

Cellular cutture growth phase influences the odours
released from cyanobacteria cultures. The population was
counted at intervals, a plot of the typical cyvanobacterial
grawth curve that shows the growth of cells over a petiod
of time can be drawn. The design, topology, training meth-
ods and testing methods of each neural network empioyed
to predict the growth phase were identical to those used for
the classification of the cyanobacteria strains. PCA and
three supervised classitiers, MLP, LVQ and fuzzy ART-
MAP were used to predict the cyanobacteria inte the
observed four growth phases. Once again the normalised
[ractional difference model, which showed good results for
the classification of cyanobalteria strains, was used.

162

A series of measurements was performed on toxic cyano-
bacteria cultures. There were three separate cxperimental
runs on ¢ach cyanobacteria culture. Figs, 9-11 show the
growth curve from the CellFacts instrument and the cotre-
sponding PCA result from the output of the clectronic nose
system Lo four different growth phases of threc cyancbacte-
ria. cultures. The growth curves show the cell counts and
sizes against the clapsed time. The true phascs, lag, growth,
stationary and fate stationary (labelled I to 1V} were
obtained by inspecting the growth curves and locating the
changes in the slope against elapsed time. The growth
curves and the PCA plots in Figs. 10 and 11 show very
similar results compared to the result in Fig. 9. This can be
explained by the size of the cells taken from the master cul-
ture because the initial cell size of cyanobacteria culture in
Fig. 9 was 2.2zm whereas the others were 3mm. There is
some overlap of the response vectors in each PCA plot,
corresponding to the transition periods of cyanobacteria
cultures.

counts/ml
mean size, nm

0 100 200 300 400 500 500

0.04
0.03+
0.02}
0.01

-0.01 4
-0.02
-0.031

0.04

-0.05 L . L .
0 a1 0.2 6.3 04 05 06 07

principal component 1
Fig.9  Growth phase plot and PCA residts {adinre 1)

The four growth phases are lag, growth, stationary and late stationary (lubelled 110
IV

principal component 2
[=3

a Growth phase plot of Cellfacts instrument showing the number of celt and cell size
for cyanobacleria over a 700h period

—@—- counts/ml

— B - mean size ()

b PCA results of the response of a six-clement gas sensor based electronic nose o
the headspace of cyanobacteria

The cyanobacteria data-set was divided into three test
folds containing 48 measurements cach (12 measurements
per phase calegory) and the neural networks were trained
using 144 vectors for each fold. Test vectors were selected
at random from each phase without replacement. The net-
works had six inputs and four outputs since a 1-of-4 code
was used to define the four different phases. The conlusion
matrix lor the classification of the growth phases is shown
in Table 3. The classification rates of MLP, LVQ and {uzzy
ARTMAP were similar (92.3%, 95.1% and 92.4%, rcspec-
tively) but fuzzy ARTMAP was the fastest to learn and

Jjudged to perform best because it sell-organises and selects

its own ‘hidden neurons’.
To evaluate gencralisation, MLP, LVQ and [uzzy ART-
MAP were used for the prediction of unknown growth
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Fig. 10 Growth phase plot and PCA resyilts (cidive 2)
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v
o Growlh phase plot of Cellfucts instrument showing the number of cell and cell
size for cyanobactoria over a 800D period
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b PCA resulty of the response of o six-clement gas sensor based electronic nose 1o
the headspace ol cyanobacteria

phases. The patterns in sets 1 (Fig. 9) and 3 (Fig. [1) were
used for training and the patterns in set 2 (Fig. 10) were
used to test the network. This led to a performance of 70%
in the classification of the test patierns for LVQ and fuzzy
ARTMAT and 48% for MLP. The MLP and LVQ nct-
work required typically 25,000 and 2,000 training cycles,
respectively butl [uzzy ARTMATD required only 150 training
iterations, thus it was faster than the others.

Table 4 shows the results of the generalisation tests of
MLP, LVQ and fuzzy ARTMAP network in growth phase
classification, in terms of patterns corveetly classified/num-
bers of patterns. 1L was difficult to recognise the growth

phasc of an unknown eculture that had a different trend
[rom other cultures used for training. It was found that the
majority of errors in the generalisation test occurred in lag
phase and the boundaries between the different growth
phases, this was duc to the implementation of a hard
boundary., This is not the casc with fuzzy ARTMATP that
sets a non-crisp boundary but has similar error in the phase
boundaries.
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Fig. 11 Growsh phuse plot and PCA resilts {cvliure 3)
The four growih phascs are lag, growth, stationary and late stalionary {labelled T to
V)
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4  Conclusions

This study shows the potential application of an clectronic
nosc to the analysis of the quality of potable water.

Table 3: Confusion matrix showing the best performance of growth phase
classification of cyanobacteria using a normalised fractional difference model with

MLPF, [LVQ] and (fuzzy ARTMAP)

Actual phase

Predicted Lag Growth Stationary Late stationary
Lag 140 (1361 (120) 8 [16] (20) 0 4141076}
Growth [41 136 [128] (120} v} 0
Stationary 4[41{4) 144 [144] (144) 0

Late stationary 0 0 140 (140] (128)

Table 4: Results of the generalisation test of MLP, [LVQ] and {fuzzy ARTMAP) network
in growth phase classification, in terms of patterns correctly classified/numbers of

patterns
Growth phase Classification
Training/tested sets Lag Growth Stationary  Late stationary rate (%)
0/50 50/50 2/50 44/50 48
1,3/2 (37501 [45/50] [45/50] " [45/50] 70
(20/60) {48/60) (47/50) (44/50) 70
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An electronic nosc system has been used for the continu-
ous moeuniltoring of the growth of cyanobacteria over a
period of 40 days. Several pre-processing techniques were
cxplored to remove the noise factor associated with run-
ning the electronic nose in ambient air, and the normalised
fractional difference method gave the best PCA plot. Three
supervised neural networks, MLP, LVQ and (uzey ART-
MAP, were used and compared for the classification of
both two strains and four different growth phases of
cyancbacteria (lag, growth, stationary and late stationary).
Our best results show that the toxic strain ol cyanobucteria
was correctly predicted with an accuracy of 100% and that
the growth phase of the toxic cyanobacteria was correctly
predicted for 70% of all unknown samples using T.VQ and
fuzzy ARTMAP. The training iterations of fuzzy ART-
MAP was found to be typically more than an order of
magnitude less than those for the MLP and the LVQ net-
wark. Therefore fuzzy ARTMAP was chosen to be the
best algorithm overall.

The majority of the classification error is associated with
the different growth trend of the cyanobacteria culture and
so il could be reduced significantly if’ the neural network
was trained onlinc. Fven so the errors occurring in the
boundaries between the dillerent growth phases is diflicult
to reduce, cven in fuzzy ARTMAP, so further work is
needed on boundary identification.
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