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Abstract: An electronic nose comprising an array of six commcrciiil odour sensors l ias bccn uscd to 
monitor not only different strains, bid also tlic growth pliasc, of cyanobiicteria which is nornially 
called blue green algal. A series of expcrimcnts werc carried out to ailalysc llic nature of two closcly 
selatcd strains of cymobacteria, i2.liciocysii.s /rciqiiir],sa PCC 7806 that produces a toxin and PCC 
7941 that docs not. The authors liiivc construcled a iiieasurcment systcin for the testing 01 tlic 
cyaiiobactcria in water ovcr ti period oC up to 40 days. Al'ter soiiic prc-processing to rciiiovc thc 
variation associaled with running the eleclronic nose i n  aiiibicnt air, tlic two diffcrcnt stmins, and 
their growth phase, were classified with principal components analysis, multilayer pcrceptroii (MLP), 
learning vector quaiitisation (LVQ), and fuzzy AIITMAP. The optiiiial MLP network was found to 
classify correctly 9 7 . M  of unknown non-toxic and 100'%, of unknown toxic cyniobactcrki. The 
optimal L V Q  and fuzzy ARTMAP algorithms were iiblc to cliissify IOO'%, of both str&ns ol' 
cyniobacteria. The accuracy of M LP, LVQ and f i m y  ARTMAP algorithnis with the four diffcrcnt 
growth phases or toxic cyanobaiclcrki was 02.1'%,, 95.W and 92.3'%), respcctively. 

1 Introduction 

The rclcasc of various chemical pollutants from industry, 
automobiles and homes, into the environment prohxhly 
caiiscs global cnvironmcnlal pi-oblcms, such :is acid rain, 
the greenhouse eiTect, ozone layer depletion, walcr enrich- 
ment [l]. The enl.iclinient of walcr by inorganic plant nutri- 
ents is last becoming another severe problcni in the quality 
or water and a coninion source of odour pollution io the 
environment [2, 11. ln  1989, widespreead loxic cyanohacle- 
rial (blue-green algae) bloom occurrcd in lakes within tlic 
United Kingdoin, with associaled animal poisonings tind 
Iiunian health problems. When pi-cscnt in kirge conccnlra- 
lions in lakes and reservoirs, tlic cyinobacteria bloom 
cause serious nuisance. They clog up water trcatnicnt lil- 
tcrs, impart unpleasant tastes to drinking water, and pro- 
duce oflccnsivc smells resulting from bloom decay. One of 
the major problems associaled with cyiinobaclcria is that 
they can produce toxins that are erective against cattle, 
wildfowl, fish, iind human beings. A wide programme ol' 
research on cyanobacteria was coniniissioncd in 1990 [4]. 

So far water iinwlysis has been ciirricd out mostly by the 
use of iiiialylical instruments that arc based on liquid chro- 
matography or optical microscopy in the liquid phase. 
These instriuneiits inay give precise analytical data, but in  

iiiost cases they nccd long times for yaiiiplc an;ilysis. Such ii 
disadvantage makes clear the iniporkincc of tlic clcctronic 
lime apprmch, i.e. einploying gas seiisors as tlicir counter- 
part and tlic iiccd for new trials to scc whctlicr gas sensors 
will dclcet, and cl;lssify, odour coniponcnts in walcr. Thc 
clccti-onic nose technology has becu applicd within the Lbod 
and drink industry [5] ovcr the past 10 yciirs. In rcccn~ 
years reseiircli has bccn directed towards hcalth and safety. 
Previous atlenipls to iclcntify micro-org~ianisnis with iiii clcc- 
tronic iiosc wcrc nxide by Cfiivcn ci nl. [6] and Gihson cf 
i d  171. 

Tn this paper tlic use of tin electi-onic nose based on ii h 
MOS sensor ai-ray is describcd for thc analysis of cyano- 
bacteria ciilturcs grown i n  w ~ l c r .  The strain and growth 
phascs 01' cyanobaclcria were classified using principal coni- 
poncnl iinalysis (I'CA), multilayer pcrccpti-on (MLP) ucii- 
rill network, Icarning vector quaiitisation (LVQ), and h i a y  
A llTM A P paradigms. 

PCA is a uscl'iil classical patlcrn recognition tecliniquc to 
show clearly thc groupings of data-sets on ti diinciisionlcss 
PCA plot. Ln PCA, a set of linearly corrclated variablcs is 
lninsforiiicd into ii set of uncorrclatcd variables (principal 
components) such that Ihc first few components usually 
explain niosl or tlic variation in tlic data-set. 

Artificial ncurd networks (AN Ns) liavc hecii widcly 
applied to data analysis i n  electronic nose systems sincc a 
bad-propagation neural iiclwork was first applicd to the 
output or iiii clcctronic nose in  1990 1x1. ANNs wliicli 
niiinic tlic architccturc of the biological olf;ictory systcni do 
not i-cquirc an explicit description of liow the problcni is to 
be solved. They lcarn from thc dala xiid arc configured 
during 11 training period. 'I'licy can cope with highly non- 
limar dala and so unlike PCA can be in& Lo cope with 
noisy or driCtiiig sensor data. This is cspccially true of l l ic 
MLP ANNs trained using back-propagation (RP). Multi- 
layer nctworks arc inore powcrfiil tlxm single-layer 
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networks allhougli inore coiiiliiita1ion;il inlcnsivc. The 
MLP network is oiic 01' Llic most popular n c u ~ i l  nclwork 
arcliilccturcs and is s u i k d  Lo ii widc range or applications. 
It consists of a set of sensory units Lhat coiislitiitc tlic input 
layer, one  or two Iiiddcn layers, and ai1 outpiil layer. Ncu- 
ralWorks ProScssioniil I l/I'ltis sof1w;irc providcs 11 compre- 
Iicnsivc framework I'or rapidly iinplcnicnling iiciiral 
networks, training nietliods, iind llexibilily to huild iicw 
runctions. It inclwlcs ii coiiiIirclicnsivc scl of nctworlt arclii- 
Lccturc iiiid Lraiiiiiig 1-tiles Ibr the design of the network tlliil 
hest fits Llic application. 

Learning vector qiiaiilisalion (LVQ) is an  improved 
supcrviscd Icarning tcclinicluc with ii scl~-orgaiiisiiig Sxturc 
map. The I .VQ mcthod liiis iilso been cxtcnded h y  
Sakumha ef d. [9] to Ilandlc l i i n y  datii. The neural net- 
work arcliilccturc of LVQ is  csscnWy tlic sBmc iis that of 
llic I<ohonen nctwoi-k (Fig, I ) .  Tlic hidden liiyci- in this net- 
work is  a I<ohoncii laycr, >iiid it carries out tlic Iciirning 
iiiid cliissiSying. The I.VQ scheme consists of LVQl and 
LVQ2 algorithms. LVQl, is tlic liiisic LVQ Icarning ;iIgo- 
ritliiii h a t  helps ;ill I'Es (Processing clcmciits) to take iiii 

active part i n  tlic learning. LVQ2 is  ti fine tuning nicclia- 
nisin, which relines class houiidiirics. l'licrcforc tlic output 
l?om LVQ2 is .tIic linal cncoded version of tlic original 
input signiil applied to 1.VQI. 

t i l  

Fig. 1 Sihoirir i i  diqqri,ri o/o i,VQ \wiih K o / ~ a i w  / q w  

Finally, l'uary AICI'MAP carries oiit supcrviscd Iciirning, 
likc the back-l".opatg'itioii M L P  docs. Ru t  unlikc back- 
propagalion, it is sclS-organising, sclS-sl;ibilising and suit+ 
hlc l'or iiicrciiiciitiil Icarning. I'irzay AICI'MAP is able to 
deal with uncertainty, which is ii kcy elciiieiil in any nicas- 
iirciiient system, iind gciiei-ally shows superior pcrlhrmancc 
in Icarning compared with MI A'. Fig. 2 shows  the schc- 
iiliitic ai-cliilcdure of a Sirny ARTMAP neural nctwork 
that consists ol' two AllT modulcs inlerconncetcd hy an 
associative " m y  and iiilcriiiil control struclurcs. Tlic 
orienting subsystem uid the gain control iirc the two iiaiJor 
subsystems. 'I'hc orienting suhsyslciii is I-cspoiisiblc for gcn- 
crating ii rescl signal and tlic gain control s u m s  tlic inpiiL 
signal. Inhibiloy paths arc dcnolcd by a iiiiiiiis sign and 
other paths arc cxcikitory. One of tlic iliain advantages of 
I'IILLY ARTMAP i s  that it is ahlc to perSorm online Icarning 
without Sorgetting previously Iciirnt patterns. 'l'his is very 

iiiiporLaiiL Srom ii practical vicwpoinl because the rail data- 
set used to train tlic network iiiay bc incioascd during the 
clcvclopmciit phase by adding iicw ~iicasure~nc~it when Llic 
syslcm is  iipplicd i n  iiii induslrial sctting. 

oriontirig siibsystem 

gain ~onlrol 
Fig. 2 Ad i i I , a rw  U/ u/inzb, Al(7 M A P  ,a.iaril ju, i iwrk 

2 Experimental procedures 

Vor the mcasurcmcnt ol'cyuiohactcria samples, it was IICC- 

cssary to grow hluc grccn algae. The growlli incdium used 
was RG-I I ,  wliicli allows LIS to grow tlic hlue green &ic 
hnnd in rivers. 'l'hc nicdiurii was madc using analylical 
griiric chemicals ;ind douhlc distillcd wakr, and sterilised by 
autoclaving at 15 Ih inch for 30 iaiinulcs. l'able I shows 
tlic coiiipnsition o r a  HG-I I iiicdium. 

Table 1: Composition of the BG-I1 medium 

Chemicals g 1-1 
~~ 

NaNO, 1.5 

K2HP013H,O 0.04 

MgS047H20 0.075 

CaCI,.2HZ0 0.036 

Citric acid 0.006 

FeNHl citrate 0.006 

Na,Mg.EDTA 0.001 

Na2C0, 0.02 
Trace metal mixAS+CoX 

*Trace metal mixA5+Co 

H80,  2.86 

MnCIz4H2O 1.81 

1 (ml 1-l) 

ZnS047H20 0.222 

Na,Mo.04ZH20 0.390 

CuSO,.SH,O 0.079 

ColN0,I2.6H3O 0.049 

Cyanobacteria Iproducc toxic substances wlicii the cyano- 
lliikrial population Ibrms a bloom. There arc many liictors 
Icading Lo hlooms 01' cyinobaclcria such a s  physical Aw- 
tors, LcmpcnitLire, light and Llic nutrient. Plaiilktonic cyano- 

that they require ii certain iiiiiiiniuiii avcnige light intensity 
hi- growtli. Light is tisually provided in Llic lahoratoi-y hy ii 
bank of fluorescciil lamps (cool while, daylight, or warm 
while). The inlcnsity for stock culture i1i;iinlenancc ~ 1 1 1  

vary cnormously, hut a lower iiitcnsily tliaii 500 lux i s  
appropliatc to cyanohaclcria [I I)]. The optiiiiuni tempera- 
ture Col- cyanobactcria is gciiefiilly suggested to be hetwccn 
I 5  -30 C. I<alcs 01' nutrient supply i m y  he of more iinpor- 
tancc t h n  actual nutrieiit concciitl.iitions. Acttially, the 
rcquireincnts Sor nutricnt subslancer arc variable depending 
on tlic cyanohaclcria species. In this experiment, 3.5 1 of 
mcdium (I .5 I 01' hcad-space) was placcd iii a skiiidard 5 I 
glass Jar. A siiiiill number of cells (contained in 100 nil 01' 
inoculum) from tlic rcfcrcncc storc (master ctiltiire) ~\,crc 

tT t>."  L I M  arc very siiiiiliir to most photosynthctic plankton in 
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inoculalcd into the mediiitn. The, ni;iintenance of :I particti- 
lar cyiinolxicteria ciliitlrc is very important b e c a w  tlic hac-. 
terin culture will he useless if all the cclls die; do iiot grow 
well, or if tlic cullurc is  conI:iiiiiilitlc(I wi ih ililTcrcn1 niicro- 
organisms. 

'l'hc number o f  cclls iiiid cell s i x  xre scnsitivc iiidiailors 
o f  the physiologicai stdttis cif cclls. They clxingc :is ihc cclls 
go through the different skigcs of growth. 'I'hiis (:ell s i x  
and nuinhcr c ~ i i  hc iiscd to dcicrmine opliiiiiiiii ciilturc, 
conditioiis or  growlh plmce. Sindl siiinplcs of liquid wcrc 
cxtractcd and analysed by l l ic  coniiiicrci:iI CcllFacts iiislru- 
inciit (Microbial Syslcm l,kl.), xiid then il wi is  possible IO 

measure tlic size mid distrihution of'hactcria. The C:cill::icts 
instrument uses clc~~i- id i i l  (low iinpcdancc delcrmiiiiitioii 
hiill1 lo coiiiil nnd size id  cells in walcr quickly 
ami easily hy using reiil- line s;impling iccliniqtes. 
Cymiobiictcria cells iirc .oiigli ti SOmii orilicc in 
an cicctrolytic fluid. t cniciit crcating voltage 
pulses that can he measured and counted. 'The range or cell 
volumc is  0. I to 450mii' i ind inforination about individual 
cclls in ii populiition alii bd gathcrcd and ~inloriiiiticillly 
down-loaded to a pcl';onili cmipiitcr. 

Fig. 1 shows tlie Liyout of t l ie  iiieasiirciiieiit system fos 
the testing of Ilic cyaiiobacterid (blue-green algae) in witcr. 
The systcin conSislcd o f  tlircc iiiiiiii slagcs: t l ie  odour siiiii- 
pling system, a customised FOX 2000 unit (Alpha MOS 
SA) and [lie CellFacts instriimcnt. l'hc stimpling system 
and the inodified FOX 2000 arc controlled through ctistoni 
designed softvmrc written in LabVlEW k i n d  run on an 
InM PC compatible computer. 

Liquid samplcs ~verc  extrilctcd and analyscd by Lhc coni- 
inel-cia1 CellFacts instrument and gas samples il.oiii e;tch 
lictidspiicc were introduced 10 tilc clcctronic iiosc systcm. 
Gas flow w a s  directed through one OF thrcc routes by l l ic  

T solenoid viilvcs. Faeh vessel had a solenoid 
ompany, Mmul: No. I.liAAI2001 181 I) asso- 
. Ai any oiic tiiiic, only oiic wlvc MVIS ~pow- 

ered up. Software run on the FC ultimately controlled tlic 
solenoid viilves by an I/O car11 (N;itioniil Instrunicnls 
LPM-16) and Ilierel'ore controlled gas tlow. This subsystem 

the input to the output with one vcsscl per chiinnel. The 
gas pathways Ibr all cliiiiiiicls wcrc dcsigncd to hc olicqiial 
length ancl it was important tu preserve identiciil gas llow 

all chiiniidls in oi-der Lo rcdiicc any 
11. Tlic sampling system wiis operaled 

in R cyclic fiishion, whcrchy it sei scqiicncc 01' timed \>RIVC 
actuaiion was repaited for ii prcdetcrniiiicd numhcr of 
times. I t  consisLs ol's;iinpliiig tlic liead spacc o f  Ilircc idcnli- 

Serencc (mcdiuni) iind otloiir 
I, wlicii sclcclcd, allowcd (l ie 
response to a Ihio\vn odour. 
Is W:IS sclcctcd and the clitingc 

in sciisor response Was oljserved and recordcd. I t  was possi- 
hlc to set up the sampling rystcni to iictiviilc any cI%iiiiicI al 

ihcrcfore had tlircc cliiiiincls liir gas i o  flow Llirough frolii 

i i  specific t ime using a LibVIEW progfiiiii. The scqucncc 
01' clitinncl activation hill was adopted iii the LabVIEW 
progr;lnl ror cilcil CYCIC WIS: ciltlllllci I (rcrercIlcc), chillincl 
2, c11annc1 I, cll~lnncl 3. 

The clccironic nose system iilso Iiiis ii gas voliinietric 
Ilow-rate scnsoi-, a diiipliriigiii viiciniiii pump (KNF Neu- 
hcrgcr, Maiiiif, No. NMI 'XKNDC)  and sonic iinaloguc 
op-anip in1crf;icing circuitry, tliiit converts tlic re 
tlic gas sensors into a L ) C  volt;rgc (0 to IOV) for  input to 

ciird in il P C  Tlie clcclrical signals 
I gas scnsom (Alpha MOS SA) were 

condilioncd mil Ihcn k d  inlo a 12-bit ADC in the LPM-I6 
ciird and recorded hy a I-ahVIEW program. The Parget 

Ibr six gas sciisors (iiiodel No.) were a s  folloa~s: mi- 
polar compounds (VIS SPI?), hydrocarbons (FIS SPI l) ,  
polar coinpiiiiiids (VIS SI'S I, F lS SI' AQ2); iilcoliolic coni- 
pounds ( F E  ST MW2) iind lictcroa~om/cIiIol-idL.ialdchydc 
(FIS S14I). 

3 Results and discussion 

3.1 Classification of cyanobacteria strain 
11 iiicmiirciiicnL cycle is hiiscd on four elements 

(iiicdiuiii sample ~~ cyiinohactcria A medium ~~ cyanohac- 
tcria U). Tlie average valucs per cycle and per clcmcnl were 
1iiLcn to rcdicc tlic liirgc minihcr o f  data points over sev- 
e ~ i l  liundrcd cyclcs. Fig. 4 shows i l ic  lypical short-term 
rcsponscs or tlic sensor array from the initial stage ol' 
cyanobiicteria saniplcs. Sensor rcsponscs showed some 
ditiriiiil variation with the room tempertitiire (bot not sen- 
sor cluiiiibcr tcmpcraturc) zind perliqx air hiimidity. T h e  
target tempcraturc 01' Llic sciisoi- chamber- was set to 45 C 
and tlic tcmpcr;iturc Ilucluation of tlic miin chamhcr was 
around -0.3 C: during the test and it secined s;itiskctory to 
perform the hiologiail cxpcrimcnl. The Leiiiperxture and 
the humidity of the sensor climilnx wcrc stahlc cvcry 
cxpcrimcnt, t l i u  ilicsc values can hc cxclucled kom the 
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were employed here in order to optiniisc tlic cliissificiition 
process i n  th is  cxpcrimenl. Table 2 shows the sensor signal 
pre-processing iilgoritlinis, wliicli liiivc been applied. Each 
sensor, i, produces ii titiic-dcpcndenl signal, sf(/),  in 
response to odours as shown in Fig. 4 nnd it i a  oflcn COII- 
vcti ici i t  to remove the time dependence of tlic signal 0111- 
put. We settled upon [lie difl'crence and rmctional 
difftrence algorithms with ittitosailing and iiorniiilisation 
lcchniques. Auloscaling and setisor normaliualiorl give 
equal weighling to cadi sensor and thus coinpensate for 
differenms in tlic tnagnitudcs of lhc signals. The resulting 
pre-promsscd data were used for PCA, MLI', LVQ and 
ftizzy ARTMAP tictital nclworks. All tlic incurill network 
itnalyscs were performed using the software paclwgc, Ncu- 
rdWorks Professional I I /P lus (NeuralWarc Inc., USA) 
WI. 
Table 2: Examples of signal processing algorithms used in 
experiment 

Signal processing algorithms Formula 

(signal from cyanobacteria a -  
signal from medium bl 

~~~ ~~ 

Difference signal x # = x $ , l - x b , , j  

Relative signal xu= xi;#Ix6,;# 
Fractional difference xu= ( X i ; #  -x$,$lx6,,j 

Normalisation of sensor range k l=  ~~~~x,~,~,,~M(x~~,,, , ,-x,~ ,,, ;,,I 
k..- (p- a..)/s, Autoscaling cl- t, i, 

i =  sensor, j =  odour. ,s = population standard deviation, 
2 =average value 

0.4 I 

~,~~-. i - -L.  1 .  _ - I  

0 0.2 0.4 0.6 0.8 1.0 1.2 1 4  1.6 
flrsl prlnclpal cumponent 

0 
0.5 r 

Fig. 5 shows two cxamplcs 01' PCA rcstills lor cyanolxtc- 
tcria samples. The feature-sets eiiiploycd were tlie nomi l l -  
ised differcncc modcl and the nonixiliscd l'raclional 
dirt'crciice model, which showed good t-cstilts Tor the classi- 

IllR hoi-Sii d4,"T. 'IhB,,<,i, l',,i. 147, No ' I ,  ./id,. zllllo 

liciition ol' staialard clicmiciils in previous experiments. 
I'ig. S o  sliows that PCA is iiiiablc to sepafiilc oul tlic two 
cyatiolxictelia lypes. The targel cliisscs arc indicaled by dif- 
ferent ciiplions. Hut this i s  dreinatically improved through 
t l ie iisc of ii noi-maliscd rractional diiltrencc ~tlgorithm, 
which is able to produce two distinct clusters 01 the toxic 
and inon-loxic cyanolxctcria (1:ig. 5h). 'The strctched clus- 
L C ~ S  iiidicitte tllat sciisoi- drill occtirs over time and is 
m;tinly iii tlic lirsl coinpoiient. Ucspitc tlic SCIISU~ drift thc 
I'CA of the noriiiiilised fractioiial clifl'crciice algorithm 
cxhihited good elassilication pcrl'orniancc willlout any 
overlap liclwcen tlic two clustcrs. 

iiiput layer 
16 units1 

Fig. 6 
6 i)iinil, 4 hiilikw iimr,~i~,.s mai i i i i i i i ~ r i  

,Sr/wmuic diqywrri 01 / d / i ,  i r i i i i iedwi h w l i t j w  hi/./' ~ W I W ~ ~ C  a?iii 

l h c  MI.1' A N N  w a s  tised to  cope wi lh tlic iioiilinear and 
'driliiiig' daki. Tlic training Lcchniqiic uaed is the 111' delta 
IC. ,iining . ' rtilc. Tlic RI' is  a coinmotily u s d  supcrvised train- 
ing algovittiin and ML.Ps iiic usually lrairicd using HI'. The 
arcliitcclure or this nciiriil network was it tlircc-layer MLP 
network with six inputs, four t i i i i l s  in (lie hidden layer and 
one output. Tlic ticiiI.:iI network was trained tising lhe dala 
set wliic11 h i d  bccn prc-processed using lhc dii"krenm 
iiiodcl a i d  tlic t'ractional dilfcioncc tnodel. Fig. 6 shows 
schcniiitically tlic fully conncclctl tlircc layer M1.1' network 
I I S C ~ .  For Ibrcvily the iiclwork or Fig. 6 is  referred to a s  >I 

6 ~ 4 ~  I iictwork. Inpiits and uiitIxit wcrc considered as a 
layer altcrnalively wliicli coiistitutc tlic network architcc- 
tiire. A titnli l'iinctioii wiis iiscd for the tl.;insfer function i n  
Llic inclwork heciiusc soiiic inputs a r i d  outpiits have ncga- 
live viilucs. T h e  target values were set to providc binary 
oulput, i.e. +I for toxic bactcl-i;i and I for non-toxic 
lxictcria. ?he  network training pamiiictcrs were scl 
tlirougliout to values 01' leariling u t e  0.3 and [lie number 
of cpocl~s was 16. AII c p d r  licrc ia tlic noinhcr of sets of 
Lraining data prcscntcd LO tlic tictwork (Icarning cycles) 
helwccn wcighl updaccs. 'l'lie hcsl M L.P set of panmieters 
was Ibuntl to classil'y correctly 91. I'X the unknown non- 
toxic bactcria samplcs and 100'%, of the unknown toxic 
biiclct-iii samplcs on the hasis of a set of 37X training 
vectors and 202 test vectors (35'X of cross milidation) a s  
shown i l l  Fig. I .  

The LVQ iiictliod was applied to llic siliiic clcctronic 
tiosc c ia (a  10 classiry type titid growth pliiisc of cyinobacte- 
ria (sec i c x t  Section 3.2). l 'hc target values were set to pro- 
vide I Ibr toxic bacteria and 0 Ibr noit-toxic bitcteria. The 
SRII~C twining and test sets tiscd for t l ie MLP wcrc applied 
to LVQ algorithms. Inilially the network was  trained with 
ti Icarning Kite 01'0.06 ancl thc conscience ihctor equal to 1, 
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The best LVQ set was found to classify corrcclly 100% ol' 
the unknown non-toxic bacteria saiiiplcs and 100% of the 
unknown toxic bacteria samples on the basis ol'a set of 378 
lraining vectors and 202 lest vectors RS shown in Fig. 8. 

0.03 
N 'i 0.02 
e 0.01 
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MLP LVCI fuzzy ARTMAP 
Fi 8 I k  c l w  . s lwwih~ ihe MLI: LVQ m i  fuzzy ARTMAP d~rasi//wiim 
p%liliy &j , I /  conw.ri). d i r w ~ / i ~ ~ d  i o  r i c  und i tmmwic barwio JiJr 2 repre- 
.s<miuiiw Iw./mws.~in~ ulgwiihms 

IOXiC 
U Iioii-loiic 

l ion 2 flaclioiiiil dilkaricc iinmiiilisiiliiiii 

The fuzzy ARTMAP network was trained with cyano- 
bacteria dataset like the MLP analysis. The value of the rc- 
code parainctcr b was set to 0.5 and a previously learnt 
category has been slowly re-coded. This allows the esliih- 
lishcd categories to bc modified if there is a persistent 
attempt to do so. The baseline vigilance was set to 0, which 
allows for very coarse categories and the match-tracking 
system will refine these categories only il' ncccssary. Thc 

bacteria samples. During the Lraining process 25 'ititernid 
nodes' wcrc committed. 

3.2 Prediction of the cyanobacteria growth 
phases 
Cellular culture growth phase influences tlic odours 
released from cyuiobacteria cultures. The population was 
counted at intervals, a plot or tlic typical cyanobacterial 
growth curve that shows the growth of  cclls over a period 
of time can be drawn. The design, topology, training nieth- 
ods and testing methods of  each neural network employed 
to prcdicl the growth phase wcre identical to those used for 
the classification ol' the cyanobacteria strains. PCA and 
three supervised classifiers, MLP, LVQ and Rruy AKT- 
MAP were used to predict the cyanobacteria into the 
observed four growth phascs. Once again the normalised 
rractional difl'crcncc model, which showed good results for 
the classification of cyanobatcria strains, was used. 

f ~ z y  ARTMAP was able to classify IOO'X of the c y ~ i o -  

I62 

A series of measurements was pcrfonned on toxic cyano- 
bacteria cultures. There were Ihrcc scparalc cxpcrimcntal 
runs on each cyanohacleria culturc. Figs. 9-1 I show the 
growth curve from thc CellFacts instrument and the corre- 
sponding PCA rcsult from the output ofthc electronic nose 
syslcm Lo four difTcrcnt growth phases of three cymobacte- 
riii cLiItures. The growth curves show the cell counts and 
sizes against the clapsed time. The true plxiscs, lag, growth, 
stationary and liitc stationary (labcllcd I Lo 1V) were 
oblaincd by inspccting the growth ciirves and locating tlie 
changes in the slope against elapscd time. The growth 
curves and Llic PCA plots in Figs. 10 and I I show very 
similar rcsiilts coinpiired to the result in Fig. 9. This can bc 
explained by the size of the cclls taken from the inaslcr CIII- 
tiirc bcc.causc [lie initial cell size 01' cyanobacteria culture i n  
Fig. 9 was 2.2mi whereas the others were 3mn. There is 
some overlap o l  the response veclors in ciich PCA plot, 
corresponding to the transilion periods of cyanobiiclcria 
cultures. 
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The cyanobaclcria dala-set was dividcd into three test 
folds containing 48 nic;isui-ciiicnls cach (12 mcasureiiients 
per phase calcgory) and the neural networks were trained 
using 144 vectors for each fold. Test vectors were selected 
at random from each phase withoul rcplaccnicnl. The net- 
works had six inputs and four outputs since a I-of-4 code 
was used to define the four direrelit plmcs. The confusion 
inatrix Tor the classilicalion of the growth phases is shown 
in Table 3. The classification rates of MLP, LVQ and fuzzy 
ARTMAP were similar (92.3'%, 95.1% and 92.4'X, rcspcc- 
lively) but hzzy  ARTMAP was the fkstest to Icai-ii and 
judged to perl'orm best bccausc it sclllorganiscs and selects 
its own 'hidden neurons'. 

To evalualc gcinralisation, MLP, LVQ and Timy ART- 
MAP were used Tor the prediction of uitknown growlh 
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phases. The palterns in scts I (Fig. '9) and 3 (Pig. I I) wcrc 
used Tor training and the piillerns in se1 2 (Fig. IO) were 
used to tcst tlrc iiclwork. This led Lo ii performance 01'70'%, 
in the classilicalion 01' lhc test Ipittcrns for LVQ and t'tlzry 
AK'TMAP and 48'X for MLP. The MLP and LVQ nct- 
work required typically 25,000 and 2,000 training cycles, 
respectively but Tiizzy AIITMAP rcquirctl only I50 training 
iterations, thus it was faster L l i a i i  the othcrs. 

Table 4 shows llic rcsults oT the gcncl.alis;ition lcsls of 
MLP, LVQ and fiirzy AICI'MAP nclwork in growth plisse 
cliissification, in teriiis of patterns correctly classilictlinum- 
bcrs of patterns. I1 was difficult lo recognise tlre growth 

phase of an  unknown cullurc that hiid a different lrend 
Trom othcr cdturcs used Tor training. It was lhund that the 
majority of errors in the gcncralisation lest occurred in lag 
pliiisc and the boundaries between the diflicrcnt growth 
plrascs, Lliis wiis due to tlic iniplcnicnlalion oT a hard 
boundary. This is not lhc case with fiazy ARTMAP that 
sets a nowcrisp boundary hut has similar error in tlre phase 
boundill.ies. 
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Table 3: Confusion matrix showing the best performance of growth phase 
classification of cyanobacteria using a normalisedfractional difference model with 
MLF', [LVQI and (fuzzy ARTMAP) 

Actual phase 

Predicted Lag Growth Stationary Late stationary 

Lag 140[136111401~ 8[161(20) 0 4 141 (16) 

Growth [41 136 I1281 (120) 0 0 

Stationary 4 [41(4) 0 144 I1441 (144) 0 

Late stationary 0 (4) 0 14011401 (1281 

Table 4 Results of the generalisation test of MLP. lLVQl and (fuzzy ARTMAP) network 
in growth phase classification. in terms of patterns correctly classiliedlnumbers of 
patterns 

Classification Growth phase 

Traininghested sets Lag Growth Stationary Late stationary late - 
0150 50150 2150 44150 48 

1, 312 [31501 [451501 1451501 [451501 70 

(201501 (48150) 1471501 (44150) 70 
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An electronic iiosc system liils bccii tiscd for the continu- 
ous monitoring (if the growlh of cyanobacleria over B 
pcriod of 40 days. Severiil prc-pro iiig tccliniques wcrc 
explored to remove [he iioisc lictor associated with run- 
ning the electronic nose in ambient air, and the normaliscd 
l"ractiona1 dill'crcncc method gave the best I'CA plot. Threc 
supervised neural networks, MLI', LVQ and llizzy AICr- 
MAP, were uscd and compared for tlic classification of 
both two strains and four difkrent growth phases of 
cyiinobacteria (lag, growth, sliitioilary and late stationwy). 
Our best results show that the toxic strain 01' cyiiiobackria 
was correctly predicted with tin sccunicy of 100% mil that 
the growth phase of the toxic cyanobacteria was corrccctly 
predicted for 70% of all unknown samples usiiig LVQ and 
fumy ARTMAP. The training iteralions of ftizzy ART- 
MAP was h i n d  to be lypically niorc Lhan an order of 
magnitude less than those for the MLP and the LVQ ncl- 
work. lherefore fuzzy AKTMAP was chosen to he the 
best algorithm overtill. 

Thc nxtjorily or the classiliaition error is associated with 
the different growth trend of the cyanobacteria culture and 
so il could bc I-cduced sigtiilicanlly if Lhc ncural network 
was trained oiiliiic. Evcii so thc errors occurring i n  ~ l i c  
boundaries bclwecn the dill'crcnl growth phases is dilficull 
lo reduce, cvcii in l'iizry ARTMAP, so liirtlici- work is 
needed on boundary identification. 
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