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Abstract

A measurement system has been developed for the testing of cyanobacteria in water, and it consists of three main stages: the odour
Ž .sampling system, an electronic nose e-nose and a CellFacts instrument that analyses liquid samples. The e-nose system, which employs

an array of six commercial odour sensors, has been used to monitor not only different strains but also the growth phase of cyanobacteria
Ž . Ž . Ž .i.e. blue-green algae in water over a 40-day period. Principal components analysis PCA , multi-layer perceptron MLP , learning vector

Ž .quantisation LVQ and Fuzzy ARTMAP were used to analyse the response of the sensors. The optimal MLP network was found to
classify correctly 97.1% of the unknown nontoxic and 100% of the unknown toxic cyanobacteria. The optimal LVQ and Fuzzy ARTMAP
algorithms were able to classify 100% of both strains of cyanobacteria samples. The accuracy of MLP, LVQ and Fuzzy ARTMAP in
terms of predicting four different growth phases of toxic cyanobacteria was 92.3%, 95.1% and 92.3%, respectively. These results show
the potential application of neural network based e-noses to test the quality of potable water as an alternative to instruments, such as
liquid chromatography or optical microscopy. q 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

The diversity of cyanobacteria species is becoming both
a severe problem in the quality of potable water and a
common source of odour pollution in freshwater reservoirs

w xand local environmental water 1,2 . It has been associated
with sewage effluent, industrial effluent, waste products
from agriculture, and animal wastes from intensive farm-
ing. Cyanobacteria, which are usually called blue-green
algae, grow in lakes and reservoirs and can be a serious
nuisance due to their unpleasant odour and taste, in the
case of reservoirs. The cyanobacteria is the largest group
of photosynthetic prokaryotes and contain chlorophyll that
differs from the bacteriochlorophylls of the photosynthetic
eubacteria. The main problem associated with certain
cyanobacteria is that they can produce toxins that are
poisonous to cattle, wildfowl, fish and people. Many
species of cyanobacteria have been observed to produce
these toxins. The toxins can be divided into three groups:
peptide hepatotoxins, neurotoxins and lipopolysaccharides.
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Thus, appropriate methods to detect and quantify these
toxins in natural waters are very important. Here, we

Ž . w xreport on the use of an electronic nose e-nose 3 , based
Ž .on an array of six metal oxide semiconductor MOS

sensors, to analyse cyanobacteria cultures grown in water,
with the intent to provide a simple tool to test the quality
of potable water as an alternative to analytical instruments
that are based on liquid chromatography or optical mi-
croscopy. Earlier work on microbial detection has been

w xreported on Escherichia coli grown in blood medium 4 ,
w x w xbiopharmaceutical process 5 and vagina infection 6 , and

shows that an e-nose has potential application within the
fields of bioprocess monitoring and medicine.

2. Experimental

We have constructed a measurement system for the
testing of the cyanobacteria over a period of 40 days. The
system consisted of three main parts: the odour sampling

Žunit, the Warwick-modified Fox 2000 unit Alpha MOS,
. ŽFrance and a CellFacts I instrument Microbial System,
.Coventry . The number of cells and cell size are sensitive

indicators of the physiological status of algal cells: they
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Table 1
Examples of signal processing algorithms used

Signal processing Formula
algorithms

X XŽDifference signal signal x s x y xi j a, i j b, i j

from cyanobacteria a
.– signal from medium b

X XRelative signal x s x r xi j a, i j b, i j
X X XŽ .Fractional difference x s x y x r xi j a, i j b, i j b, i j

Ž .Normalisation of k s x y x ri j i j i j,min
Ž .sensor range x y xi j,max i j,min

Ž Ž .Autoscaling x is mean, k s x y x rsi j i j i j i

and s spopulation
.standard deviation

change as cells go through the different stages of growth.
Cell size and numbers can be used to determine optimum
culture conditions and growth phase. Small samples of
liquid were extracted and analysed using a commercial
CellFacts instrument, which measures the size and distribu-
tion of the bacteria. An e-nose based on an early Fox 2000

Žinstrument comprising an array of six commercial odour
.sensors has been used to monitor not only different

strains, but also the growth phase of the different strains of
cyanobacteria. A series of experiments were carried out to
analyse the nature of two closely related cyanobacteria,
Microcystis aeruginosa PCC 7806, which produces a toxin,
and PCC 7941, which does not. The sampling system was
operated in a cyclic fashion, whereby a set sequence of
timed valve actuations was repeated for a pre-determined
number of times. It consisted of sampling the headspace
Ž . Ž .1.5 l of three identical vessels 5 l , one of which

Ž .contained just 3.5 l of growth medium nutrient water
while the other two were inoculated with a small number
of cells in 100 ml of inoculum. The growth medium

Ž .BG-11 was made using double distilled water and vari-
w xous analytical grade chemicals 8 . The reference vessel

Ž .was sampled for most 80% of the duty cycle and this set
the output of the sensor array to the headspace of the pure
growth medium and not ambient air. Each of the two
inoculated vessels was selected in turn and the change in
sensor responses observed and recorded by a PC running a

Žcustom virtual instrument under Labview 6.0 National
.Instruments . See the next section for typical plots of the

sensor signals recorded.

3. Results and discussions

Several data pre-processing techniques were investi-
gated, having been selected following the results from

w x Ž .earlier work 2 see Table 1 . These algorithms condition
the input signals from the sensor array prior to pattern
recognition that, like the mammalian olfactory system,
performs data compression and noise rejection. Any sys-
tematic bias of the sensor signals can be reduced at this
stage. Each sensor i produces a time-dependent signal,

X Ž .x t , in response to odour j, and it is often convenient toi j

remove the time dependence of the signal output. Au-
toscaling and normalisation give equal weighting to each
sensor and thus compensate for differences in the magni-
tudes of the signals. The resulting pre-processed time-inde-
pendent parameters were then used for the principal com-

Ž .ponents analysis PCA , and for the analysis using the
Ž .multi-layer perceptron neural network MLP , learning

Ž .vector quantisation LVQ and Fuzzy ARTMAP neural
networks. All the neural network analysis was performed
using the software package, NeuralWorks Professional

Ž .IIrPlus NeuralWare, USA .

Fig. 1. Plot of the voltage signal produced by gas sensor 2 over the lifetime of the cyanobacteria. The broad line is due to the compression of hundreds of
Ž . Ž .sampling sequences as seen in Fig. 2. The observed periodic variation in a baseline is attributed to diurnal variation in ambient air quality and b pulse

height is attributed to ambient temperature producing diurnal variation in the cell metabolism on top of that associated with cell growth phase.
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Ž . ŽFig. 2. a Plot of voltage signal produced by gas sensor 2 over three sampling sequences. The baseline signal appears stable over this short time period 42
. Ž .min while the toxic and nontoxic pulses heights are similar. b PCA results of second and third principal components on cyanobacteria samples, PCC
Ž . Ž .7806 toxic and PCC 7941 nontoxic . The first component contains intensity information and helps in the discrimination of growth phase rather than

w xstrain. However, it still shows good separation between clusters 8 . The raw data are pre-processed using the normalised fractional difference model.

Fig. 1 shows the response of a single sensor over the
entire experiment. There is considerable long-term varia-
tion in the baseline value of some 50%, and diurnal

variation of some 15%. We attribute these phenomena to
changes in the properties of the ambient air, such as
pollutants, and perhaps some slight aging of the growth

Ž . Ž . Ž .Fig. 3. A bar chart showing the MLP, LVQ and Fuzzy ARTMAP classification probability % of correctly classified toxic black and nontoxic grey
Ž . Ž .bacteria for two representative pre-processing algorithms; 1 difference normalisation, 2 fractional difference normalisation.
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medium. Considerable effort was made to make sure that
we did not learn sensor drift. First, a control experiment
was run in which all three vessels contained the growth
medium and no discernible signal was observed while
switching between vessels. Second, we repeated the exper-
iment with the alternative vessels containing toxic and
nontoxic inocula. Thirdly, we grew separate cultures of
bacteria at different times to sample out of chronological
order. Finally, we also looked at the mass spectra and

Ž .found that it again correlated to headspace. Fig. 2 a shows
the actual signal from a single sensor over a short period
of time with the fall in signal on introducing an inoculated

Ž .vessel’s headspace clearly visible. Fig. 2 b shows a PCA
plot of the entire data set using the normalised fractional

Ž .difference algorithm defined in Table 1 . The PCA plot of

the second and third principal components displays the two
Ždistinct strains of cyanobacteria; the first component 97%

.of variance gives discrimination with elongated clusters
w x8 , because it contains information about the odour inten-

Ž .sity concentration and this correlates better with the
Ž .growth phase see Fig. 4 . The best MLP set of parameters

Ž .based on back propagation using the delta learning rule
was found to classify correctly 97.1% of the unknown
nontoxic bacteria samples and 100% of the unknown toxic
cyanobacteria on the basis of a set of 378 training vectors
and 202 test vectors from total a 580 of vectors. The best
LVQ and Fuzzy ARTMAP were able to classify 100% of
both types of cyanobacteria. The results for MLP, LVQ
and Fuzzy ARTMAP are summarised in Fig. 3. Further

w xdetails may be found in Ref. 7 .

Ž . Ž .Fig. 4. a A growth phase plot, using a CellFacts instrument, showing the number of cell and cell size for cyanobacteria over a 700 h period. b PCA
results of the response of a six-element gas sensor based electronic nose to the headspace of cyanobacteria. The four growth phases are lag, growth,

Ž .stationary and late stationary labelled I to IV .



( )J.W. Gardner et al.rSensors and Actuators B 69 2000 336–341340

Fig. 5. PCA results of the response of a six-element gas sensor based electronic nose to the headspace of cyanobacteria. The two growth phases are
Ž .stationary and late stationary labelled III to IV . The response data were pre-processed using the normalised fractional difference model.

Ž .Fig. 4 shows a the results of a growth plot of Cell-
Ž .Facts instrument and b a PCA plot for four different

Ž .growth phases lag, growth, stationary and late stationary
of cyanobacteria samples. There is some overlap of the
response vectors, corresponding to the transition periods
between phases. Fig. 5 shows the PCA plot for two growth
phases, stationary and late stationary, from another series
of measurements where point 1 and point 180 represent
ts0 and ts9000 h, respectively. Each point is a repre-
sentation of response from all of he sensors in the six-sensor
array after pre-processing with the normalised fractional
difference and a time interval of 50 min. The data points
move from Phase III into Phase IV, and hence result in a
transition of the response pattern.

The cyanobacteria data set was divided into three test
Žfolds containing 48 measurements each 12 measurements

.per phase category and each neural network was trained
using 144 vectors for each fold. Each network has six
inputs and four outputs since a one-of-four code was used

Ž .to code the four different phases labelled I to IV . The
classification rates of MLP, LVQ and Fuzzy ARTMAP

Ž .were similar 92.3%, 95.1% and 92.4%, respectively , but
Fuzzy ARTMAP was the fastest and judged to perform
best because it self-organises and selects its own A hidden
neuronesB.

4. Conclusions

A six-element metal oxide based e-nose system has
been used for the continuous monitoring of the growth of
cyanobacteria over a period of 40 days. Several pre-

processing techniques were explored in order to remove
the variation associated with growing the bacteria at ambi-
ent temperature and running the e-nose in ambient air. The
normalised fractional difference method gave the best PCA
result. There is some overlap of the response vectors in
each PCA plot, corresponding to the transition periods of
the cyanobacteria cultures.

Three supervised neural networks, MLP, LVQ and
Fuzzy ARTMAP, were used and compared for the classifi-
cation of both two strains and four different growth phases

Žof cyanobacteria lag, growth, stationary and late station-
.ary . Our best results showed that the toxic strain of

cyanobacteria grown in laboratory conditions was correctly
predicted with an accuracy of 100% using MLP, LVQ and
Fuzzy ARTMAP. The growth phase of the toxic cyanobac-
teria was correctly predicted for 95.1% of all unknown
samples using LVQ. The LVQ was shown to perform a
few percentage points better than MLP and Fuzzy
ARTMAP, but the training iterations of Fuzzy ARTMAP
was found to be typically more than an order of magnitude
less than those for the MLP and the LVQ network. This
work shows the potential application of an e-nose for
monitoring the quality of potable water.
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