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Abstract

Electronic noses consist of an array of non-selective gas sensors with a pattern recognition engine. The sensors and pattern recognition
methods depend on the specific application. The design process of electronic noses usually involves time-consuming measurements in a
non-standard trial and error process. This paper addresses the problem by using an electronic nose simulation tool centred on PSpice. Using
previously developed generic PSpice models for the response of gas sensors, a four-element tin oxide sensor array was simulated. The
sensor model parameters were adjusted using calibrated response data from ethanol, methane and their mixtures, detected with real tin
oxide sensors. To study the performance of the array, statistical error modelling and PSpice simulations were used in a Monte Carlo analysis
coupled with principal component analysis. The results show that this simulation strategy is useful for analysing the effects of sampling
errors, the changes in operation temperature, random errors and sensor drift. The importance of these errors is discussed in terms of the
array discrimination ability. We conclude that this simulation strategy can help to systematise the design of electronic noses.

© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The identification of gases and odours is of major interest
because it has a considerable number of potential applica-
tions, some of which are related to quality control in the food
or cosmetic industries and to monitoring air quality. In the
past 10 years, electronic noses — electronic instruments that
mimic the human olfactory system — have developed
rapidly. More than 10 companies have now developed
commercial instruments, which consist of an array of
non-selective gas/odour sensors with a pattern recognition
engine [1,2]. To date electronic noses are application-spe-
cific and their design (e.g. selecting appropriate sensors and
suitable pattern-recognition techniques) is a non-standard
empirical process [3]. The design is generally a trial and
error process via which the number and type of odour
sensors and the pattern-recognition tools are selected under
the constraints determined by each application. This means
that the design process may require time-consuming mea-
surements to be made. Furthermore, it is not always straight-
forward to obtain the feedback necessary to optimise the
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sensor array and to select the best pattern recognition
methods from these measurements. Even when estimates
of sensor responses are accurate, other questions arise about
the performance of the sensor array: are the patterns differ-
ent enough to discriminate between any gases (or complex
aromas) that might be encountered? Which gases or aromas
will be the most difficult to distinguish? How do systematic
and random errors in sensor responses influence the analy-
sis? How does sensor drift affect performance? Some of
these questions can be answered by pattern recognition
analyses but most of them can only be answered by data
collection. When more than just a few gases or aromas are
considered, the latter can be intractable and other
approaches are needed [3,4]. Recently, generic equivalent
PSpice models for metal oxide, conducting polymer and
gravimetric sensors have been developed [5—7]. These mod-
els can depict the response of the odour sensors under
different operating conditions (e.g. different working tem-
peratures and humidity contents in air). Because PSpice
behavioural models of sensors are easy to construct, it
should be easy to develop simulation tools for sensor arrays
and electronic noses. Using simulated sensor responses there
is less need to run time-consuming trial and error tests to
validate the electronic nose. Furthermore, the data required
to determine which pattern recognition method is best fitted

© 2001 Elsevier Science B.V. All rights reserved.
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to a specific application and to provide statistical estimates
of odour recognition/quantification success rates, can be
easily and rapidly gathered using simulated instead of real
data.

In this article, we report the development of a simulation
tool, which is based on PSpice, to systematise the design of
electronic noses. After a brief description of the electronic
nose model, details are given about the statistical error
models used for simulation. The PSpice simulation tool is
used to study how errors (e.g. statistical errors, sensor drift,
changes in ambient conditions, etc.) affect the performance
of an electronic nose.

2. Electronic nose simulation tool

The electronic nose consists of a four-element tin oxide
sensor array (e.g. Taguchi type tin oxide sensors) and a
pattern recognition engine. The core of the simulation tool is
made up of the PSpice models, which are used to emulate the
responses of the sensors in the array. The PSpice models
used are able to accurately depict the response of metal
oxide sensors to multicomponent gas/odour mixtures under
different operating conditions, and are described elsewhere
[6]. However, a short overview is given here. According to
our previous modelling, the static electrical conductance of
metal oxide gas sensors in the presence of a binary mixture
of gases follows the equation:

G, = Gope FAV/KT 4 lee—EAl/KTCrlleT
+ k2Te—EA2/KTC;2KT .

+ kmixTeiEAmix/KTC;”KTCSZKT (1)

where C; and C, are the concentrations of species 1 and 2,
respectively, k7 and k7 the pre-exponential factors of the
sensitivities to species 1 and 2, n; and n, the pre-factors of
the power law exponents for oxides, k;x is the pre-expo-
nential factor of the change in conductance caused by the
interaction of the two species, Gorthe pre-exponential factor
of the baseline conductance, EA;’s are the activation ener-
gies, T is the absolute temperature and K the Boltzmann’s
constant. The response model described by Eq. (1) assumes
a quasi-linear interaction between the gases in the binary
mixture, which is the case when gases are chemically
independent. The dependence of the baseline and the
power-law factors on the temperature has been studied
elsewhere [8,9].

Block diagrams of the electronic nose simulation tool and
a generic PSpice sensor model are shown in Fig. 1. The
experimental data set contains calibration data which were
collected as part of a previous study that developed a
domestic appliance for measuring methane in the presence
of ethanol [10]. These data were used to adjust the values of
the parameters of the PSpice sensor models, by applying a
standard fitting procedure in Matlab. Table 1 shows the
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Fig. 1. Top: block diagram of the electronic nose simulation environment.
Bottom: block diagram of a metal oxide sensor PSpice model.

values of the static model parameters for the four tin oxide
Sensors.

Once the parameters of the sensor models were set, the
simulation procedure was as follows.

1. Random and systematic errors were applied to alter the
values of the parameters in the PSpice models. Random
errors were assumed to have a Gaussian distribution.

2. By iteratively running PSpice simulations with altered
model parameters, a large response data set was
obtained. Features were extracted from the sensor
responses.

3. These features were input to a PARC recognition engine
(principal component analysis), which was simulated
with Matlab in order to discuss system performance in
terms of the electronic nose discrimination ability.

The usefulness of this simulation method as a diagnostic
tool for studying the effect of both random and systematic
errors on the instrument performance is shown in the section
below. The success of the Monte Carlo simulation depends
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Table 1

Values of the PSpice static model parameters for the four tin oxide gas sensors in the presence of ethanol, methane and their binary mixtures

Parameter Sensor 1 Sensor 2 Sensor 3 Sensor 4

Gy 0.16 0.32 0.12 0.23

Eqo 5% 1073 43 x 1072 3.9 x 107 5.6 x 1072
k 6.14 x 1074 3.14 x 1073 83 x 1073 1.7 x 1073
EA, 531 x 1073 231 x 1072 2.1 x 1072 223 x 1072
n 13.95 11.03 5.97 10.26

k> 9.8 x 107° 28 x 107* 1.6 x 107* 172 x 1073
EA, 6.2 x 1073 921 x 1073 3.11 x 1073 1.02 x 1073
n, 6.83 7.55 6.54 4.05

Kmix —52x107° —12x107° —25x%x107° —1x107°
EAmix 331 x 1073 2.87 x 1073 435 x 1072 219 x 1073

on the accuracy with which response errors encountered in
actual sensor operation are portrayed in the models used.
The following section describes the various error models
used.

3. Description of the error models

Various error models were used to simulate the effect of
errors on both the static and dynamic response of the
electronic nose studied.

The first model simulated the effect of random errors in
the concentration of the measured species (e.g. the occur-
rence of sampling errors). The concentrations of ethanol
and methane were generated according to the following
equations:

Cé:th = Ceth(l + kethaeth) 2)
Cret = Cimet (1 + kmetOtmet) 3)

where k.;, and k. are the relative standard deviations
(R.S.Ds.) of the concentrations of ethanol and methane,
respectively, and ooy and o, the independent normally
distributed variables with zero mean and standard deviation
(S.D.) of 1. This model applied different concentrations of
the two species for each simulated exposure.

The second model is useful for analysing the occurrence
of errors in the operating temperature of the sensors. The
operating temperature of metal oxide resistive sensors is
usually set by applying a constant voltage (V},) to a heating
resistor. In this model, the heating voltage was set according
to the following equation:

Vll1 = Vh(l + khOCh) @

where, like the first error model, k;, is the R.S.D. of the
heating voltage and oy, is a normally distributed variable
with zero mean and S.D. of 1. This model applied the same
heating voltage to all the sensors in the array for one
simulation and different heating voltages for different
simulations.

The third model applied a random error in the parameters
that set the static response of the sensors. This error model
altered the values of all the parameters in Eq. (1) except gas
concentration and temperature of operation. The value of a
given parameter p; was altered according to the equation:

P =pi(l + ko) @)

where k is the R.S.D. of all the parameters whose values are
altered by the third error model and the o;’s are independent,
normally distributed variables with zero mean and S.D. of 1.
For every simulation and sensor, this model applied different
parameter values.

The fourth model applied a random error in the para-
meters that set the dynamic response of the sensors to a
temperature modulation. The dynamic response to a tem-
perature modulation is set, in the PSpice model, by a Laplace
block that simulates the thermal inertia of the sensor [6].
This error model alters the values of the poles that account
for the thermal inertia of every sensor. The strategy of
altering these poles is the same as the one described in
the error model in Eq. (5) above.

Finally, the fifth error model applied an offset error in the
parameters that set the static response of the sensors. The
offset error in all these parameters is useful so that the effect
of sensor drift can be analysed. The value of a given
parameter p; was altered according to the equation:

pi=pi(l+d) 6)

where d is the percentage of the systematic drift of the
parameters.

4. Results and discussion

The aforementioned error models were applied to perform
a Monte Carlo simulation, coupled with principal compo-
nent analysis, of a four-element tin oxide sensor array to
detect methane and ethanol. Three different situations were
simulated: the measurement of 100 ppm of ethanol,
10 000 ppm of methane and a binary mixture of ethanol
(100 ppm) and methane (10 000 ppm).
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4.1. Error-enhanced static responses

The three error models for the static response take into
account errors in sampling, errors in setting the temperature
of operation of the sensors and random errors in the para-
meters of the PSpice sensor models.

For every response of a sensor in the array, the feature
extracted was the conductance change defined as

AG = G, — Gy (7

where G is the sensor baseline conductance and G, the
steady-state value of the sensor conductance in the presence
of the gas/odour.

4.1.1. Sampling errors

Eleven replicates (with sampling errors) of every situation
were simulated, giving a total of 33 simulations.

The values of the R.S.D., k., and k¢, were set to 0.1 (see
Egs. (1) and (2). When the measurement of ethanol was
simulated, C.y, and Cp, were set to 100 and 0, respectively.
When the measurement of methane was simulated, C.y, and
Crner Were set to 0 and 10 000, respectively. Finally, when the
binary mixture of ethanol and methane was simulated, Ce,
and Cp, were set to 100 and 10 000, respectively. A
principal component analysis was performed on the simu-
lated data. The score plot of this analysis is shown in Fig. 2.
Since the sensors in the array were similar, the data were
mean centred. The first two principal components accounted
for 98.32% of the variance in data. This high degree of
variance captured by the two first principal components is as
expected because the responses of tin oxide sensors are
generally highly correlated. Fig. 2 shows that a linear
method like PCA is able to correctly separate the clusters

Table 2
Discrimination ability of the sensor array (with 10% R.S.D. sampling
errors)”

Cluster a b [¢

a 1.89 27.31 7.89
b 0.71 30.14
c 1.77

#The main diagonal elements are the dispersions within each cluster
and the off diagonal elements are the distances between cluster centres.

associated with ethanol, methane, and their binary mixture,
even when there are errors (10% R.S.D.) in the sampling
method. To establish a measure of the dispersion within each
cluster, the scores of the centres of the clusters were found.
Then, the average Euclidean distance of all the measure-
ments within a cluster, from their cluster centre were com-
puted. The lower this number, the lower the dispersion is
within a cluster. Table 2 shows the results computed from the
data shown in Fig. 2. Since the distances between cluster
centres are considerably higher than dispersions within
clusters, the discrimination ability of the sensor array is
high. To quantify the discrimination ability a figure of merit
was defined as

o d(C[,Cj)
RP; = D(i) + D(j) ®)

where RP;; is the discrimination between clusters i and j,
d(c;, c;) the Euclidean distance between cluster centres and
D(i) and D(j) are the dispersions within clusters i and j,
respectively. According to results shown in Table 2,
RP,, = 10.50, RP,. = 2.16 and RP,. = 12.15.
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Fig. 2. Simulation of a four-element tin oxide gas sensor array. Occurrence of sampling errors (10% R.S.D.). Cluster a corresponds to ethanol 100 ppm, b to
methane 10 000 ppm and c to a binary mixture of ethanol 100 ppm + methane 10 000 ppm.
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Fig. 3. Simulation of a four-element tin oxide gas sensor array. Occurrence of errors in the temperature of operation (10% R.S.D.). Cluster a corresponds to
ethanol 100 ppm, b to methane10 000 ppm and ¢ to a binary mixture of ethanol 100 ppm + methane 10 000 ppm.

4.1.2. Errors in the temperature of operation

Errors can occur in the temperature of operation if there is
a change in the voltage applied to the heating resistors of the
sensors. Once again three different measurements (only
ethanol, only methane and ethanol and methane together)
were simulated. Eleven replicates of every measurement
(assuming random errors in the heating voltage) were
obtained, giving a total of 33 simulations. The value of
the R.S.D. k, was set to 0.1 (see Eq. (3). A PCA was
performed on the simulated data. Once again the data were
mean centred. The first two principal components accounted
for 98.9% of variance in the data. The score plot of this
analysis is shown in Fig. 3. Table 3 shows that errors (with
10% R.S.D.) in the heating voltage of the sensors lead to a
higher dispersion within the clusters than errors in the
sampling. A 10% error in the heating voltage of the sensors
leads to a 4.6% change in absolute operating temperature of
the sensor (e.g. when V, =35 and 5.5V, the operating
temperatures are 543 and 568 K, respectively). Therefore,
errors in setting the heating voltage of the sensors are more
critical than sampling errors in terms of the discrimination
ability of the array. According to the results shown in Table 3,
RP,, = 3.84, RP,. = 0.86 and RP,. = 3.80.

Table 3
Discrimination ability of the sensor array (with 10% R.S.D. errors in the
temperature of operation)®

Cluster a b c

a 5.38 26.08 10.56
1.40 31.45

c 6.87

? The main diagonal elements are the dispersions within each cluster
and the off diagonal elements are the distances between cluster centres.

4.1.3. Errors in the parameters that set the static response
of the sensor

The parameters that set the static sensor response were
altered in accord with the third error model. Two different
cases with 10 and 20% R.S.Ds. were considered. For each
case 11 replicates of each species (ethanol, methane and
ethanol + methane) were simulated, giving a total of 66
simulations. Four principal component analyses were per-
formed (one for each case with mean centred and autoscaled
data). Fig. 3 shows the two score plots when the static model
parameters were considered to have a 10% relative standard
error (R.S.E.). The first two components accounted for 98.7
and 98.9% of the variance when the data were mean centred
and autoscaled, respectively. Fig. 4 shows that autoscaling
the data led to a better separation between the clusters.
Table 4 shows the dispersions within the clusters and the
distances between them. To better compare the effects of
mean centring and autoscaling the data, the discrimination
ability, as defined by Eq. (7), was calculated. For mean

Table 4
Discrimination ability of the sensor array (with 10% R.S.D. errors in the
static model parameters)®

Cluster a b c
a 5.64 27.65 5.17
0.50 1.28 1.91
b 1.29 31.89
0.32 4.03
c 6.13
0.48

? The main diagonal elements are the dispersions within each cluster
and the off diagonal elements are the distances between cluster centres
(plain font is for mean centred data and italics is for autoscaled data).
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Fig. 4. Simulation of a four-element tin oxide gas sensor array. Occurrence of errors in the static response model parameters (10% R.S.D.). Top: data are
mean centred. Bottom: data are autoscaled. Cluster a corresponds to ethanol 100 ppm, b to methane 10 000 ppm and ¢ to a binary mixture of ethanol

100 ppm + methane 10 000 ppm.

centred data, RP,, = 3.99, RP,. = 0.44 and RP,. = 4.30.
For autoscaled data, RP,, = 1.56, RP,. = 1.95 and RP;,. =
5.04. The autoscaling procedure significantly improved the
discrimination between clusters a (ethanol) and c (binary
mixture of ethanol and methane).

Fig. 5 shows the two score plots when a 20% R.S.E. in the
static model parameters was considered. The first two
components accounted for 96.9 and 97.4% of the variance
when the data were mean centred and autoscaled, respec-
tively. In this case autoscaling the data did not lead to a linear
separation between the species a and c. Table 5 shows the

dispersions within the clusters and the distances between
them. To compare the results of autoscaling or mean cen-
tring the data, the discrimination ability of the array was
calculated using data shown in Table 5. For mean centred
data RP,, = 2.12, RP,. = 0.14 and RP,. = 2.33. For auto-
scaled data RP,, = 1.96, RP,. = 0.76 and RP,, = 2.62.

4.2. Error-enhanced dynamic responses

Previous works have shown that important information
for gas identification can be extracted through thermal
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Fig. 5. Simulation of a four-element tin oxide gas sensor array. Occurrence of errors in the static response model parameters (20% R.S.D.). Top: data are
mean centred. Bottom: data are autoscaled. Cluster a corresponds to ethanol 100 ppm, b to methane 10 000 ppm and ¢ to a binary mixture of ethanol

100 ppm + methane 10 000 ppm.

Table 5
Discrimination ability of the sensor array (with 20% R.S.D. errors in the
static model parameters)®

Cluster a b c
a 13.78 32.34 3.78
1.01 2.92 1.41
b 1.45 36.09
0.48 3.49
c 14.04
0.85

? The main diagonal elements are the dispersions within each cluster
and the off diagonal elements are the distances between cluster centres
(plain font is for mean centred data and italics is for autoscaled data).

modulation of metal oxide gas sensors [11]. The error model
for the sensor dynamic response considers the occurrence of
random errors in the parameters that set the response to a
temperature modulation.

The parameters that set the thermal inertia of the sensors
to a change in the voltage applied to their heating elements
were altered in accord with the fourth error model. This
model can be used to analyse the effects of membrane
fatigue in micro-hotplate sensors. A 10% R.S.D. was con-
sidered. Eleven replicates of each species (ethanol, methane
and ethanol + methane) were simulated, giving a total of 33
simulations. Fig. 6 shows a typical PSpice simulation with
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Fig. 6. PSpice simulation of the dynamic response of a four-element sensor array to a temperature modulation. Top: signal input to the heating elements of all
sensors. Bottom: typical dynamic response of the sensors (the outputs in mV are equivalent to conductance in pS).

the signal input to the heating elements of the sensors and
their dynamic response. To extract features from the
dynamic sensor responses, a Fourier analysis was enabled
during the PSpice simulations. For every sensor signal, the
dc component and the first five harmonics were extracted.
This gave a total of six features per sensor (24 features from
the four-element array) and simulation. To give the same
importance to all the Fourier coefficients, the data were
autoscaled before a PCA was performed. The first two
principal components accounted for 97.3% of variance in
data, which shows the high correlation between the Fourier
coefficients. Therefore, another PCA was performed using
only the first and second harmonics (8 features from the
array instead of 24). The results were equivalent. Fig. 7

Table 6
Discrimination ability of the sensor array (with 10% R.S.D. errors in
parameters that set the dynamic response to a temperature modulation)®

Cluster a b c
a 0.94 9.30 4.30
0.64 542 2.35
b 0.47 10.30
0.35 6.00
c 1.00
0.70

#The main diagonal elements are the dispersions within each cluster
and the off diagonal elements are the distances between cluster centres
(plain font is for six Fourier coefficients per sensor and italics is for two
Fourier coefficients per sensor).
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Fig. 7. Simulation of a four-element tin oxide gas sensor array. Occurrence of errors in the dynamic response model parameters (temperature modulation)
(10% R.S.D.). The data (Fourier coefficients) were autoscaled. Cluster a corresponds to ethanol 100 ppm, b to methane10 000 ppm and c to a binary mixture
of ethanol 100 ppm + methane 10 000 ppm. Top: using the dc component and the first five harmonics. Bottom: using the first two harmonics only.

shows the score plots of these analyses. The separation
between the simulated species was good. Table 6 shows
the dispersions within the clusters and the distances between
cluster centres. The discrimination ability of the array was
calculated to compare the effects of using six or two Fourier
coefficients per sensor. Very similar results were found,
RP,, = 6.60, RP,. = 2.22 and RPy. = 7.01 when six coef-
ficients were used and, RP, = 5.47, RP,, =2.37 and
RP,. = 5.71 when two coefficients were used.

4.3. Sensor drift

The fifth error model was applied to investigate the effect
of drift on the four-element array. In this case, an offset error
in the parameters that set the static response of the sensors
was introduced. Five simulations (no drift, 1, 5, 10 and 20%
drift) for each species (ethanol, methane and ethanol+
methane) were performed, giving a total of 15 simulations.
A PCA was used to show the effects of drift. Data were mean
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Fig. 8. Simulation of a four-element tin oxide gas sensor array. Effects of sensor drift. Cluster a corresponds to ethanol 100 ppm, b to methane10 000 ppm
and c to a binary mixture of ethanol 100 ppm + methane 10 000 ppm. The data were mean centred. The arrows indicate the sense of increasing drift (from 0

to 20%).

centred and the first two principal components accounted for
98.7% of variance in data. These results are shown in Fig. 8.

5. Summary and conclusions

To study the performance of a four-element gas sensor
array, statistical error modelling and PSpice simulations
were used in Monte Carlo analysis coupled with principal
component analysis. The parameters of the PSpice sensor
models were adjusted by using calibrated data from a real tin
oxide sensor array. This simulation strategy was used to
investigate the effect of sampling errors, changes in the
temperature of operation, random errors and sensor drift on
the discrimination ability of the sensor array.

The simulations considered the detection of three species
— ethanol, methane and a binary mixture of ethanol and
methane — in the presence of errors. The following con-
clusions were drawn.

e The array is tolerant to 10% R.S.D. errors in the sampling
system.

e Errors in setting the temperature of operation of the
sensors are critical. The ability of the array to discriminate
between the species seriously deteriorates when there are
5% R.S.D. errors in the operating temperature of the
Sensors.

e Errors in the parameters that set the static response of the
sensors seriously affect the discrimination ability of the
system. In the case of small errors (up to 10% R.S.D.),
autoscaling the data, rather than only mean centring them,
leads to better results.

e The dynamic sensor response to temperature modulation
carries useful information for species discrimination.

e The effect of sensor drift (up to 20%) seems to be less
detrimental for the electronic nose discrimination ability
than all the other sources of error tested.

We have shown that simulation provides information that
can otherwise only be obtained by exhaustive validation
testing (time-consuming measurements). The PSpice
centred simulation tool can be further applied to other
analyses such as finding the best pattern recognition tech-
nique for a given application, determining which species
will be the most difficult to discriminate, studying the effects
of adding or removing sensors from the array, etc. We
believe that this simulation tool could be used to systematise
the design of electronic nose instruments.
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