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Abstract

It is shown that a single thermally-modulated tin oxide-based resistive microsensor can discriminate between two different pollutant gases
(CO and NO,) and their mixtures. The method employs a novel feature-extraction and pattern classification method, which is based on a 1-D
discrete wavelet transform and a Fuzzy adaptive resonant theory map (ARTMAP) neural network. The wavelet technique is more effective
than FFT in terms of data compression and is highly tolerant to the presence of additive noise and drift in the sensor responses. Furthermore,
Fuzzy ARTMAP networks lead to a 100% success rate in gas recognition in just two training epochs, which is significantly lower than the
number of epochs required to train the back-propagation network. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

SnO, sensors are inexpensive and highly sensitive to a
broad spectrum of gases, including atmospheric pollutants
such as CO, NO, and H,S [1-3]. However, well know
disadvantages are their lack of selectivity and drift [4],
which explain why these sensors are mainly used in low-
cost alarm-level gas monitors for domestic and industrial
applications [5]. A strategy to enhance selectivity consists
of modulating the sensor’s working temperature. When the
sensor operating temperature is modulated, the kinetics of
adsorption and reaction that occur at the sensor surface in
the presence of atmospheric oxygen and other reducing or
oxidising species are altered. This leads to sensor response
patterns that are characteristic of the species present in the
gas mixture [6—8]. Many examples of this approach can be
found in the literature where the gas sensors employed
can be conventional (e.g. TGS type [7]) or micromachined
[9-12]. In most of these studies, the fast Fourier transform
(FFT) is used to extract important features from the ac sensor
signal together with a back-propagation neural network for
predictive classification.
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In this work we show that the use of a novel feature-
extraction technique like the discrete wavelet transform
(DWT) that replaces FFT coupled to a Fuzzy adaptive
resonant theory map (ARTMAP) neural network leads to
better results. The performance of this technique in the
presence of artificially generated noise and drift has also
been studied. The DWT-based method was found to be
highly tolerant to noise and sensor drift.

2. Experimental
2.1. Sensor

The device comprises an inert micro-hotplate substrate
with a Pt heating resistor sandwiched between two thin
silicon nitride layers and a pair of gold electrodes on top.
The membrane thickness was about 0.6 um and the active
(hot) area of 250 pm x 500 pm. The gas sensitive layer was
formed by depositing a Pd-doped SnO, paste onto the
electrode area. Finally, on-chip annealing was performed
at 450 °C in air (see [13] for further details). The micro-
hotplate structure provides millisecond thermal response
times and milliwatt power consumption required for hand-
held units.
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Table 1
Single gases and binary mixtures measured
NO; (ppm) CO (ppm)
0 20 40 80 130
0 v v v v
10 v v
20 v v
40 v v
80 v v

2.2. Measurements

Different concentrations of CO, NO, and their binary
mixtures were tested (see Table 1 for details). A second set
of NO, measurements was carried out 1 month later.

A sinusoidal voltage was applied to the heating resistor of
the micro-hotplate sensor. The frequency was set to 50 mHz
and the amplitude was adjusted to obtain a temperature
variation from 243 to 405 °C. The circuit that drives the
resistive heater (nominally 200 Q) is shown in Fig. 1 [11].
Fig. 2 shows a typical dynamic response of the SnO, sensor in
20 ppm of CO. The sampling rate was set to 1.25 samples/s.

3. Results and discussion

At first, the pattern recognition system applied consisted
of either an FFT or wavelet analysis coupled with principal
component analysis. While the latter technique was used
to classify response patterns (i.e. to establish the discrimina-
tion ability of the sensor), FFT and wavelet analyses were
used to extract important features from the sensor response
transients.

3.1. Fourier analysis

A 3750-sample FFT of every response transient was
obtained (see Fig. 3). The FFT was calculated over a
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Fig. 2. Response transient corresponding to 20 ppm of CO in air.

significantly large number of samples (150 periods of the
signal) for the definition of the harmonic peaks to be good.
Fig. 3 shows that peaks appear at multiples of sample no.
150 (e.g. 150, 300, 450, 600, etc.) this can be related to
frequency f; considering the following equation:

__sample no. of 1st peak

= li t 1
fo total no. of samples X samplng rate M)
Therefore,
150
fo= 3750 x 1.25 = 50 mHz 2)

which is consistent with the frequency of the excitatory
signal input to the sensor heating resistor. The higher
harmonics in the FFT appear due to the non-linear char-
acteristics of the sensor response.

The objective of this work was to discriminate between
the different gases and mixtures (qualitative analysis). Since
the dc component of the FFT is heavily dependent on gas
concentration, this coefficient was not used for identification
purposes. Therefore, the values of harmonics 1-6 were used
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Fig. 1. Precision op-amp circuitry used to drive the sensor heating element.
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Fig. 3. FFT of a response transient corresponding to 20 ppm of CO in air.

in a principal components analysis. Data were mean-centred
and the first two principal components accounted for 98% of
variance in data.

Fig. 4 shows that a good separation was obtained. The
second cluster for NO, (labelled NO, (2) in Fig. 4) corre-
sponds to measurements performed 1 month later. The two
NO, clusters are disjoint because after 1 month, the sensor
response has drifted.

3.2. Wavelet analysis

Wavelet analysis provides an alternative way to Fourier
analysis of breaking a signal down to its constituent parts.
While Fourier analysis gives frequency information for the
complete duration of the signal (temporal information is
lost), wavelet analysis provides both frequency and temporal
information. The shapes of the components of the decom-
posed signal depend on the shape of the analysing wavelet
(there is a choice of several families). The goal of the DWT
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Fig. 4. PCA analysis using six coefficients of the FFT.

is to take the initial data sequence representing a chosen
length of the discrete input signal f(x) and convert it into a
new sequence of real numbers CW(x). These numbers define
the vertical size of the wavelets at each of the set horizontal
scales and positions in such a way that the addition of all the
wavelets taken together, faithfully reproduces the original
signal.

The wavelet expansion of f{x) in 0 < x < 1 can be written
as:
10 =g +awi) ol ]

W(2x—1)
+[a4 as dg a7]

Yy W2k — k) + - (3)
¢, is the scaling function, W(x) is a wavelet of scale 0, W(2x)
are wavelets of scale 1, W(4x) are wavelets of scale 2, W(8x)
are wavelets of scale 3, and so forth. The higher the scale, the
finer the detail and the more coefficients there are.

A single period of each measurement (28 samples) was
used to perform wavelet analysis and the fourth order
Daubechies (db4) was selected as analysing wavelet, because
it is the first ‘smooth’ wavelet of the family. Fig. 5 shows a
multi-level decomposition of a response transient.

The level 3 decomposition was selected, because it was
found that wavelet coefficients ranging from 13 to 15 showed
significant differences between the gases and mixtures to be
discriminated.

A PCA was performed using coefficients 13-15. Data
were mean-centred and the two first principal components
accounted for 99% of variance in the data. Using only these
three coefficients, an excellent separation was obtained
(see Fig. 6). The dispersion within the NO, cluster is very
low. This suggests that the effects of drift on the response
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Fig. 5. Wavelet coefficients of a multilevel-decomposition of a typical
response transient.
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Fig. 6. PCA analysis using three wavelet coefficients.

transients have been removed by keeping a few wavelet
coefficients.

3.3. Neural networks

Fuzzy ARTMAP is a self-organising and self-stabilising
supervised classifier that shows generally superior perfor-
mance in training compared with multilayer perceptron
(MLP) [14,15] and more resilient to sensor drift. This is
especially true when there is an uneven number of samples
per category [16]. Therefore, in the second step a Fuzzy
ARTMAP network was used for gas identification.

The network implemented for the -classification of
response features extracted by the FFT had six input neu-
rones, because the first six harmonics were used. The
number of output neurones was set to 3, since a 1-of-3 code
was used to code the three different classes (i.e. CO, NO,
and binary mixtures). Output neurones 1-3 represent the
three different classes. For example, the identification of CO
would yield a 100 at the output of the network, the identi-
fication of NO, would yield a 010 and finally, a binary
mixture of CO and NO, would yield a 001.

The network used to classify response features extracted
by the DWT had three input (coefficients 13—15 were used)
and three output neurones, because the same 1-of-3 code was
used.

A leave-one-out cross-validation method was used to
estimate the success rate in classification. The networks
needed just two training epochs and the number of category
neurones (or neurones in the hidden layer) typically ranged
between 3 and 5.

The Fuzzy ARTMAP neural network reached 90 and
100% success rates in recognition when six FFT coefficients
and three wavelet coefficients were used as input vectors,
respectively. These results, which are summarised in Table 2,
are in good agreement with the PCA results shown in Figs. 4
and 6.

Table 2
Confusion matrices for the gas/mixture recognition with Fuzzy ARTMAP
Actual
CO NO, CO + NO,
Predicted”
CO 4 0 0
NO, 0 1
CO + NO, 0 1 4
Predicted”
CO 4 0 0
NO, 0 10 0
CO + NO, 0 0 5

#90% success rate with six FFT coefficients.
® 100% success rate with three wavelet coefficients.

3.4. Noise and drift rejection

To analyse how the different feature-extraction methods
were able to deal with uncertainty and drift, which are key
factors in any measurement system [17], noisy and drifting
data were artificially generated.

To generate noisy data, uniformly distributed white noise
was added with variances of 1, 5, 10, 20 and 50% to the
experimental signals.

Fig. 7 shows the accuracies in classification attained by
the fuzzy ARTMAP neural network in the presence of noise
when the FFT and DWT were used as feature extractors. In
this application, the DWT outperformed the FFT in the
presence of noise. Fig. 8 shows a noisy signal corresponding
to 20 ppm of CO with added white noise (variance of 20%)
and the reconstructed signal using a third-level approxima-
tion and the db4 wavelet as analysing wavelet. Most of the
high-frequency components, which correspond to noise, are
removed in the reconstructed signal. This could explain the
high resilience to noise of the DWT.

To generate drifting data two different cases were con-
sidered. In the first step the occurrence of long-term drift was
simulated. This was done by adding a positive value to the
mean of the signal and by altering its amplitude according to
the following expression:

S;=(S—8)1 —da)+ (1 +d)S “)
=
£ 90
5 g0 | —— DWT
E —+ FFT
% T T 1
- 1 10 100

Added white noise (%)

Fig. 7. Comparison of the accuracies in gas identification when the FFT
and the DWT were used as feature extractors in the presence of added
white noise.
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Fig. 8. Response transient corresponding to 20 ppm of CO with 20% added white noise (top). Reconstructed signal using a third-level wavelet decomposition
(bottom).
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Fig. 9. Effects of long term drift on the resolving power using FFT (a) and DWT (b) to extract features from the sensor response. The arrows show drift
direction and their length indicates the shift experienced within each cluster when drift increases from 0 to 50%.
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Fig. 10. Short-term drift effects. Using the FFT (a) and the DWT (b) to extract features from the sensor response. Drift increases linearly from 0 to 50% of the
signal mean.
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where S is the original signal, S its mean value, d is the drift
constant (d is 1, 5, 10, 20 and 50%) and o is an arbitrary
valued constant in the range 0 < o < 1. Eq. (4) was derived
after analysing the differences in sensor response between
the two NO, datasets —the second NO, dataset was mea-
sured 1 month later. The response signals in dataset #2
showed an increase in the mean and a moderate decrease in
amplitude. The parameter oo was set to 0.1.

Fig. 9 shows the results of a PCA carried out with the
drifting data, using either the FFT or the DWT to extract
important features from the sensor signals. The length of the
arrows in Fig. 9 shows the importance of the shift in the score
plots when d was altered from 0 to 50%. From Fig. 9 it can be
derived that the DWT is highly tolerant to long-term drift.

In the second step the occurrence of short-term drift (i.e.
effects in the present response of the sensor due to measure-
ments in its recent past) was simulated. Short-term drift was
generated by adding a positive linear ramp varying from 0 to
half the mean of the signal. The duration of the ramp was set
to 3750 samples of the signal (i.e. the number of samples
used to compute the FFT). Fig. 10 shows the results of a PCA
carried out with the short-term drifting data, using either the
FFT or the DWT to extract important features from the
sensor signals. Because short-term drift is a low-frequency
process, it highly affects system performance when the FFT
is used as feature extractor—the low harmonics of the FFT
are essential for gas identification. On the other hand when
the DWT is used, short-time drift effects are nearly removed.
The fact that the low coefficients of the DWT, which
correspond to the low-frequency contents of the signals
are discarded, counteracts short-term drift.

4. Conclusions

The DWT was found to outperform a FFT in terms of data
compression, drift rejection and tolerance to additive noise.
The careful selection of appropriate wavelet scales counter-
acts drift, which is a low-frequency process, and reduces the
effect of additive noise, which is associated to the high
frequency content of the response signal. Furthermore, since
it only requires a period of the response transient, wavelet
analysis provides fast feature-extraction. Coupled with a
Fuzzy ARTMAP network, which is trained in two epochs (e.g.
typically more than two orders of magnitude less than the
number of epochs required to train the back-propagation
network) a 100% success rate was reached in the identification
of CO, NO, and their mixtures. Therefore, the application of
wavelet techniques to thermally-modulated resistive micro-
sensors is attractive for low-cost handheld gas monitors.
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