NOSE

3rd NOSE Short Course Alpbach (Austria) 21-26 March 2004

Feature Selection Techniques

Professor Julian Gardner School of Engineering University of Warwick, UK

Manufacturer	Technology	Number of sensors		
Agilent Technologies	MS or GC/MS	550 masses		
Airsense Analytics	MOS and MS	4		
Alpha M.O.S.	Sensor array (MOS, CP, QMB) and MS	8, 16,550		
Applied Sensor	Field effect MOS, MOS, QMB	22		
Cyrano Sciences Inc.	СР	32		
Electronic Sensor Technology	GC and SAW	100s 8		
HKR Sensorsysteme	QMB and MS	4 100s		
Illumina Inc.	BeadArray fiber optic	100s		
Microsensor Systems Inc.	SAW or GC	8 to 100s		
Osmetech plc	СР	32		
SMart Nose	MS	100s		

Evaluate optimality criterion J for each set Optimal methods: · Exhaustive search methods Accelerated search • Monte Carlo methods (e.g. simulated annealing and genetic algorithms)

 Suboptimal methods: trade off searching all space for computational efficiency

> 3rd Short Course Feature Selection Techniques - 17

. Warwick University WARWICH

Julian Gardner

Feature Selection Criteria We need to find a means of measuring the ability of a 0 feature set to accurately discriminate between two or more classes. Two ways: Choose the feature sets for which the classifier performs well on a separate test/validate set, e.g. percentage of correct classifications. · Feature set may differ with choice of classifier Estimate the overlap between the distributions from which the data are drawn and favour those sets with minimal overlap, i.e. maximise separability. Feature set is independent of choice of classifier

Suboptimal Algorithms: Sequential Forward Selection (SFS)

- Bottom-up approach
- Start with null set

3rd Short Course

- Add a new feature that has maximum value of the optimality function J, i.e. maximum selection criterion
- ^o When the best feature added makes the feature set worse terminate or when the maximum number of features is reached
- Disadvantage: cannot delete already added features that may be rendered redundant

Feature Selection Techniques - 23

Julian Gardner Warwick University

.

WARWIC

Suboptimal Algorithms: Sequential Backward Selection (SBS)

- Top-down approach
- Start with the complete set
- Delete a new feature that has minimum value of the optimality function J, i.e. minimum selection criterion
- When the worst feature eliminated makes the feature set worse terminate
- Disadvantage: computational more demanding than SFS

3rd Short Course Feature Selection Techniques - 24

88 WARWIC

Julian Gardner

Warwick Universit

Eye Bacteria: Sensor Selection				I	Eye Bacteria: Best Classifier							
 6 bacte 32 sens SFS and 	ria classes or array with P I SBS results be	NN classifier oth suggest 6 se	ensor		0	Opt	imizing	results fo	or best se	et of 3 ar	nd 6 sen:	sors
subset					No. sens	of sors	Selected sensors	CA with 14 gps	FCM	MLP BPGDM	MLPBP LevMar	RBI sc=5
V-integer (No. of sensors)	Population (No. chromo.)	Random (Avg. init pop.)	GA Best % of all	GA Avg. %		6	8,11,15, 23,31,32	65%	90% (16 clusters)	(Ir=0.1) 87.8%	96.7% (6×8×6)	70
12 10 2	12 15 20	83.7 82.0 78.6	90.6 90.6	90.4 90.2		3	8,11,23	50.5%	88.3% (13	90.0%	93.3% (3×6×6)	65
6 4	20 25 40	75.6	90.0 90.6 89.4	89.4 89.4 87.8					clusters)			
From Boilot et al., Se	ens. Actuators, 88 (2003)				From	n Boilot (et al., Sens. Act	uators, 88 (2003	i)			
3rd NOSE Feat	Short Course ure Selection Techniques - :	Juli 33 - War	an Gardner rwick University	WARWICK	N	NOSE	3rd Short Feature Sele	Course ction Techniques	- 34 -	Jul Wa	ian Gardner arwick University	

Generalised Summary

- Feature selection is the process of selecting from the original features or variables those important for classification
- Statistical approaches can be used that are optimal 0 or suboptimal
- Some criteria J depend upon the classifier choice
- Search algorithms can be very computer intensive 0 and genetic algorithms can be better that SFS/SBS methods
- Feature selection in a transformed space may be a better approach for low dimensionality problems

3rd Short Course Feature Selection Techniques - 35

Warwick University

.

WARWICH

Julian Gardner

Sensor Selection and Electronic Noses

- Sensor Selection/Extraction and large arrays may help solve e-nose applications
- V-integer genes GA to select sensors and PNN classifier offer considerable benefits
 - Subset of 6 sensors identified in 5 runs and gave 90.6% cf 91.7% for 32 sensors
- Future Sensor selection could be adaptive, i.e. change with time as sensors drift, foul, etc?

3rd Short Course Feature Selection Techniques - 36 Warwick University WARWICH

.

Julian Gardner

PNN sc=0.05

92.2%

90.6%

. WARWIC

70.6% 65.0%

	Thank You	ı for you	attention!	
NOSE	3rd Short Course Feature Selection Techniques	- 38 -	Julian Gardner Warwick University	WARWICK