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Introduction to Feature Selection

o Objective: Represent high-dimensionality data in 
a reduced number of data-sets

o Reason:
• Simpler/faster subsequent analysis
• Improved classification performance
• Removal of redundant/irrelevant information
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Dimensionality of human olfactory system

o 1-100 million olfactory 
receptor cells

o 300 genes that encode 
olfactory binding proteins

o 1,000s glomeruli nodes
o Mitral/tufted cells
o 2-3% genome coding!

From Handbook of 
Machine olfaction 
(2003), p3
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Representing Data in Reduced Dimensions

o Multivariate analysis perspective:
• Ordination or geometrical methods

• E.g. Principal components analysis
• E.g. Multidimensional scaling

o Pattern recognition perspective:
• Feature selection methods
• Feature extraction methods

• E.g. Linear discriminant analysis
• E.g. Karhunen-Loeve expansion
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Feature Selection 

o Identify those variables x that do not contribute to the 
classification task, e.g. class separability in discrimination

o Seek d features out of a set of p measurements
o This is called:

• Feature Selection in the Measurement or Sensor Space
• Or just Feature Selection
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Feature Extraction 

o Find a transformation from the p measurements to a lower 
dimension space

o This is called:
• Feature Selection in the Transformed Space 
• Or Feature Extraction
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Transformation

o May be linear or non-linear
• For linear see PCA/Karhunen-Loeve transform

o May be supervised or unsupervised

o For supervised case:
• Maximise the class separability
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Optimisation of Criterion Function J

o Feature selection
• Find best subset Xd of size d over all subsets χd of 

the p possible measurements

dX
d XJXJ

χ∈
= )(max)~(

o Feature extraction
• Find best transformation A of the variables x over 

the set of all allowable transforms

Α∈
=

A
xAJAJ ))((max)~( )(~ xAy =

Julian Gardner 

Warwick University 

3rd Short Course
Feature Selection Techniques    - 12 -

What is criterion J?

o Some measure of distance or dissimilarity 
between distributions
• E.g. Euclidean distance metric in CA
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Simple Feature Selection

The Problem:

“Given a set of measurements on p variables, what 
is the best subset of size d ?”

Thus we are not considering a transformation of 
the measurements, merely selecting those d
variables that contribute most to the 
discrimination problem.
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Simple Feature Selection

The Solution:

Evaluate the optimality criterion for all possible 
combinations of d variables selected from p and 
select the combination that maximises this 
criterion.

Thus we are not considering a transformation of the 
measurements, merely selecting those d variables 
that contribute most to the discrimination problem.
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Size of Sensor arrays in e-Noses

100sMSSMart Nose

32CPOsmetech plc

8 to 100sSAW or GCMicrosensor Systems 
Inc.

100sBeadArray fiber optic Illumina Inc.

4 … 100sQMB and MSHKR Sensorsysteme

100s … 8GC and SAWElectronic Sensor 
Technology

32CPCyrano Sciences Inc. 

22 ….Field effect MOS, MOS, QMBApplied Sensor

8, 16,…..550Sensor array (MOS, CP, QMB) and 
MSAlpha M.O.S. 

4 …MOS and MSAirsense Analytics

550 massesMS or GC/MSAgilent Technologies

Number of sensorsTechnologyManufacturer
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Size of Search Space for p Sensor Array?
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d Features p variables Number 

4 8 70 
4 32 35,960 
10 25 3,268,760 
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Evaluate optimality criterion J for each set

o Optimal methods: 
• Exhaustive search methods
• Accelerated search
• Monte Carlo methods (e.g. simulated annealing 

and genetic algorithms) 

o Suboptimal methods: trade off searching all 
space for computational efficiency
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Feature Selection Criteria

o We need to find a means of measuring the ability of a 
feature set to accurately discriminate between two or 
more classes. Two ways:

o Choose the feature sets for which the classifier performs 
well on a separate test/validate set, e.g. percentage of 
correct classifications. 
• Feature set may differ with choice of classifier

o Estimate the overlap between the distributions from 
which the data are drawn and favour those sets with 
minimal overlap, i.e. maximise separability.
• Feature set is independent of choice of classifier
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Feature Selection Criteria

o Confusion matrix to calculate error rate
• True versus apparent error rate?

o Probabilistic distance between two distributions
o E.g. average, Chernoff, Patrick-Fischer
o Estimating the multivariate PDF and then 

integrating it is very time consuming
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Search Algorithms for Feature Selection

o Bottom-up Approach:
• Start with the empty set (d=0) and build up 

incrementally 

o Top-down Approach:
• Start with the full set (d=p) and build up 

incrementally 
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Suboptimal Search Algorithms: Best Individual N

o Simplest one is to assign a discrimination power 
estimate to each of the features in the original 
set. Thus features are ordered such that:

)()...()( 21 pxJxJxJ ≥

o Select as our best set of N features with the best 
individual scores

}{ Nixi ≤
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Suboptimal Search Algorithms: Best Individual N

o Poor estimates when features in the original set 
are highly correlated – as often the case for 
electronic nose sensors.
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Suboptimal Algorithms: 
Sequential Forward Selection (SFS)

o Bottom-up approach
o Start with null set
o Add a new feature that has maximum value of 

the optimality function J, i.e. maximum selection 
criterion

o When the best feature added makes the feature 
set worse terminate or when the maximum 
number of features is reached

o Disadvantage: cannot delete already added 
features that may be rendered redundant
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Suboptimal Algorithms: 
Sequential Backward Selection (SBS)

o Top-down approach
o Start with the complete set
o Delete a new feature that has minimum value of 

the optimality function J, i.e. minimum selection 
criterion

o When the worst feature eliminated makes the 
feature set worse terminate 

o Disadvantage: computational more demanding 
than SFS
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Suboptimal Algorithms: 
Plus L – take away r selection

o Bottom approach with some back tracking L<r

o L features are added to the feature set using SFS 
and then the worst r eliminated using SBS

o Top-down approach with L>r
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Sensor Selection and Optimal Feature Set

From Boilot et al., Sens. Actuators, 88 (2003)
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Sensor Selection Techniques: Neural based

o GA search engine/PNN classifier

From Electronic Noses (2000), IOP, p83

o Neurofuzzy/Genetic methods (Pardo)

o Pruning/growing perceptrons

Worked Example:

From Boilot et al., Sens. Actuators, 88 (2003)
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Feature selection: Pruning of Neural Nets

Input units Weights Output units
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Feature selection: Pruning of MLP
Input layer Hidden layer (1) Output layer
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Hines E L, Gianna C and Gardner J W 1992 Workshop 
on Neural Networks: Techniques and Applications, 
•University of Liverpool, UK, 7-8 September 1992
• “Neural network based electronic nose using 
constructive algorithms”
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Worked Example: Bacteria detection

o 32 polymer sensor array 
(Commercial C320 unit)

o Two data-sets: eye 
bacteria and ENT bacteria
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Feature Extraction: PCA Clustering
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v-integer genes GA to Select Sensor Subset
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Eye Bacteria: Sensor Selection

o 6 bacteria classes
o 32 sensor array with PNN classifier
o SFS and SBS results both suggest 6 sensor 

subset

V-integer Population Random GA GA 
(No. of 

sensors) 
(No. chromo.) (Avg. init pop.) Best % of all Avg. % 

12 12 83.7 90.6 90.4 
10 15 82.0 90.6 90.2 
8 20 78.6 90.0 89.4 
6 25 75.6 90.6 89.4 
4 40 69.2 89.4 87.8 

From Boilot et al., Sens. Actuators, 88 (2003)
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Eye Bacteria: Best Classifier

o Optimizing results for best set of 3 and 6 sensors

No. of 
sensors 

Selected 
sensors 

CA with  
14 gps 

FCM MLP 
BPGDM 
(lr=0.1) 

MLPBP 
LevMar 

RBF 
sc=5 

PNN 
sc=0.05 

6 8,11,15, 
23,31,32 

65% 90% (16 
clusters) 

87.8% 96.7% 
(6×8×6) 

70.6% 92.2% 

3 8,11,23 50.5% 88.3% 
(13 

clusters) 

90.0% 93.3% 
(3×6×6) 

65.0% 90.6% 

From Boilot et al., Sens. Actuators, 88 (2003)
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Generalised Summary

o Feature selection is the process of selecting from 
the original features or variables those important 
for classification

o Statistical approaches can be used that are optimal 
or suboptimal

o Some criteria J depend upon the classifier choice
o Search algorithms can be very computer intensive 

and genetic algorithms can be better that SFS/SBS 
methods

o Feature selection in a transformed space may be a 
better approach for low dimensionality problems
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o Sensor Selection/Extraction and large arrays 
may help solve e-nose applications

o V-integer genes GA to select sensors and PNN 
classifier offer considerable benefits
• Subset of 6 sensors identified in 5 runs and gave 

90.6% cf 91.7% for 32 sensors

o Future Sensor selection could be adaptive, i.e. 
change with time as sensors drift, foul, etc?

Sensor Selection and Electronic Noses
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Silicon Implementation of Olfactory Bulb
aVLSI Sensor Chip

aVLSI Neuromorphic Chip

From Gardner et al., 
IEEE Sensors Conf, 2003

From Pearce et al., 
Brain Inspired Cognitive 
Systems, August, 2004
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Thank You for you attention!
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