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Summary This paper demonstrates the application of chemical headspace analy-
sis to the problem of classifying the presence of bacteria in biomedical samples by
using computational tools. Blood and urine samples of disparate forms were anal-
ysed using a Cyrano Sciences C320 electronic nose together with an Agilent 4440
Chemosensor. The high dimensional data sets resulting from these devices present
computational problems for parameter estimation of discriminant models. A variety
of data reduction and pattern recognition techniques were employed in an attempt
to optimise the classification process. A 100% successful classification rate for the
blood data from the Agilent 4440 was achieved by combining a Sammon mapping
with a radial basis function neural network. In comparison a successful classification
rate of 80% was achieved for the urine data from the C320 which were analysed
using a novel nonlinear time series model.
© 2005 Elsevier Ireland Ltd. All rights reserved

. Introduction

eadspace analysis involves the detection of
olatile molecules produced by a liquid or solid
ample. This form of chemical analysis, using gas
ensors, is proving to be promising as a diagnostic
ool in the medical field. Several authors (see for
xample [1,2]) have reported that, using such sys-
ems, it is possible to detect the presence of bac-
eria and provide sufficient information to discern
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both the species and metabolic state of these bac-
teria. These investigations have used commercial
instruments, such as the Agilent 4440 or Cyrano Sci-
ences C320 as a headspace analyser [3—5]; these
are often referred to as electronic noses. Alterna-
tively, gas chromatography [6] has been used for the
chemical analysis of medical samples.

The aim of applying this form of analysis is
to screen biological samples rapidly. Using cur-
rent microbiological techniques, processing of a
sample takes 24–48 h in order to characterise and
identify a pathogenic organism [7]. This is not
ideal, especially when rapid antibiotic therapies
are crucial in many infections; these treatments are
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pathogen specific and worst still there is a growing
resistance to antibiotics in the microorganism pop-
ulation [8,9]. It is therefore desirable to reduce the
time of analysis of a sample to, ideally, minutes us-
ing a technique that is easy to apply. In this way
the infection may be treated rapidly with the most
suitable medication.

The task of diagnosis entails some method of
discriminant analysis in order to identify the form
of bacterial infection. Techniques for discrimi-
nant analysis include principal components analy-
sis (PCA) for data visualisation, linear discriminant
analysis, and neural networks of various geni and
topologies [10]. In all cases these have been used
in an attempt to discriminate between samples of
different types; be it different species of bacteria
or different metabolic states.

These models are generally identified and simu-
lated upon a microcomputer such as a standard PC
or Unix workstation. This means that, in a medical
context where speed and accuracy are necessary,
the computational intensity of the data analysis
task is important. Robust parameter estimation
is examined with respect to data from biological
experiments.

In this paper data from two different headspace

evident in the results of this paper; the third char-
acteristic is that which is characterised as ‘chem-
ical noise’ [13,14] or interference, which needs to
be accounted for.

Biological samples contain a rich mixture of
chemicals relating to the function of the human
body. There will certainly be substances present
that relate to processes other than those that are
of interest; for example, results of metabolisation
of nutrients and medication [14]. There will be a
whole host of information relating to whether the
patient has been active or sedentary, and other
pathogenic infections elsewhere in the body. These
will all be detected by the gas sensor array as back-
ground noise and so will potentially affect the data
and the results of any analysis.

The aim of this investigation therefore was to
apply different data reduction techniques to two
very disparate data sets from a C320 electronic nose
and an Agilent 4440 mass spectrometer. This was in
order to analyse blood and urine samples for spe-
cific bacteria and optimise system model identifica-
tion. The interaction between the reduction tech-
niques and black box models for discrimination are
investigated by comparing the observed successful
classification rates of the resulting identified mod-
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analysis experiments are considered. The first
were from a blood screening survey, where blood
has been used as the growth medium for bac-
teria. The blood samples were inoculated with
various species of bacteria—including methicillin
susceptible (MSSA) and methicillin resistant (MRSA)
S. aureus. This organism has the propensity to
develop resistance to multiple antibiotics and is
thus a growing public health concern [11]. The aim
was to see if this dangerous antibiotic resistant
pathogen might be detectable amongst other
species.

The second set of data were the result of rou-
tine medical urine sample screening. These were
supplied by Walsgrave Hospital, Coventry, U.K. af-
ter they had been processed in their microbiologi-
cal laboratory. These originated from patients who
were asked to provide a routine urine sample at
the hospital. The hospital processes a few hun-
dred such samples every week and kindly provided
an arbitrary selection for our use. The aim was
to detect the presence of urinary tract infections
(UTI).

In both cases electronic noses were used to anal-
yse the samples. Electronic nose data have three
important characteristics which makes preprocess-
ing essential. The first is that the data have a
predominance of intensity information [12] causing
correlation between sensor responses; the second is
that the system is time dependent, which becomes
ls. This was done in order to see which models
erform ‘best’ with respect to discrimination and
hich data reduction techniques interact well with
ach of the models.

. Agilent 4440 and Cyrano Sciences
320

he C320 (Cyrano Sciences, Inc., USA) unit is a self
ontained, hand-held electronic nose. It possesses
2 carbon black polymer sensors [15] which alter
heir electrical conductivity when they come into
ontact with certain odourous molecules in the air.
he time dependent response is logged and from
his the resistance change is computed. This fea-
ure is used to characterise each sensor’s response
o a particular sample: this is the input pattern in
he model building stage.
The Agilent 4440 (Supplier: Gerstel, Berlin,

ermany) comprises two units: an automatic
eadspace sampler that handles a hopper of 40
ials which are heated, individually, in an ‘oven’ for
min; vapour drawn from the atmosphere within
he vial is passed to a quadrapole mass spectrome-
er. Themass spectrometer outputs amass profile in
he range 46–550Da which is recorded by a desktop
omputer. Fig. 1 shows this device in a laboratory
etting with the C320.
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Fig. 1 An Agilent 4440 Chemosensor (PC not shown).

Importantly the AHS is a separate, autonomous
system which synchronises the mass spectrometer’s
operation. This means that a C320 unit may be con-
nected alongside and can analyse samples in par-
allel with the Agilent 4440. A schematic of this is
shown in Fig. 2.

3. Dimension reduction

The Agilent 4440 measures a mass range between
46 and 550Da, and the C320 has 32 different solid-
state gas sensors which respond to various airborne
molecules. This results in very high dimensional
data sets and so the models required to analyse
these data would have many free parameters to
identify.

Supervised pattern recognition has two inherent
stages and these are often referred to as training
and testing. The training stage is the calibration
part of the process which attempts to find empiri-
cal models to distinguish between data classes. Val-
idation of the model is attempted during the test
stage. Within the training stage there is an interac-
tion between gathered data and a model of some
form to be ‘fitted’ to the data set; this can be
viewed as a calibration of the model. Hence the
focus of this paper is not whether the model is, or
the data are, good in their own right, but whether
a model with sufficient ‘discriminant power’ may
be estimated robustly from the data available;
the model is tuned, or identified, using some
form of optimisation algorithm. Optimisation of
experimental design is not considered here.
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ig. 2 Schematic of integration of the C320™ with the
sed to flush the sampled headspace through the system
440 and the C320. The sample supply is connected to b
he helium supply from the AHS is used to ‘wash’ the sen
o the atmosphere after it has been analysed.
ent 4440. The AHS is fed a supply of helium, and this is
e 1:30 splitter passes the sampled vapour to the Agilent
he purge and sample inlets of the C320, this is because
after each sample analysis. The sample vapour is vented
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It is this consideration that is of interest in
the data analysis stage of this study. Parameter
estimation needs to be a well-posed problem, that
is there are sufficient data to identify the parame-
ters. In this sense the problem is neither under- nor
over-determined and there is a ‘unique’ set of pa-
rameters that fit the data. It is apparent then that
the size of the data set dictates the complexity of
the models that can possibly be identified, and vice
versa. There is a data dimension issue here as this
study deals with an electronic nose with an out-
put of 32 channels and a mass spectrometer with
an output of 505 channels. This means that, due to
the number of degrees of freedom in the data, that
a large amount of data would be required to iden-
tify a discriminant model. To satisfy this form of
data requirement is difficult as a great deal of lab-
oratory time is required; it takes about 180min for
the Agilent 4440 to process 40 samples at 4.5min
per sample.

It is therefore important to ascertain a method
of reducing the dimension of the input to a pat-
tern recognition algorithm in such a way that ‘es-
sential’ information [16] is not lost. In order to do
this a knowledge of the data set structure is neces-
sary, or some a priori assumptions need to be made

entire space. Thus for generality the data must be
considered to lie in a manifold.

It has therefore been the approach to use tools
that attempt to approximate this minimal model by
making certain assumptions. In this way an attempt
to identify a mapping that lowers the dimension of
the data set, in line with an assumed form of the
manifold, may be made. For example, principal
components analysis (PCA) [19], the Sammon map
[20] or some hierarchical cluster analyses [21] have
been used. PCA looks for vectors along which the
sampled data are varying the most. This commonly
used algorithm outputs any specified number of
these vectors, referred to as principal components,
up to the number of dimensions, or the number of
samples, whichever is lower. It is quite common to
find that in electronic nose data the first three or
four principal components describe something in
the region of 95% of the variance in the data [17].
So if, for example, linear co-dependence between
channels is assumed, these new coordinates should
encompass the majority of the behaviour of the
system being modelled.

The Sammon map is a metric preserving map. In
fact the Sammon map algorithm searches for coor-
dinates in a specified lower dimensional space that
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about this structure, i.e. there is some level of
interdependency of the channels.

3.1. Current data set reduction methods

The problems of high dimensional data, and the
need to reduce the dimension of a data set, have
been investigated for some time. Much of the work
has come from the ‘intrinsic dimension’ [17] point
of view. This arises from the assumed existence
of some co-dependence between, or constraints
upon, the observed outputs of a system. This
means the hypothesised probability distribution,
and hence the sampled data, lie in some hyper-
surface within the system output space. A usual
definition is that the intrinsic dimension of a
data set is the number of free parameters in
the minimal model that describes the set [18].
However, this model is not necessarily known a
priori.

There is some confusion over this definition; for
example in [18] this is taken to mean the dimension
of the subspace of the output space that the data
lie in. Considering the case of data sitting upon the
surface of a sphere shows this to be ambiguous; the
dimension of the surface, that is the number of pa-
rameters necessary to describe it, will be one less
than the dimension of the vector space in which it
sits, but the vector subspace in which it lies is the
reserve interpoint distances. It can be seen that
his technique will be most effective in reducing the
imension if the ‘intrinsic dimension’ of the data is
uch lower than the space in which they sit. For ex-
mple, data sampled from a system with a four di-
ensional output may all lie in a three dimensional
ubspace; hence the Sammon map is designed to
nd three dimensional coordinates that retain the
nherent metric information.
In this paper, variations of the Sammon map and
technique based upon correlation will be consid-
red. Dimension reduction will be performed be-
ore applying four different black box models; two
inear, the other two nonlinear. These black box
odels are applied as discriminant techniques. It

s apparent in this context that dimension reduc-
ion will be beneficial as any interdependence will
ean there is not a unique solution for the set of
ree parameters. PCA, though it is used as a data
isualisation tool, is not considered for data re-
uction as it too requires a large amount of data
or good estimation. Secondly it should be noted
hat data classes may not separate in the directions
f largest variation, which is an assumption when
sing PCA.
Besides normalisation, two approaches are

aken, although they both result in a linear pro-
ection onto a lower dimension space. However,
he distinction is made in the following way. One
pproach is to analyse the information provided by
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each individual channel, relative to the rest. Due to
this leading to a selection of the most informative
channels this is referred to as sensor selection. The
second approach is a more general embodiment
of the assumption of channel interdependence.
A mapping which produces new coordinates, in a
lower dimensional space, which is a function of the
original channels is sought. This is referred to as
feature extraction.

3.2. New set reduction methods

It is assumed that not all sensors supply data con-
taining information relevant to the discriminant
task. There may be noise from the environment
such as temperature effects or there may also be
information about other aspects of the sample, i.e.
interference. Sensor drift is a key issue for chemical
sensors and it is necessary to have a way of select-
ing some sensors, or functions of sensors, that re-
duce the dimension of the input of the discriminant
map such that the data are sufficient to estimate
the free parameters within the model. Here two
different approaches are taken. The first is based
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in descending or ascending order, so that positive or
negative correlation may be examined.

The second approach adopts the Sammon map. It
is primarily used as a data visualisation tool, where
the algorithm searches for coordinates that pre-
serve the sample space interpoint distances in a
much lower dimension; for this reason it is a non-
linear mapping. However, here it is extended to es-
timate a linear projection to apply to a previously
unseen data set. This projection may then be used
as a feature selection mapping to process data prior
to a black box model.

A projection is produced from the Sammon map
by first applying the algorithm to a subset of the
data. This results in a set of coordinates in a lower
dimension which preserve, as much as possible, the
interpoint distances of the original data. A linear
mapping is then sought that maps the original data
set a closely as possible to its Sammon map image.
This is the projection that is required.

Formally, if D is defined to be the original data
set and Dp to be the corresponding coordinates pro-
duced by the Sammon algorithm (the convention
that samples are in rows and the channel outputs
are in columns is used), then a projection P is sought
such that
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pon the observation that any channel, whose out-
ut is dependent upon, or correlated with, that of
nother is redundant (to some extent). Indeed, if
here is a mutual dependence between two chan-
els then the uncertainty of the output of one will
educe when there is knowledge of the output of
he other. Hence it will have lower information con-
ent than if it stood alone; the greater the depen-
ence, the less information supplied. It can then be
een from this that there will not necessarily be a
nique parameterisation for a discriminant model.
hus, removing a channel whose output is depen-
ent upon others’ will result in a better posed pa-
ameter estimation problem where the majority of
he information content of the full output has been
etained.
A linear cross-correlation technique is consid-

red. It is an ad hoc approach based upon the ob-
ervation that highly correlating sensor responses
mply redundancy in the data set. The full corre-
ation coefficient matrix is calculated for the data
et containing the sensor responses/mass spectra.
corresponding matrix containing the sign of each
f the correlations coefficient entries is produced.
he sign is encoded as a ‘1’ for a positive value,
‘−1’ for a negative value and a ‘0’ for zero; the
esult is a matrix which is the same size as the corre-
ation coefficient matrix, but has only entries from
−1, 0, 1}. The sums of the columns of this matrix
re then calculated—giving a correlation score for
ach sensors. The sensors can then be ranked either
D� = D�
p (1)

his will be an under determined problem. How-
ver, by applying the Penrose–Moore pseudoinverse
22] of D�, D�+, the best possible approximation,
0 is obtained thus:

0 = D�
p D�+ (2)

Thus a linear projection which respects the in-
erpoint distances of the original data subset is ob-
ained, and can be used as a form of feature se-
ection. It should be noted that the image of the
riginal data set under P0 was very similar to the
utput of the Sammon map.

. Black box models

number of types of black box model for pattern
ecognition are considered in this study. A full re-
iew of each is not carried out here but the reader
s referred to the references provided for more de-
ails. These models assume some relationship be-
ween the input and the output of the system. Here
he system considered is the the inverse system; the
nput is the output measurements for a sample and
he output is the classification of the sample. The
lassifications considered in this article are binary
n nature; a value of −1 will denote a ‘negative’
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sample and 1 will denote a ‘positive’ sample. Nega-
tive will be taken to mean the absence of a urinary
tract infection, or the absence of MRSA, positive
will denote the converse.

Of the four models used in the study, two are
linear in structure and are akin to a linear regres-
sion on the observed input–output behaviour. The
remaining two are nonlinear and use Gaussian bell
shaped curves to yield a more probabilistic struc-
ture.

4.1. Multilayer perceptron (MLP)

The architecture for the multilayer perceptrons
(MLPs) [10] considered in this study has an input
of the same dimension as the experimental data, 8
in the hidden layer and a single output node for bi-
nary classification; this results in a network with 272
free parameters for an input of 32 dimensions. This
model generates 8 linear combinations of the inputs
and then calculates a weighted sum of these. The
output is the classification of the input. A similar
topology was used for the blood data. This particu-
lar architecture was chosen as the resulting number
of free parameters may be estimated with the data
available; it is the most flexible MLP model that can

or in matrix notation

A(z)Y[n] = B(z)U[n] + e[n] (6)

where A(z) and B(z) are polynomial matrices,

A(z) = 1 − ˛1z−1 − · · · − ˛qz−q (7)

B(z) = 1 + �1z−1 + · · · + �rz−r (8)

the orders of which are defined by q and r in Eq.
(5) above and the dimensions are dependent on
the number of inputs and outputs; e is the error.
Here the autoregressive part is defined by the ma-
trix A, and the exogenous (input) part is defined
by matrix B. These are polynomials in z−1 which
represents a shift one time step in time; z−2 is
two steps back and so on. Thus this model repre-
sents a weighted sum of the inputs to the system
up to the current one, and all previous outputs.
The output of the model is the predicted current
output.

The model assumes a number of things. Firstly
that the system is linear in behaviour. Secondly,
that the system is deterministic and is only deter-
mined by a short history of input–output responses;
t
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be realistically identified.

4.2. Autoregressive exogenous model

A standard linear transfer function type black box
model was also considered; specifically the autore-
gressive exogenous type (ARX) [23]. This type was
used as it takes into account the past history of
the sampling equipment. This analysis indicates
whether the system being modelled is changing
with time.

This important class of black box predictive mod-
els are linear systems of the general form

y(t) = ��(t)� (3)

for its input–output characteristics. Here

�(t) =




	1(t)
...

	n(t)


 (4)

is the input vector, y(t) the output and � the pa-
rameter vector representing the parameterisation
of the system.

In particular, ARX is of the form:

ARX(q, r) : Y[n] =
q∑

i=1

˛iY[n − i] +
r∑

k=0

�kU[n − k]

+ e[n] (5)
he system is finite and causal. Finally that the
oise is zero biased and white in nature. This last
ssumption is necessary for least squares fitting to
e an unbiased estimate of the maximum likelihood
rror.

.3. Radial basis function neural network

adial basis functions [10] (RBFs) are spherically
ymmetrical functions. The type considered here
re Gaussian because of their nonlinearity; because
mportance is stressed upon the distance between
oints in the data set and the fact that they have
een shown to be universal approximators [24].
hese are of the form:

�(x, c) = exp−‖x − c‖
2�2 (9)

ere x is the model input. The c’s are centres
means) and � is the width parameter for this
ell shaped curve. These functions form the hid-
en layer of a nonlinear type of MLP. The output
ode is a weighted sum. The weights are identi-
ed by use of the support vector machine (SVM)
lgorithm [25]. This nonlinear optimisation algo-
ithm selects centres from amongst the training
oints. The optimisation performed minimises com-
lexity as well as the error to yield a well identified
odel.
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The resulting model may be written in the form

F(x) = ωi

∑
i

G�(x, ci) + b (10)

where the weights, ωi, and the bias, b, are esti-
mated using the experimental data. F(X) is the clas-
sification of the input x.

4.4. Nonlinear time series model

A hybrid, nonlinear, time series analysis model is
considered as well. It was suggested in [26] that
RBFs might prove useful for time series analysis.
The theory of nonlinear black box models may also
be found in articles such as [27] and [28]. Here the
acronym NARMAX was coined for use with a generic
nonlinear form of ARMAX models. Here a novel way
of combining the concept of the ARX type model
with RBFs is demonstrated which results in a model
whose parameters may be identified using the sup-
port vector method: the NARX. The advantage be-
ing, as will be demonstrated later, that a model is
generated that is endowed with robust parameter
estimation.
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or

˛1y(n) = [ˇ1, . . . , ˇnb, −˛2, . . . , −˛na+1]

×




u(n)
u(n − 1)

...
u(n − nb)
y(n − 1)

...
y(n − na)




+ e(t) (14)

This allows us to place the model in the context
of a support vector machine using Gaussian kernels.
The dot product in Eq. (14) above can be replaced
with kernel products of the form

〈x, y〉 = exp

(
−‖x − y‖2

2�2

)
(15)

where x and y are two vectors of the same dimen-
sion and � the width parameter as before.

Hence the result is an RBF network whose input
is the column vector on the right-hand side of (14),
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If the form of a standard ARX model is consid-
red then, in the many-in-single-out (MISO) case
Eq. (5)), it may be expanded into the form

1y(n) + ˛2y(n − 1) + · · · + ˛na+1y(n − na)

= ˇ1 · u(n) + ˇ2 · u(n − 1) + · · ·
+ ˇnb · u(n − nb) + e(n) (11)

ere y represents the output of the system (in this
ase the classification of the sample) and u is the
nput (the sensor responses) and e is the error;
indexes the nth element of the input and out-
ut sequences. The ˛’s and ˇ’s are coefficients of
olynomials in the shift operator and na and nb
re the orders of these polynomials. The input to
he model may be represented as a vector of the
orm

(·) =




u1(·)
u2(·)
...

ud(·)


 (12)

y rearranging, the following is obtained

1y(n) = ˇ1 · u(n) + ˇ2 · u(n − 1) + · · ·
+ ˇnb · u(n − nb) − ˛2y(n − 1) − · · ·
− ˛na+1y(n − na) + e(n) (13)
nd the target output is y(t). The parameters ˛i

nd ˇi are found using the SVM algorithm. All model
dentification and simulation was performed using
ATLAB (Mathworks) Version 5 on a Sun Microsys-
emsWorkstation with the system identification and
ptimisation toolboxes.

. Experimental method

he following sample preparation was carried out
n the Department of Biological Sciences at the
niversity of Warwick, UK.

.1. Preparation of frozen samples

n order to obtain a culture of a known value
f colony forming units (cfu) per milliliter, frozen
liquots of the various species considered were cre-
ted. For each strain three cultures were prepared
sing 10ml of brain heart infusion (BHI) and one
olony inoculated into each. These inoculated bot-
les were incubated overnight at 37 ◦C and shaken
t 75 rpm. Following incubation one bottle con-
aining each culture was removed, vortexed and
ipetted in 1ml aliquots into 1.5ml eppendorfs.
he aliquots were then centrifuged into a pellet
13,000 rpm, 2min) and the supernatant removed.
he second culture bottle was then aliquoted in a
imilar manner into the eppendorf containing the
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pellet and the above steps repeated. The third bot-
tle was processed similarly. Finally, 1ml BHI + 15%
glycerol was added to the eppendorf containing the
pellet and vortexed to create a suspension which
was quick frozen to −80 ◦C.

5.2. Inoculation of blood culture bottles

All experiments were conducted in BacT/Alert SA
(aerobic) (Biomerieux UK Ltd.) sterile culture bot-
tles. The bottles contained 40ml media plus an in-
ternal sensor that detects carbon dioxide dissolved
in the culture medium. The medium formulation
consists of pancreatic digest of casein (1.7%, w/v),
papaic digest of soybean meal (0.3%, w/v), sodium
polyaneatholesulfonate (0.035%, w/v), polyiodox-
ine HCl (0.001%, w/v) and other complex amino acid
and carbohydrate substrates in purified water.

Microorganism presence and the consequent pro-
duction of carbon dioxide results in a colour change
in the gas permeable sensor at the bottom of the
tube.

The culture bottles were injected with 10ml of
blood immediately prior to use to recreate a clin-
ical situation of adding a patient blood sample. A

by the manufacturer and is also dependent upon
the volume of the sample provided by the patient.
This will introduce a significant variability into the
measurement procedure.

Samples were again transferred as 1.5ml
aliquots to the standard 10ml vials used by the Ag-
ilent 4440. In addition to this other microbiological
techniques were used to ‘classify’ each sample with
respect to evidence of bacterial infection. Infection
levels were measured via:

• Classical microbiology. That is, inoculation of
growth media with prepared samples to demon-
strate the presence bacteria. This was also to
identify species using staining growth media.

• Cellfacts. This instrument (Cellfacts Ltd.) mea-
sures the distribution of particle sizes in a fluid
sample. The observed diameter indicates the
level of bacterial presence, white and red blood
cells. The results of this were used to classify
the urine samples into being either ‘positive’ or
‘negative’ with regards to being indicative of a
UTI.

Fig. 3 shows a typical sensor response for six
sensors when the C320 is challenged with the
headspace of a urine sample. The response is a out-
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sample of 10ml of blood is recommended, although
lower blood volumes can be used, but recovery
may not be as great. During the investigation ex-
periments were conducted using defibrinated horse
blood (no preservative) (Oxoid Ltd.).

The bottles were inoculated using the above
prepared microorganism pellets and incubated at
37 ◦C and shaken at 75 rpm to recreate a standard
incubator used in a hospital.

5.3. Preparation of samples for the
automatic headspace sampler

The samples to be measured by the Agilent 4440
were transferred as 1.5ml aliquots in 10ml ster-
ile flat bottom headspace vials (Agilent Technolo-
gies, Inc.). Blanks of BacT/Alert SA and blood were
run alongside inoculated samples in addition to BHI
broth as standards to confirm the accuracy of the
equipment. It should be noted that this broth is ex-
tremely odourous with the headspace being very
variable.

5.4. Urine preparation

The samples arrived from the Walsgrave hospital
in standard urine sample vials. Each sample had a
boric acid (62 Da) additive to suspend biological ac-
tivity. The exact concentration of the additive in
solution is unknown because it is placed in the vial
ut from Cyrano Sciences own data logging software
nd is proportional to the resistance of the sensor.
ach sensor response is coded onto as real numbers
sing the fractional change measure:

easure (Response) = Maximum − Baseline
Baseline

(16)

nd this is used as the input to the black boxmodels.
hus the time series of each experimental response
s not considered in the models, only the time series
f exposures as measured by the fractional change.

. Results

he results for urine and blood are considered sepa-
ately. In both cases, model identification and cross
alidations are achieved using the ‘leave-one-out’
10] algorithm. Cross validation is when the discrim-
nant model is tested using previously unseen data.
n the case of the leave-one-out algorithm, a cali-
ration set comprising of all but one of the data is
sed and the remaining datum is used to test the
odel. This is carried out for each data point in turn
nd the accuracy is the average of all these tests.
ccuracy is defined as

ccuracy = Number of samples correctly identified
Total number of test samples

(17)
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Fig. 3 Typical time series responses for six of the C320
sensors when exposed to a urine sample. The measured
response is proportional to the resistance of each sensor,
and was provided by the manufacturer’s software.

In both experiments the samples were screened
using the Agilent 4440 and the C320 unit. However
it was found that the mass spectrometer performed
poorly for the urine screening experiment, and vice
versa for the blood screening experiments. No ex-
planation for this observation is proposed at this
time.

6.1. Urine

For these data the aim was to classify accurately
whether each sample was ‘negative’ or ‘positive’.
This is a difficult problem due to the ‘chemical
noise’ of the samples and the range of different
indicators used to positively identify a UTI. As dis-
cussed above, the attempt is to identify the part
of the signal from the system which relates to the
presence of bacteria.

The urine screening experiment resulted in a
set of 189 sensor responses from the C320. By us-
ing data from all of the 32 sensors an accuracy of
65% was obtained using an ARX model. The order
of the model was optimised to na = 3, nb = 4 to
gain the greatest success rate; in all the models
below the order was optimised by testing a range
o
1
s
s
y
w
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t

Fig. 4 Model order against accuracy plots for the ARX
typemodel: (a) the 32 sensor data set and (b) the reduced
19 sensor data set.

spect to the success rate of the model. The plots in
Fig. 4(a) and (b) show the relationship between or-
der and accuracy. The former is for the full array of
32 sensors and the latter is for the reduced 19 sen-
sor set. Note that once sensor reduction has been
performed then lower order models are preferred.
This suggests that the sensors that have been dis-
carded contained no information with regard to the
discriminant task and so only provided some false
‘trends’ to which the model attempted to fit. Nor-
malisation gave 60% but when coupled with the
most negatively correlating sensor technique 71%
was achieved.

RBF success on these data was approximately
50%. Here the width parameter was optimised by
applying the SVM algorithm to a range of values for
this parameter. Applying the correlation results to
RBF networks it was found that a maximum accu-
racy of 65% was possible.

The hybrid NARX type model was considered and,
for na = 3, nb = 4, 80% was the maximum accuracy
achieved and the best overall for the urine data.
f values. The number of sensors was reduced to
9 by using the most negatively correlating sen-
ors, giving 67%. Selecting 19 out of 32 sensors is
till a high proportion of the sensors, but this still
ielded a more robust model. Negative correlation
as chosen as it resulted in a much better success
ate when compared to positive correlation, and
he number of sensors chosen was optimal with re-
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Table 1 Key to data plots Fig. 5(a) and (b)

Strain Symbol

MRSA ©
NCTC +
S. Epidermis ∗
S. Warneri ♦
S. Simularis �
S. Haemalyticus !

S. Lugdenensis
Growth medium ·

Reducing the number of sensors lowered the accu-
racy to 73%. This was perhaps because the hybrid
model relies on the distance between points, so ex-
tra dimensions are an advantage. Further, it should
be noted that radial basis functions have a regu-
larising, smoothing property which allows them to
avoid over-fitting.

6.2. Blood

The blood data were recorded using the mass spec-
trometer. A useful data preparation technique was
performed by removing the first two measure-
ments of each data file, due to instability in the
measurement of the first two samples.

Applying an ARX model to the full data set was
not suitable due to this being a very poorly deter-
mined problem; each input to the inverse model
has 505 dimensions and so the number of free pa-
rameters in even a low order model would be an
order of magnitude higher than the amount of data
available. By using the top 200 positively correlat-
ing masses a cross-validated accuracy of 94% was
achieved. The result of the correlation technique
may be observed by comparing Fig. 5(a) and (b);

Fig. 5 PCA plots of blood data: the ellipses illustrate
the spread and overlap of the classes of data: (a) the full
mass range and (b) a reduced data set produced using the
correlation method. Refer to Table 1 for key.

7. Discussion and conclusion

Two different types of data sets have been analysed
using dimension reduction techniques and black box
models. A marked increase (in the region of 20%)
has been observed in the success of the models af-
ter judicious pruning of the dimension of the data
set analysed.

The high order of ARX models necessary for the
urine data suggest that the history of experiments
needs to be taken into account; this is evidence
of a time dependent system. Although the sensors
respond over a 10-s period, the ARX model results
suggest that there is a memory effect lasting for
a considerably longer time. This could mean any-
thing from sensor drift to environmental factors
affecting the sampling equipment, and also the
samples themselves changing over time. Why this
is so for the urine data and not the blood could
be due to the different sampling equipment used
note that separation has not been affected but
the data may have much simpler models fitted to
them. The PCA analysis here is just as a means of
visualisation, not data analysis.

Applying the hybrid model gave a successful clas-
sification rate of 90%. However the best results
were achieved by using the Sammon map and train-
ing a standard RBF network. This resulted in an ex-
cellent accuracy of 100% successful classifications.

The results are summarised in Table 2 and are
compared with a multilayer perceptron (dimension
of input × 8 × 1). The results demonstrate, in cer-
tain cases, combining certain data reduction tech-
niques with black box models yields an unsatisfac-
tory classification rate. However these results are
included in order to demonstrate the effect that
each technique has on the data sets.
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Table 2 Summary of results as percentage accuracy

Model Optimisation Urine Blood

ARX Polynomial order 60 Not feasible
−Corr ARX No. of remaining sensors 67 50
+Corr ARX No. of remaining sensors 45 94
RBF Width parameter 65 71
Sammon RBF No. of features to extract 50 100
Norm RBF Width parameter 50 75
Nonlinear model Kernel width parameter 80 72
MLP Fixed number of nodes 38 50
MLP +Corr No. of remaining sensors 40 72
MLP Sammon No. of extracted features 10 65
MLP Norm Fixed number of nodes 63 50

Note that an ARX model cannot be applied to blood data as there are too few data points to estimate the required number of
weights.

for the two sets of measurements. The urine sam-
ple headspace was analysed using a C320 which
uses chemical sensors which react with volatile
molecules; the urine is acidic (and also contains
ammonia) and so may be ‘poisoning’ the sensors.
The blood data were produced using an Agilent
4440, which measures the distribution of molecular
masses using a quadrapole mass spectrometer. Thus
it maybe that C320’s response is dependent upon
those samples that it has interacted with in previous
experiments.

It appears that the correlation techniques work
most successfully with linear models, such as ARX,
whereas the Sammon map works best with the
nonlinear models. This may be due to the non-
linear models using radial basis neural networks.
These functions are spherically symmetric, hence
distance information is important. With a linear
model, using linear combinations of sensor outputs,
correlation between sensors implies redundancy.
It is unclear, however, why negative correlation is
most effective in one case and positive correlation
is effective in the other case. This may again be due
to the sampling equipment used. The blood samples
were analysed using a mass spectrometer and thus
the counts of eachmolecular weight are always pos-
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mutually remote points rather than neighbouring
points, which would be hypothesised to belong to
the same data class. Correlation is effective as it
‘prunes away’ redundant, correlating sensors.

The results for the various models suggest that
separation between classes is inherently nonlinear;
RBF-based techniques faired much better than the
linear MLP. In addition the SVM method seems to
effective at avoiding over-fitting.

These techniques still beg some questions. The
first is that of choosing the optimal reduced dimen-
sion of the input for the black box model. As dis-
cussed above, lower dimensions result in a much
more robust estimates of the parameters. How-
ever, Cover’s theorem [10] dictates that a high di-
mensional feature space is desirable1 for maximal
discriminant power due to the greater degree of
model freedom this affords. Hence an optimal di-
mension is a trade-off between experimental ability
and the complexity necessary of a model to explain
the input–output behaviour of the physical system
‘sufficiently well’.

Using the urine data, the least squares error of
the Sammon map algorithm may be used to esti-
mate how well the data fit into a given number of
dimensions. In this way it is possible to estimate
t
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tive. Hence any intensity information that is man-
fested as correlation will tend to be positive. In
he case of the urine samples, the device used was
he C320 electronic nose. The sensor response may
xhibit a positive or negative resistance change. It
ay be that components of the urine with no bear-

ng on the presence or not of an infection correlate
egatively with compounds denoting infection; this
as yet to be verified.
It is possible that the Sammon map works best

s it is biased to conserve the distance between
he ‘intrinsic dimension’ of the data by observing
ow the topological structure is preserved. We can
ompare this with how much variance is described
y each principal component resulting from PCA.
ig. 6 shows this comparison for the urine data; the
orresponding analysis on the blood data are shown
n Fig. 7. The eigenvalues of each principal com-
onent are used to denote the variance. It may be

1 The basis of the proof of this is the greater degree of freedom
fforded models on such spaces.
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Fig. 6 Two graphs demonstrating different ways of measuring the intrinsic dimension of the urine data.

seen that both suggest that the data may be re-
duced to three or four dimensional sets. This could
be a method of optimising the input dimension of a
model computationally.

It should be noted that the definition of intrin-
sic dimension given above requires that the form of
co-dependence of channels is known. At the very
least some assumptions about the form of these

f me
Fig. 7 Two graphs demonstrating different ways o
 asuring the intrinsic dimension of the blood data.
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relationships have to be made in order to estimate
the intrinsic dimension. It seems then that this is
another aspect of black box modelling, and requires
the same in-depth analysis and investigation that
has been afforded to input–output models.

This work suggests that data set dimensional re-
duction can improve the robustness of a model and
that the specific method used is dependent upon
both the data type and the black box model being
considered. When applied to electronic nose data
the improvements in success rates are very encour-
aging, and this may help to improve the technol-
ogy, via computational methods, in the area of rapid
medical diagnosis.
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