

Electronic Tongues Julian W. Gardner Professor of Electronic Engineering University of Warwick

Acknowledgements

- Dr Marina Cole (e-tongue)
- Dr James Covington (e-nose & MSL)
- Research Students at Warwick
- Universities of PennState & Georgia Tech (USA)
- Royal Academy of Engineering Global Award
- Royal Society and Wolfson Foundation
 WARWICK
 IEE Seminar on MEMS Sensor Technologies, 25 April 2005

- Research at Warwick on Biomimetic Devices
- Concept of artificial tongue
- 60 MHz dual delay-line miniature system
- Discrimination of basic human tastes
- Detection of bacterial loading in milk
- 433 MHz based microsystem with filter
- Artificial nose & tongue system

Biomimetic devices: Warwick Electronic Nose

- 1-100 million olfactory receptor cells
- 300 genes that encode olfactory binding proteins
- 1,000s glomeruli nodes
- Mitral/tufted cells

WARWICK

• 1-2% genome coding!

- Device to mimic human olfactory system
- E-nose concept 1980s
- First companies created in 1990s

• Emerging market valued in 2003 at €10-20 M

• Potential market €1.2B

Commercial E-nose Instruments from Warwick University

Sensor-based e-nose Mammalian Olfactory epithelium Brain Olfactory bulb Nose (Receptor cells) (Olfactory cortex) Output (Predictor) Computer Electronic Analogue to Digital (Signal Processor & Sensor array Nose Converter Pattern Recognition Engine) Input (Odour) ANALOGUE SENSING DIGITAL PROCESSING SENSOR $|V_{1j}(t)|$ SENSOR ORIGED SCHOOL PRODUCED INVITENANCH PROCESSOR KNOWLEDGE ELECTRONIC Handbook of BASE Machine Olfaction NOSES ELECTRONIC NOSES $V_{2j}(t)$ SENSOR SENSOR Electronic Nose Technology \sum 2 PROCESSOR TRAIN TEST Edited by T.C. Pearce, S.S. Schiffman H.T. Nagle, and J.W. Gardner EDITED BY $V_{3j}(t)$ SENSOR SENSOR ARRAY PARC Sensors and \sum Sensory Systems for an 3 PROCESSOR PROCESSOR ENGINE Electronic Nose ulian W. Gardner and Philip N. Bartlet $V_{nj}(t)$ SENSOR SENSOR Σ PROCESSOR n

WARWICK

Screening for pathogens

Medical diagnosis of ENT infections

WARWICK

Bacterial Population Genetics

Streptococcus pyogenes

SURVIVING THE "FLESH-EATING BACTERIA"

UNDERSTANDING, PREVENTING TREATING, AND LIVING WITH THE EFFECTS OF NECROTIZING FASCIITIS

SOUND, COMPASSIONATE ADVICE FROM LEADING EXPERTS AND SURVIVORS OF THE DISEASE

AND DONNA BATDORFF

WARWICK

Screening for strain

Environmental biohazards

Toxic strain of *Microcystis aeruginosa*

WARWICK

Gustation

WARWICK

Warwick Electronic Tongue

- Mimic human sense of gustation
- Concept in late 1990s
- Warwick SAW based design 60 MHz

No companies yet

WARWICK

Smart Tongue Applications

Taste discrimination

Fat content in Milk

Milk freshness/ bacterial load

Dilution Tests

- Experiments performed with the original solutions diluted in steps by a factor of 2ⁿ
- Volume of DI water was increased by 2ⁿ and added to fixed volume of solution
- As the concentration of the solutions decreased the results tended towards that of the DI water
- Typical limit of detection of 0.1% or 1 part in 10³

WARWICK

Drivers for 3-D Microsystems

- Need to miniaturise e-noses and e-tongues
- Need to reduce cost and power consumption
- Need to penetrate mass market
- CMOS sensor array chips developed but need for integrated 3-D microfluidic packages

WARWICK

Design of 433 MHz Electronic Tongue

Wireless MEMS Tongue System

IEE Seminar on MEMS Sensor Technologies, 25 April 2005

Monostable

Monostable

OOK modulated signal

RF switch

WARWICK

Design of Micro-concentrator for Bacterial Screening

Making 3-D Microfluidic Packages

- Direct writing of 3D structures in resins
- Developed in 1993
- Pioneered in US and Japan
- Capability from 50 microns to 50 nm

WARWICK

Warwick 3-D Microsculpting Lab for Biomimetic Devices

- SRIF2 Funding from HEFCE £200k
- Royal Society Wolfson Foundation Award £200k
- Installed 2 EnvisionTec units of 25 micron resolution
- Electroplater for 3-D microantenna
- Custom submicron unit from PSU

WARWICK

3-D Fluidic Micro-packages

• Disposable microfluidic packages for e-tongue

Designed by Warwick made at GIT, USA

WARWICK

Total Tongue System

WARWICK

Taste Discrimination at 433 MHz

Combined Nose-Tongue System

Ref: G. Sehra, PhD thesis, Warwick University, 2004

WARWICK

Conclusions

- Dual delay based electronic tongues show promise in some screening applications
- High frequency, low cost MEMS devices feasible
- Combined e-nose/e-tongue can add discriminating power

• Biological coatings may be added for even greater specificity/sensitivity

Recent Publications

Journal Papers

Cole M, Sehra G, Gardner JW and Varadan VK, *Development of smart tongue devices for measurement of liquid properties*, IEEE Sensors Journal, Vol. 4, No. 5, (2004), pp. 543-550. Sehra G, Cole M, and Gardner JW, *Miniature tasting system based on dual SH-SAW sensor device: an electronic tongue,* Sensors and Actuators B, 103, (2004), pp. 233-239.

Conference Papers

M. Cole, G. Sehra, J.W. Gardner and V.K. Varadan, *Fabrication and Testing of a Smart Tongue Device for Liquid sensing,* Proc. of IEEE Sensors 2002 Conference, June 12-14, 2002, Orlando, Florida, USA, pp. 237-241.

Sehra G S, Covington JA, Cole MV, and Gardner JW *Combined electronic nose/tongue for liquid analysis,* Proc. of 9th International Symposium on Olfaction and Electronic Nose, *eds A d'Amico and C di Natale*, 29 September –2 October 2002, Rome, Italy, pp. 58-63. Sehra G, Cole M and Gardner JW, *Miniature taste sensing system based on dual SAW sensor device,* Proc. of 17th European Conference on Solid State Transducers Eurosensors XVII, 21-24 September 2003. Guimaraes, Portugal.

I.I. Leonte, M.S. Hunt, G. Sehra, M. Cole, J.W. Gardner, M. Noh and P.J. Hesketh, *A wireless microsystem for liquid analysis,* Proc. of IEEE Sensors 2004 Conference, October 24-27, 2004, Vienna, Austria.

I. Leonte, M. Hunt, G. Sehra, M. Cole and J. W. Gardner, *SAW bio-liquid sensors with RF interrogation*, Proc. Of IEEE High Frequency Postgraduate Students Colloquium, IEEE catalog no. 04TH8740, 6th and 7th September, 2004 UMIST Manchester, UK, pp. 47-52.

WARWICK