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Abstract: A quadrupole mass spectrometer has been employed to analyse the headspace above
bacterial cultures. This, along with a pattern recognition algorithm, constitutes an electronic nose
system. Here we present the results of a study on the headspace of pathogens, specifically
Escherichia coli K12 and Staphylococcus aureus, the purpose being to identify the growth phase and
strain of different pathogens. The data collected from the mass spectrometry were used to train a
radial basis function (RBF) neural network. This type of network was employed because it requires
smaller training sets and is suitable for what is, in effect, 505 mass ‘sensors’. Principal components
analysis shows that there is sufficient information in the volatiles to discriminate between the
different growth phases of E. coli, but less so for two strains of S. aureus, i.e. MRSA and NCTC.
Excellent results are obtained using these RBF neural networks as approximaters of discriminant
functions. Furthermore, it is demonstrated that this method can deal with classification problems
that involve nonlinearity in the data. It is concluded that the reported methodology shows promise
as a useful pathogen identification technique, and in particular discrimination between the virulent
MRSA and the innocuous NCTC strain.
1 Introduction

Due to the emergence of antibiotic resistant micro-
organisms, the rapid screening of microbial pathogens has
become a crucial issue. Staphyloccocus aureus is a serious
human pathogen responsible for many cases of septicaemia
and toxic shock syndrome [1]. Methicillin resistant Staphy-
lococcus aureus (referred to as MRSA) was first reported in
1961, soon after the antibiotic methicillin entered clinical
use, and the pathogen is now becoming a major problem in
hospitals. This pathogen is also responsible for mastitis in
cows and sheep, with severe economic repercussions.

Not only has it become apparent that identification of the
strain of the organism is important, but it is also necessary
to be able to identify its metabolic state. This relates to the
viability of a microbe and hence its response when
challenged with antibiotics. Moreover, micro-organisms,
including certain strains of Escherichia coli, display
temporal expression of particular genes [2]. In the case of
E. coli O157, responsible for many cases of food poisoning,
verocytotoxin gene expression is enhanced in dormant cells,
i.e. at a low growth rate stage.
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We use the term headspace analysis to encompass the
various technologies used for the detection of volatile
compounds and the resulting data processing.

Headspace analysis holds a great deal of potential for
medical applications, see for example [2, 3] and [9]. The
emphasis to data has been on its ability to perform swifter
diagnosis. The analysis of an odour takes only a few
minutes (approximately 5 min) in comparison to hospital
pathology labs, which can take several days to culture and
identify a pathogen. Therefore, chemical headspace analysis
could represent a real advancement in terms of time,
efficiency and cost.

We concern ourselves here with volatile analysis using a
quadrupole mass spectrometer, specifically an Agilent 4440.
This instrument determines the abundance of molecules in a
sample over the mass range of 46 to 550 daltons. We
investigate whether it is possible to distinguish between
different samples by detecting only the volatiles that the
organisms give off.

Neural networks have proved useful methods both
for pattern matching and time series analysis. The difficulty
with approaches such as single and multilayer perceptron
methods is that increases in complexity of the network
must be matched with an increase in the size of the training
data set. This becomes particularly apparent for high-
dimensional data, for example mass spectrometry data. In
this situation the dimensionality of the input space is
dictated by the mass range of the equipment, i.e. a difference
of 505 daltons.

Thus, an immediate problem with this method of
headspace analysis, from the perspective of neural networks,
is the demand for large training sets. This curse of
dimensionality dictates that, for Agilent 4440 data, training
samples of the order of a thousand points are required to
produce a sufficiently ‘dense’ set of examples [5, 6]. Radial
basis function (RBF) networks reduce this problem via
97



a priori assumptions relating to smoothness of the
discriminant function [7, 8].

Here we consider two different types of data set. We do
this to demonstrate that the techniques outlined in this work
can detect both structural and metabolic changes in a cell
without knowledge of the chemical constituents of a
bacterial sample; these would be difficult to identify using
a mass spectrometer given the complex mixture used. The
first data type consists of samples of two strains of
Staphyloccocus aureus. One is antibiotic resistant, the other
is not and we refer to these as MRSA and NCTC,
respectively. The second data type consists of E. coli
cultures measured at different growth stages. This is also
used to show how binary classifiers can be easily extended
to n-classifiers.

2 Data collection

The data were collected in the Biological Sciences Depart-
ment at the University of Warwick and were used for a
previous study [2]. Headspace samples were formed by the
injection of pure helium gas into a 25 ml vial containing
10 ml of culture, followed by robotic transfer of the sample
vial into a heated stage and its stabilisation at a temperature
of 37(70.1)1C. The headspace was then injected into a
quadrapole mass spectrometer. The headspace autosampler
had a repeatability of about 0.25% by volume. The mass
spectrometer analysed the mass content of the headspace
with the range set to 46 to 550 daltons and a resolution of
0.1 daltons. The spectrometer could record individual
masses but the abundance was typically thousands of mass
units. The unit also contained a series of internal diagnostics
to check ion gauge currents, vacuum levels and so on.
Overall, we estimate the repeatability of the system to be
within 1% over the period of operation. Figure 1 illustrates
the experimental set up.

culture vial

neural network

mass spectrometer
automatic

headspace
sampler

cellFacts I

odour
classification

unit

(4440)

Fig. 1 Schematic of sample and data flow
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The samples were classified in the laboratory using
established methods. For the S. aureus data this was a case
of checking whether a sample consisted of the required
strain. This was easily checked as separate cultures of the
two strains were grown. The samples were taken at hourly
intervals, so the data also contained information about the
growth state of the culture. Two sets of experiments were
carried out yielding two data sets.

Microbial cells pass through three stages of growth.
These may be subdivided, but here we consider the three
main stages as these can be reliably observed (Fig. 2). In the
‘lag’ phase, the culture adjusts to its new environment. The
population size, i.e. number of cells, remains stable but there
is a dramatic change in the size of the individual cells
comprising the population. In the ‘log’ phase, the culture
undergoes growth and division. There is a shift in the cell
size distribution which correlates with the growth rate of the
individual cells. The third phase is the stationary phase,
where most of the nutrient resources available to the culture
have been used up, and so the cells enter into a form of
stasis.

For the E. coli data, growth phases were identified via cell
count and size [2], the actual data are displayed in Fig. 2.
These were measured using a CellFacts I instrument, which
measures the size distribution of particles in a liquid sample.
For further background information on this system see [9].
Samples were drawn from the culture at hourly intervals for
the first 8 h of the experiment and then at 24, 48 and 72 h.

The samples were introduced, at each time point, to the
mass spectrometer. The Agilent 4440 heats the sample vial
up to 801 for 3 min, and then draws off the resulting
saturated static headspace. This vapour is then passed to a
quadrupole mass spectrometer for analysis. The whole
process takes approximately 5 min. For more information
see [2].

The data output is in the form of a mass distribution
(called abundance) in the range here of 46 to 550 daltons.
The abundance of each mass is the count of particles of that
mass in the sample. The output data were logged on a PC
running software provided by the manufacturers of the
Agilent 4440 and analysed to see whether it is possible to
discriminate between the different classes of samples. Each
data point is labelled using the classification achieved
following the methods detailed below.

3 Principal components plots

Principal components analysis (PCA) is a data visualisation
technique that searches for variation in the data provided. It
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Fig. 2 CellFacts data showing the change in cell and population size
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looks for ‘directions’ in the feature space along which the
data predominantly vary. These principal components are
ranked in order and in this study three are selected to
provide plots for visual inspection. The criteria for selection
in this study are greatest variance or greatest separation
between classes. For further information see [10].

The PCA plots provided demonstrate the result of
projecting the data onto the selected principal components.
Thus, in 3-D, we obtain a representation of how the data
are varying within and between classes.

PCA of the data sets collected was performed using
Matlab version 6 software. Figure 3 shows a PCA plot
obtained from one of the S. aureus data sets, here ‘x’
represents a MRSA sample and ‘o’ represents an NCTC
sample. It can be seen that the classes are not linearly
separable. We illustrate this with a plot where the principal
components have been selected using cluster separating
criteria derived from the statistical, or Mahalanobis,
distance [11], which is a metric based upon the variance
within the data set. We also observe two obvious outliers.
These were not removed from the data set, on the grounds
that the data sets were small.

Attempting to separate data clusters with a plot of the
first three principal components is made on the implicit
hypothesis that the only variance present is due to the
differences between data classes [12]. In reality there are a
number of reasons for variation in the data, for example the
measuring equipment may have some built-in error. In
addition samples that are used to estimate the parent
distribution will not be perfect as, for example in the case of
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Fig. 3 Principal component plots for S. aureus data where the
crosses represent antibiotic resistant cultures
a First three principal components (percentage variation is also
shown). The data used were the raw output of the Agilent 4440. Notice
that principal component 3 only describes 0.1% of the variance of the
data. Hence, this plot illustrates the majority of the variance observed
in this work.
b Selected principal components
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binary classification, samples will have alternative features
that are not of interest to this study. For instance, when
looking for structural differences in bacteria, there may be
variation due to metabolic processes. These factors may
result in the within-class variation being greater than that
between classes.

It was therefore necessary to find an algorithm to detect
which principal components describe the greatest separation
between two classes. In [12], it is shown that the
Mahalanobis distance between two classes, based upon
the kth principal component, is a monotonic increasing
function of the expression given in (1):

½V T
k ðl1 � l2Þ�

2=lk ð1Þ

where l1 and l2 are the within class average vectors, Vk is
the kth principal component and lk is the variance
described in the direction of Vk.

This suggests a very useful criterion for selecting the ‘best’
principal components to plot. We simply seek to maximise
(1). A three-component plot can be achieved by choosing
the components which yield the highest values of (1) (as in
Fig. 3b). In this way the distance is maximised between
classes observed in the plot.

Looking again at the 3-D principal components plots, it
is evident that the classes cannot be separated using a single
hyperplane.

An examination of a PCA plot for the E. coli data in
Fig. 4 shows that these data exhibit stronger clustering.
However, there is still some overlap of classes. The arrows
are overlaid to illustrate how the data are changing with
time.

4 RBF networks

RBFs provide an alternative approach to neural networks.
The ability of RBF networks as empirical function
estimators lies in these nonlinear functions being incorpo-
rated into the hidden layer of the network (see Fig. 5). Thus,
the approximation problem is linear for such an approach.

RBFs are often spherical in form, being a function of the
distance from the point to some constant vector, as shown
in (2):

Gðx; cÞ ¼ F ðjjx� cjjÞ ð2Þ
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Fig. 4 PCA plot of E. coli data where la¼ lag, lo¼ log,
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overlaid to illustrate the change with time.
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Here, and for the rest of this study, 77.77 is the Euclidean
norm.

In the context of RBFs this constant vector is called a
centre. There are a number of methods for deciding those
points in the input space to use as centres. These include a
regular grid of points or, in the case of the work presented
here, they may be chosen from the training set.

The support vector algorithm detailed in [13] is used here.
This yields a cost function of accuracy against network
complexity that can be minimised using quadratic program-
ming. In this work we consider Gaussian functions of the
form:

Gðx; cÞ ¼ exp

�
� jjx� cjj

4s2

�
ð3Þ

where c is the centre of the function. Hence, it can be
considered as a function of a single variable, x. Due to the
effect the parameter s has on the value of (3), we refer to it
as the width parameter. In the context of Gaussian
functions the centre c can be thought of as the mean of
the function. Figure 6 shows the surface defined by
z¼G((x, y), 0).

The support vector algorithm considers a RBF network
with one hidden layer. Each basis function in this hidden
layer uses a training data point as a centre. Hence, initially
there are as many basis functions as training points.
However, the result of optimisation [13] is that many of the
weights are estimated to be zero, reducing the number of
basis functions. Hence, the number of basis functions are
controlled.

output

G(x,c1)

G(x,c2)

G(x,c3)

G(x,c4)

input (x) �

Fig. 5 Diagram of double-layer neural network with RBFs

YX

Z

Fig. 6 Graph of 2-D Gaussian with its centre at the origin
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There are many other RBFs that have been considered in
the literature such as inverse polynomials and B-splines [8].
We consider Gaussian functions because they are simple to
implement and, to a certain extent, we can visualise the way
that this method operates. Furthermore, in the context of
mass spectrometry analysis, the network is only concerned
with the distance between points rather than what each
component of a vector represents. This is advantageous
because the mass spectrometry data are of a high
dimension, making parameter estimation for a linear
network an under-determined problem; whereas it is well-
determined for a RBF network. It is thus impossible to
ascertain which molecular masses or compounds are
important for sample identification from the network
parameters using this approach.

Looking again at Fig. 5, our network represents a
discriminatory function estimator, F(x) [14] of the form:

F ðxÞ ¼
XN

i¼1
aiGðx; ciÞ ð4Þ

where the ci’s are the centres, and the ai’s are the weights in
the output layer, which are found during training.

The RBF networks considered here were binary predic-
tion classifiers. One class is assigned the label ‘1’, and the
other the label ‘�1’. As the output of a network is a real
number, this was achieved by using a three-stage activation
function. Thresholds for classification were set such that an
output between �0.5 and 0.5 would be classified as
‘unknown’. This activation function is given in (5) and
illustrated in Fig. 7.

yðtÞ ¼
�1 to� 0:5
0 �0:5o t � 0:5
1 t � 0:5

8<
: ð5Þ

We feel this is a much better test of the accuracy of the
network because it does not force the solution into two
states; we need to identify an unknown bacterial species and
we want to be sure that the identification is correct. The
unknown region allows for the possibility that:

1) The sample is of an unknown species of bacteria.

2) The sample is of S. aureus, but is sufficiently different for
it to be incomparable with the training set.

The networks discussed below employing Gaussian
RBFs were implemented in Matlab version 6. The scripts
were custom written where the alternative was to use the
Matlab RBF toolbox. The decision to use our own code
was based upon the control this gave, and the ease with
which the data could be explored.

−1

1

0.5 1.0−1.0 −0.5
t

�(t )

Fig. 7 Three-stage activation function
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5 Network training regime

The two S. aureus experiments yielded two sets of data files.
We call these data sets A and B to aid exposition. Set A
contains 28 samples and set B contains 40. In each set there
were equal numbers of MRSA and NCTC samples. The
networks used here were trained using the support vector
method. This is a batch training regime.

The E. coli data set consists of 32 data points. They were
organised in duplicate pairs, in the sense that each sample
was split into two, and placed in separate vials for sampling.
The data were split up into four classes; the three main
phases discussed above and a fourth phase called ‘later’.
The ‘later’ class consists of the samples taken at 24, 48 and
72 h. We introduce this fourth stage because these samples
represent bacteria much further along the time scale than
the other samples.

The E. coli data set consisted of six lag points, six log
points, 14 stationary points and six ‘later’s’. Hence, it was
necessary to extend the binary classifier. The simplest
solution was to train a network for each class, each network
recognising one class as being ‘positive’ and the others as
‘negative’. This therefore required four networks in total,
but only a single element output. It also permits
independent training and so gives better performance of
unscaled abundance data.

The four outputs were combined into a 4-D vector.
Hence, each class required a positive result in the
corresponding component of the output and a negative
result in the other components.

Here we ‘force’ a classification, using the sign of the
output, rather than setting thresholds. In the event of a zero
output, we classify this as ‘unknown’. Hence, the predicted
result is the most positive component of the output vector.
We feel that this is acceptable as the four classes are
separated temporally and the classifications are based on
‘eye’ inspection of the CellFacts ouput.

5.1 Selection of training and validation
data
The S. aureus data were collected over a full growth cycle so
the data sets not only contained information on structural
differences but also metabolic information [2]. To illustrate
this we split the data sets into two halves, one containing
early growth stage samples and the other containing later
stages of growth.

It must be emphasised that, as we can train and validate
with two separate sets of samples produced on different
days, we can truly estimate the accuracy and the robustness
of the resulting networks.

We had only one data set for the E. coli growth phase
part of the work. However, as discussed above, the points
are paired in duplicate samples. Hence, we produced two
data sets by splitting up the duplicate samples. We call these
two sets X and Y.

5.2 Setting the width parameter
A problem yet to be satisfactorily solved with RBF
networks is setting the width parameter of the RBFs. A
balance must be met where the parameter is sufficiently
large to represent the distribution of the class, but also small
enough so that points from another class are not included.

Many techniques have been suggested for choosing s (see
[15] and [16]) such as the average distance between training
points. Here the accuracy of the networks was optimised by
trial and error. The width parameter was increased in large
increments until the accuracy began to drop, then the
interval defined by the last two values was explored using
IEE Proc.-Sci. Meas. Technol., Vol. 152, No. 3, May 2005
finer steps. Although simple, this procedure was surprisingly
quick, requiring very few iterations.

6 Results

We now present the results of this work in the form of
confusion matrices. Each column is labelled with the true
class of each sample, and the row gives the prediction. Thus,
for example, in Table 2, three MRSA samples could not be
identified as either MRSA or NCTC.

The accuracy is defined as the ratio of correct predictions
(from 50% cross-validation) to the total number of test
samples.

6.1 S. aureus
For the S. aureus classification problem, all of the training
vectors were selected as centres, probably due to the
inherent nonlinearity of the problem.

First, a network was produced using the first half of data
set A, and validated with the second half. The results are
shown in Table 1.

The prediction rate is very poor, and similar results were
obtained from data set B. However, as discussed above, the
data vary with the growth phase. This meant that the
network was trained to recognise early phase data, and so
could not cope with later phase data.

To explore the growth phase information contained in
the data the next regime employed involved training with
the first half of data set A and validating with the
corresponding portion of set B and vice versa. The results
are shown in Tables 2 and 3. These results are much

Table 1: Results of training with first half of data set A and
validating with second half (the accuracy is zero)

Predicted True classification

MRSA(7) NCTC(7)

MRSA(1) 0 1

NCTC(0) 0 0

Unknown(13) 7 6

Table 2: Results of training with first half of data set A and
validating with first half of data set B (the accuracy is 0.75)

Predicted True classification

MRSA(10) NCTC(10)

MRSA(7) 7 0

NCTC(8) 0 8

Unknown(5) 3 2

Table 3: Results of training with first half of data set B and
validating with first half of data set A (the accuracy is 1.0)

Predicted True classification

MRSA(10) NCTC(10)

MRSA (10) 10 0

NCTC(10) 0 10

Unknown(0) 0 0
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improved, especially when it can be seen that good
validation was achieved against a different data set.

Finally, we extended the approach to train over an entire
set. We used data set B for this test as it had the most
training vectors. The result is shown in Table 4. Here we
have 100% accuracy.

6.2 E. coli
For the E. coli data sets 65–70% of the data were
incorporated as centres in the neural network. Tables 5
and 6 detail the results using the two data sets. We do not
have 100% accuracy here; in fact we have accuracies of
68.75 and 81.25% respectively.

It should be noted that, on the occasions when the
prediction was incorrect, it was only shifted by one growth
stage with respect to time. As the CellFacts classifications
were (to a certain extent) subjective, the boundaries of each
stage are undefined, i.e. transition between growth phases is
blurred.

7 Conclusions

The headspace of certain microbial samples was analysed
using a mass spectrometer. Neural networks were trained
successfully to identify the class of unknown samples.

The results presented here demonstrate the application of
RBF networks to analysing mass spectrometer data. By
examining the principal components plots in Fig. 3 it

Table 4: Results of training with data set B (40 examples)
and validating with set A (28 examples) (the accuracy is 1.0)

Predicted True classification

MRSA(14) NCTC(14)

MRSA(14) 14 0

NCTC(14) 0 14

Unknown(0) 0 0

Table 5: Results of training with set X and validating with
set Y

Predicted True classification

Lag(3) Log(3) Stationary(7) Later(3)

Lag(3) 1 2 0 0

Log(3) 2 1 0 0

Stationary(7) 0 0 7 1

Later(2) 0 0 0 2

Table 6: Results of training with set Y and validating with
set X

Predicted True classification

Lag(3) Log(3) Stationary(7) Later(3)

Lag 2 2 0 0

Log 1 1 0 0

Stationary 0 0 7 0

Later 0 0 0 3
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also can be seen that, in the S. aureus case, RBF networks
can cope satisfactorily with a nonlinear classification
problem.

In this work, very little data were available. It seems,
however, that theses were still sufficient enough to train
accurate neural networks. Unfortunately, the small valida-
tion sets mean that we only have an estimate of the
accuracy of the networks.

It may be possible, with further work, to improve
classification rates by considering strain and growth phase
information together. As discussed above, in the Introduc-
tion, this would, in particular, be beneficial for the
determination of the correct dosage of appropriate
antibiotics.

We can conclude that the technique presented here can
rapidly identify certain microbial pathogens. These experi-
ments were performed under laboratory conditions, and so
more work is required to carry out these techniques under
clinical conditions. Nevertheless, the technique of identifica-
tion by headspace analysis shows promise as an important
tool for the rapid screening of microbial infections.
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